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Abstract. Extensive testing of modern communicating systems often involve
large and complex test suites that need to be maintained throughout the life cycle
of the tested system. For this purpose, quality assurance of test suites is an in-
evitable task that eventually has an impact on the quality of the system under test
as well. In this work, we present a means to analyze response inconsistencies in
test suites. We define a response consistency relation and describe a method that
identifies candidates for the analysis. Using these candidates, we find response
inconsistent states. The applicability of this method is discussed for local test
cases, local test cases with different response orders, and distributed test cases
with concurrent behavior.

1 Introduction

Current industrial test suites for modern communicating systems are often huge in size
and complex in their behavior. The tested devices are becoming increasingly sophis-
ticated and at the same time, such devices have to become more reliable than ever
before. Extensive testing nowadays involves not only the specification, the selection,
and the execution of test cases, but also includes the maintenance of test suites through-
out the life cycle of the tested system. For this purpose, quality assurance of test suites
is an inevitable task that eventually has an impact on the quality of the System Under
Test (SUT) as well. There is always a reciprocal effect between the quality of the test
suite and the quality of the tested system. In addition, just like normal software, man-
ually written test suites suffer from software aging [1] and it is thus sensible to find
quality issues in tests as early as possible.

In our previous work, we introduced a quality engineering approach for test spec-
ifications. For the quality assessment, a quality model is given and metrics are used
to quantify quality characteristics of the test specification. The quality improvement is
based on refactoring and smell detection for issue discovery [2, 3]. We prototyped this
approach with our TTCN-3 Refactoring and Metrics Tool (TRex) [4] for the Testing and
Test Control Notation (TTCN-3) [5]. An extension of the proposed quality engineering
approach includes the reverse-engineering of test case models and a subsequent analy-
sis of property patterns that should never occur in these models [6]. However, all these
analyses were based on the test case as an entity and never regarded the test suite as a
whole, i.e., the analyses disregarded how test cases relate to each other. In this paper,
we present first results describing such inconsistencies in test suites that may indicate
quality problems for the test suite.



Test suites are composed of multiple test cases. In this work, we contribute a method
to analyze response inconsistencies. Response inconsistencies are situations that arise
when multiple test cases in a test suite have the same stimuli sequences, but expect dif-
ferent responses after the stimuli have been sent. Using this response inconsistency cri-
terion, we identify test cases that are contained in each other or that expect completely
different messages despite their equivalent stimuli sequences. We discuss response in-
consistencies for sequential test cases with a strict stimuli—response order and then for
responses that may arrive in different orders as well as concurrent test behavior.

In general, the work on quality assurance of test cases or test suites is rare. Besides
our own work mentioned above, Vega, Din, and Schieferdecker have worked on guide-
line checking of TTCN-3 test suites in order to improve the maintainability of test suites
[7]. Besides guideline checking, they have worked on quality measures for test data [8,
9]. Together with Zeiss, Neukirchen and Grabowski, they participated in the definition
of a quality model for test specifications [10].

The test suite consistency description by Boroday, Petrenko, and Ulrich [11] is re-
lated to our work. The paper describes mutual consistency criteria on test cases. In their
description, two test cases are inconsistent when the expected SUT outputs for one state
of their product are different. In our work, we deal with cases that they call strongly in-
consistent and define a consistency relation that is based on the idea of weakening the
bisimulation relation. In addition, we describe the analysis based on linear extensions
of partially ordered models.

Numerous works on test case selection deal with similarity measures between test
cases. For example, Cartaxo et al. [12] describe a similarity function based on the ob-
served number of identical transitions. Similarly, Alilovic-Curgus and Vuong [13] have
proposed a distance metric that penalizes mismatching symbols in execution sequences.
The overall number of different proposals to measure test case similarity for test case
selection are too high to list. Books such as [14] by Utting and Legeard provide a gen-
eral overview on the typical criteria involved and the corresponding literature. To our
knowledge, there is no work that bases a similarity measure on equivalent stimuli se-
quences though. Equivalent stimuli sequences are primarily interesting for analyzing
inconsistencies in a test suite rather than being a generic similarity measure.

The paper is structured as follows: in Section 2, we provide a basic definition for
the model in which we represent our test cases. Sections 3 and 4 comprise the main
contributions of this paper. Section 3 presents how we define response consistency and
correspondingly response inconsistency between two test cases. Section 4 describes a
method on how to analyze response inconsistencies by finding candidate pairs and then
analyzing the candidates. Section 5 describes how the presented relations are applicable
to test cases with different response orders. Section 6 discusses concurrent test cases.
Finally, we conclude with a summary and an outlook in Section 7.

2 Test Suite Model

We first introduce a basic transition system that we use to describe our test cases
T\, T»,...,T, in a test suite T'S. Our base model is the Labeled Transition System (LTS)



with actions partitioned into inputs and outputs as described, for example, by Tretmans
[15]. In addition, we describe unobservable actions by their own partition.

Definition 1 (Labeled Transition System (LTS) with Inputs and Outputs). An LTS
T is defined by the tuple (S,A,A,sy) where

— S is a finite and non-empty set of states,

— A is a set of actions that is partitioned into the sets of input actions Aj, the set
of output actions Ao, and a set unobservable actions Ay with A = Ap UA; UAy,
ArNApNAy =0.

— A is a transition relation with AL C S X A x S,

— 50 is the initial state.

A transition from the set A is written as triple (s,a,s') or s % s'.

We also refer to the elements of the four-tuple by using them as index of T, e.g.,
Ts refers to the set of states in 7. The elements of each set may have an upper index
to refer to the model they belong to, for example, sl-TS refers to a state s; € Ts. To ease
the distinction between input actions and output actions, we also use the notation ?a if
a € Ar and la if a € Ap. We use the notation pla or p?a if a message a sent through a
channel p or received through a channel p respectively. Since channels are not explicitly
a part of our model, the channels can be interpreted as a label prefix. We continue by
providing various further definitions that extend the formal framework. Note: in this
paper, we discuss properties of test cases as subject rather than properties of the tested
system. Therefore, we switch the meaning of inputs and outputs and take the view of the
test case to have a more intuitive understanding from its perspective. This means that
inputs in our models are inputs to the test case, i.e., responses from the system whereas
outputs are outputs to the system, i.e., the stimuli.

Definition 2 (Path). A path s; 2 5, of an LTS T is a finite and non-empty
sequence  (Si,Qi,Sit1,it]1,-,an—1,8y) with i,n € N such that the transitions

a
s5j = Sj41,] €NJi < j <nexistin A.

Definition 3 (Traces). A trace ¢ in an LTS T is a finite sequence {(a;,dis1,...,dn—1)
such that the sequence (S;,q;,Si+1,0it1,.--,0n—1,5,) is a path in T. We denote the set
of all traces over a set of actions A with A*. We concatenate actions to denote action
sequences using the - sign, e.g., 1a-\b-7c-\d would denote a sequence of actions that is
read from left to right.

a

. ayp-ar-...-q, . a . .
The notation s """, t means that transitions s — s' <2 ... 2 t exist. We write
ap-ay....dpy . . . ap-ay...-dy
§ ———— if there exists a state t with s ———t.
With the double arrow, we denote paths that skip unobservable actions
ap-az-az-dg /
——— § where aj,ays € A;j UAp and

in Ay, ie., if we have a path s
ap,a3 € Ay, we may write s Ay for the abstracted sequence of observable
actions. To be more concrete: s = s < s =5 or s 22" a; € Ay and
s e 215175 ,acAUAQUAY)V (s =5 and a € Ay). Analogously,
we use the notations s =22t o5 s L B K pand s 2 iff there exists a state t
with s 2 1.



Furthermore, with traces(T) we denote the set of of all traces that can be produced

in model T from the start state sy, i.c., traces(T) := {c € A*|T 2. Here, the LTS T
refers to the initial state so of T.

Definition 4 (Determinism). An LTS is deterministic ift =t' for paths s =t and s = ',
for every st € S.

Definition 5 (Parallel Composition Operator). Given two LTSs T\ and T,, the syn-
chronous parallel composition P = T\||T, is defined as follows:

Ps =T, X Tag.
- P =T,UT,.
P, is defined by the following inference rules:
o (s,) S (s\t)eP,  ifsSs €T, anda € Ty, \Ty,,
o (5,0) 5 (s,t)€Py  ift St €D, anda € T, \Ty,,
(s;t) 5 (5¢)) € Pha€ Ay ifs S s’ €Ty, and t St € T, and
(a S T1A1 Na e TQAO)\/(CI S TIAO Na e TZAI)'
- PSO = (Tl.s07T2s0 )

[ ]

The third rule connects corresponding input actions with output actions of the same
label where the action becomes an unobservable action in Ay . If we used a channel
as label prefix for the synchronized input and output actions, we will indicate them in
the synchronized action by separating channel and label with a “.”’, e.g., pla and p?a
becomes p.a. Note that due to our partitioning in inputs A;, outputs Ap, and internal ac-
tions Ay, we are not in need of a special T symbol that avoids multiway synchronization
as actions in Ay are never synchronized. With the proposed composition operator and
no queues in between, the send operations are blocking until a corresponding receive

operation takes place.

3 Response Inconsistencies

The inconsistencies presented in this paper are based on the fact that the behavior of
two different test cases 77 and T coincides up to a certain state s”! and respectively s'72.
Here, coinciding behavior intuitively means that there is a common action sequence ¢
such that the transitions sg 2 s can be found in Ty and so 2 ¢ can be found in Ty
When s and s’ respectively are states that expect only responses, they should expect the
same responses — after all, the preceding action sequence between 77 and 7, matched
and thus the responses should be the same.

Imagine the test case models illustrated in Figure 1a and 1b. Both models start with
a stimulus !a and thus have the same observable prefix. However, in test case 77, the
test case expects messages ?b, ?c, or 7d while test case T, only expects messages ?b or
7c. T, expects a subset of the messages that 77 expects and is essentially contained in
T. In this situation, it is unclear why 77 does not handle a possible incoming message
d — it simply may be an inconsistency due to a human mistake or a redundancy. Three
general cases can be distinguished how such test cases differ in a receiving state with
the same preceding stimuli sequence:



?b ?c
(a) Test Case T; (b) Test Case T»

Fig. 1: Different Responses

— the test cases expect the same messages,

— one test case handles a subset of the expected messages of another test case,

— one test case expects completely different messages than another test case. The
receive sets are disjoint.

The example in Figure 1 illustrates case 2. The general underlying assumption, in
this local scenario is that a test case is initiated by stimuli, responses follow in answer
to the stimuli, and then again possibly a new stimuli—response sequence is initiated or
the test case ends. In other words, we are assuming that we deal with test cases that
have a repeating stimuli—response pattern. Within these patterns, we want to find con-
tradictions in the responses when comparing test case pairs. Of course, the scenario of
the presented Figure 1 is essentially the simplest possible case. In practice, we also deal
with test cases that may possibly have varying response orders or concurrent behavior
altogether.

For this purpose, we will define a binary relation that describes what a response
consistent test case pair is. The relation is very general and is applicable for local test
cases, test cases with varying response orders, and test cases with concurrent behavior.
Informally, there are three distinct cases when we consider a test case pair response
consistent:

— the test cases are observationally equivalent in their behavior,

— the test cases have entirely different stimuli sequences,

— the test cases have coinciding stimuli sequence prefixes and the stimuli responses
within this prefix are consistent.

The first two cases can be considered as borderline cases for the last case. Obvi-
ously, if two test cases are observationally equivalent, there are no contradictions in
the responses. The traditional relation that describes systems whose observable moves
cannot be distinguished from each other is weak bisimulation [16]. We provide a def-
inition of weak bisimulation defined for two separate transition systems (whereas the
usual definition is given over a single transition system). Weak bisimulation, as opposed
to strong bisimulation, abstracts from internal transitions in the behavior and thus only
regards observable behavior for its notion of equivalence.



Definition 6 (Weak Bisimulation). Given two LTSs Ty and T,, a binary relation
R C Tig x Ts is a weak bisimulation iff the following conditions hold for every (s,t) € R
and an actiona € (T, UT,):

= Ty, implies that there is at' in Ty such that t L€ T, and (s',t') €R

— Symmetrically: t %t € T», implies that there is a s' in Ty such that s < s' € Ty,
and (s',/') €R

We call two states s and t weakly bisimilar or s = t iff (s,t) € R. Similarily, we call two
LTSs Ty and T, weakly bisimilar, or Ty = T, iff for every s € Ty, there exists a t € Ty
such that s =t and for every t € T, there exists an s € Ty, such that s ~ 1.

We assume that response contradictions can only occur when the stimuli sequences
coincide. By stimuli sequences, we formally mean rewritten traces where only those
actions are concatenated that are outputs from the test case. For this purpose, we define
the stimuliseq operator that essentially slices all actions from a trace except the stimuli.

stimuliseq(ay -az - ...-ap) '=Vaj,a; €Ap,i < j:a;-aj

Due to our assumption that we have a repeating stimuli-responses pattern, deviating
stimuli sequences from the first stimulus indicate that the test case is intended to test
something different. However, if the stimuli sequences coincide in both test cases hav-
ing a common stimuli sequence prefix and then diverge into different stimuli suffixes,
the responses to the coinciding stimuli still have to be consistent.

Definition 7 (Response Consistency (reco)). Let Ty, T> be two LTSs. Then Ty and T,
are response consistent, or Ti reco T; iff one of the following conditions hold:

— Jo € traces(Ty), g € traces(T») : stimuliseq(c) = stimuliseq(g),
- Js0=s,0 ctraces(Ty), 1o Ste Dy, , ¢ €traces(Tr) : stimuliseq(o) = stimuliseq(g),
where for all s 2§ witha e AIT', there exists at = t' witha € AIT2 and vice versa:

!
forallt ¢ withd € AITZ, there exists an s = s' with a € AITI.

In comparison to the weak bisimulation relation, the reco relation is weak in its
condition. It essentially demands that for all states in a test case 77 reachable by a
common stimuli sequence and with an outgoing response transition, there must be cor-
responding response transition in 7> in a state that is reachable by the same stimuli
sequence and vice versa. In addition, the matching stimuli sequence condition also im-
plies that test cases can be response consistent that drift apart in their stimuli at some
point. The consistency criterion is only concerned with those states that are reachable
by coinciding stimuli sequences.

As mentioned above, weak bisimulation and entirely different stimuli sequences
are essentially borderline cases of the reco relation. In the following, we demonstrate
that two response consistent test cases are weakly bisimilar when the stimuli sequences
for all traces symmetrically match and the response orders are the same. It helps to
differentiate reco and weak bisimulation and illustrates where the two relations meet.



Proposition 1. If two test cases Ty and T, with inputs and outputs fulfil the following
conditions
— Ty reco Ty,
- Vso = s with 6 € traces(Ty)3g € traces(T») : stimuliseq(c) = stimuliseq(g) and
vice versa: Nty = t with G € traces(Tr)3o € traces(Ty) :
stimuliseq(g) = stimuliseq(o),
— there is a relation R C ST x S™2, where for all pairs (s,t) reachable by the the same
stimuli sequences and all (s,t) €R, s 4§ witha € A;l, there exists at = t' with

/
ac AIT2 with (s,t) € R and vice versa: for all t * t' with ' € AITZ, there exists an
s =5 witha € AITl and (s,t) €R,
then Ty and T, are weakly bisimilar.

Proof. Imagine two test cases 71 and 7, that are not weakly bisimilar. This means there
is a state pair in the bisimulation relation (s,¢) € R where there is a s = s’ € T} , for

which there isnot = ¢’ € T, or thereisat =t € I, for which there isno s = s’ € h,.
The fact that (s,) is in the bisimulation relation implies that either s = s and t = 1y
or that there are transitions sy 2 s and to 2 t where for every observable transition,
there is a bisimilar state pair that leads to (s,7). The hypothesis must hence be false for
transitions following (s,1).

In the case that a € Ay, then there is always a transition s — s’ with a corresponding
t = ¢’ and vice-versa as s = s and 7 = r always exist for internal actions (See Definition
3).

In the case that a € A;, then we know that for all s & ¢ witha e AT‘, there ex-

istsar=¢ witha e AIT2 and vice versa: for all ¢ a—/> t with d' € A,Tz, there exists an
s= witha e A,T1 if states s and ¢ respectively are reachable by a common stimu-
lus sequence. In addition, the relation R in the hypothesis ensures structural equiva-
lence. Furthermore, according to the hypothesis, the stimuli sequences mutually exist

for all traces in 77 and 7>. Thus, there are always sequences sy 2 sand to = ¢ where
stimuliseq(o) = stimuliseq(G).
Finally, let a € Ap be an output action. If s L€ Ty, then there must be a

= T, . Otherwise, we must have traces ¢ and ¢ with so 2 ¢ and 1o = ¢ where
stimuliseq(o) # stimuliseq(g) which contradicts the hypothesis. The symmetric case
can be shown analogously.

For input and output transitions, the hypothesis must be false in order to violate
the bisimulation criteria for the pair (s,¢). Hence, its contrapositive, i.e., the original
statement, must be true.

If we once again take a look at the example in Figure 1, we notice that 71 reco 75 is
false. The test cases do not differ in their stimuli sequences as both test cases start with
a !a transition. Therefore, we know that the third condition must hold. But it fails. There
are no traces with the same stimulus sequence where the responses between the stimuli
match completely. The traces where the stimuli sequence matches reach state 2,3.4, or
5 in T;. However, a corresponding transition in 7, for ?d is missing. For 75, however,
there are corresponding response transitions in state 2. Therefore, the condition fails.



4 Response Inconsistency Analysis

Given a a test suite 7'S which is a set of of test case models 71,73, ...,T,, we suggest a
response inconsistency analysis involving the following steps:

— Finding candidate test case pairs for the analysis,
— For each candidate test case pair, we find states responding to stimuli that contradict
each other in their responses.

In the following, we describe each of the two analysis steps in more detail.

4.1 Partial Stimuli Equivalent Test Case Pairs

The first step in finding response inconsistent test case pairs is to identify candidates
for the analysis. To identify such candidates, we classify all test cases by the stimuli
sequences that they can produce. The reasoning behind this is the stimulus—response
pattern. We assume that responses happen as reaction to the stimuli sent to the system
and thus stimuli sequences are independent from possible response contradictions while
they still identify the gist of a test case, namely those behaviors of the test case that
control the behaviors and reactions of the SUT. However, since there may be causal
relationships between responses and subsequent stimuli, we define a partial order that
is used to preserve these relationships.

Definition 8 (Linear Extension of a Partially Ordered Set (poset)). Given a poset
(Sp, <), i.e., a binary relation “<” over a set Sp that is reflexive, antisymmetric, and
transitive, a linear extension of (Sp, <) is a total order St for which, whenever x < y in
P, x <y also holds in St. We define L(Sp) to be the set of all possible linear extensions
OfSp.

We use posets for each unique stimuli sequence that essentially match all traces with
the same stimuli sequences. These posets for each stimuli sequence order the stimuli
among each other and responses to their corresponding stimuli, but not the responses
themselves. Using these posets, we can require that there exists at least one common
linear extension in the test case pair that leads to the next stimulus.

Definition 9 (Partial Stimuli Equivalence (psteq)). Let T1,T, be two LTSs and let
PO, := (AT, <) and PO, (A", <) be partially ordered sets for each unique stimulus
sequence Op and Gp defined over the actions of Ty and T respectively. We then say that
T is partially stimuli equivalent to T, i.e., T1 psteq T> if and only if all of the following
conditions hold:

- Jo € traces(Ty) N A* with a corresponding ¢ € traces(Tr) N A* such that
stimuliseq(o) = stimuliseq(g),

- Vaj,a; € 6 withi < j: aj,a; € POyipyliseq(o) and a; < a; iff a;,a; € stimuliseq(o)
ora; < ajiff a; EA;1 Naj € stimuliseq(o),

— vice-versa: 3¢ € traces(Tr) NA* with a corresponding & € traces(Ty) NA* such
that stimuliseq(G) = stimuliseq(o).,



- Vaj,aj € g withi < j:ai,a; € POyipyiiseq(c) and a; < a; iff a;,a; € stimuliseq(g)
ora;<ajiffa; € AIT2 Naj € stimuliseq(g),

- Jo € traces(Ty) N A%, ¢ € traces(T) N A* such that
stimuliseq(c) = stimuliseq(g) such that the intersection of the
linear extensions of the corresponding posets is non-empty, e,
L(Postimuliseq(c)) mL(POSU'muliseq(g)) 7é ov (stimuliseq(d) = G/\S[im”liseQ(G) = g)

While the stimuli sequences are required to be equal in any case, the requirement
that there is a linear extension in both 77 and 75> for each stimuli sequence that also
includes responses that are ordered to their stimuli makes sure that causal relationships
between responses and subsequent stimuli are preserved (see Section 5).

Using this partial stimuli equivalence criterion, we can partition the
test cases in TS, ie., Ti,T»,...,7, into partially output equivalent pairs
TSc:={(T;,T;)|VT;,T; € TS : T; psteq T} }.

4.2 Finding Response Inconsistent States

Given the set of candidates that have coinciding stimuli prefixes 7S¢, we can now
analyze test case pairs (7;,T;) for possible response inconsistencies. For this purpose,
we define the set of inconsistent states IS; C ST that contains those states of 7; that are
inconsistent with Tj.

1S; :={s|s € $Ti : 4.1
Jdo, ¢ with stimuliseq(c) = stimuliseq(g),sg’ 2 ST",tOTj = 4Tin
Fr = (s L sy, a € A" for which there exists no (177 % ¢'77),a € A;’}

Informally, the conditions describe that there is a trace ¢ in T; and ¢ in 7} that reach
corrsponding states s7, and S7; by applying the same stimulus sequence. The state sy,
reached is a state where only responses take place and there is a response transition with
an input action a that does not exist in 7.

Analogously, IS; defines those states 1S; C ST that contains the states of T; that are
inconsistent with 7;, i.e., 7 and j are swapped. We then say that 7; and 7; are response
inconsistent if 1S; UIS; # 0.

5 Response Inconsistency Analysis with Different Response
Orders

The provided examples so far always assumed that the response events of the compared
test cases are ordered in the same way. Similarly, we have only discussed local test cases
without concurrent behavior so far. In general, we need to distinguish the following
cases when we compare test cases for response inconsistencies:

— we compare a local test case to another local test case where both have the same
response orders,
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Fig. 2: Local Test Cases with Different Response Orders

— we compare a local test case to another local test case where both have different
response orders,

— we compare a concurrent test case to a local test case,

— we compare two concurrent test cases.

The differentiation already indicates that there is a high degree of variety how test
cases can be designed. Also, different test case designs can be used to model essen-
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tially the same behavior. For example, test cases with concurrent behavior can produce
the same behavior as a local test case when they are synchronized properly. Similarly,
deterministic local test cases, can systematically regard different message receival or-
ders. We explicitly want to state that we do not find every kind of test design mentioned
above and in the following reasonable for real-world testing. However, they may occur
and therefore we need to discuss them.

We continue the discussion by comparing test cases 73 and 7 regarding inconsis-
tent responses (Figure 2). Both are local test cases which have the same stimuli se-
quences (slla,slla-s2!b, and slla-s2!b - s2!e), but with a different response order. At
first glance, it seems that these are valid candidates for the response inconsistency com-
parison, but in actuality, they are not. Ty requires that s1?b is received before the s2!b
stimulus is sent whereas 73 sends both stimuli subsequently. 73 suggests that the s1!a
and s2!b stimuli are either independent or that the responses following s2!b depend
on both stimuli whereas in 7}, the stimulus s2!b is follow-up behavior to the response
s17b, i.e., there is a causal relationship between them. The example illustrates the ne-
cessity for the additional partial order condition in the definition of the partial stimuli
equivalence relation (Section 4). While the stimuli sequences match, there is no lin-
ear extension that matches for the stimuli sequence s1!a-s2!b-s2!e. The only linear
extension of POstimuliseq(sl!a~s2!b~32!e) in Ty is

— slla-s1?b-s2\b-s27c - s2le.
The two linear extensions of POiputiseq(si1a-s21b-521¢) in T3 are

— slla-s2'b-s22c-s1?b-s2le, and
— slla-s2!b-s1?b-527c-s2!e.

By regarding linear extensions of the responses in between the stimuli, we notice that
in 73 the s!b transition would not happen without a preceding s1?b transition. Since
the linearization sets for the examined stimuli sequence are disjoint, 73 and 74 are not
regarded as partially stimuli equivalent. The reco relation also fails for these two test
cases as the possible responses after the s1!a stimulus in 7 cannot be consumed in 73
after the same stimulus.

The situation is different for test cases 75 and 7. They have again the same stim-
ulus sequences sl!a, slla-s2!b, and slla-s2!b-s2le. For slla, there are no responses
and thus the stimuli sequence equals its trace with responses. The same is the case for
slla-s2!b. However, for the stimuli sequence sl!a-s2!b-s2!e, we have the following
linear extensions for 7T5:

— slla-s2'b-s1?b-s27c-s2le, and
— slla-s2!b-s2%-s17b-s2!e.

For T, the linear extensions are

— slla-s2'b-s1?7c-s1?b-s2le, and
— slla-s2'b-s1?2b-s17c-s2le

The responses for s2!b are ordered before the s2!e action and have no order among each
other. Therefore, Ty and 75 are in fact not only partially stimuli equivalent, but stimuli

11



equivalent. The actual determination of the inconsistent states is working independent
from any orderings. In T5, the states expecting responses reachable through the stimuli
sequence slla-s2!b are state 3 and 4. For each transition in state 3 and 4, there are
corresponding transitions in Tg that are reachable by the same stimuli sequence (in
Ts, those states are states 3 and 4). Hence, there are no response inconsistencies in T
and Ty. Taking a look at the reco relation also exhibits that 75 and Tg are response
consistent. After the s1!a stimulus, both test cases do not expect any responses. Once
the slla-s2!b sequence has been sent, there are states in both test cases that expect the
s17b,s17f,517g, and s27?¢ responses. Finally, both test cases again do not expect any
responses after s1!a-s2!b-s2!e.

The latter example illustrates that the reco relation is a weak criterion in compar-
ison to weak bisimulation due to its disregardment of structural properties within the
response receival orders. This is intended as on the one hand, we cannot be sure that the
test developer did not confuse orders by accident — this always needs to be validated
by hand. On the other hand, this kind of freedom within the response orders is necessary
to analyze test cases with concurrent behavior.

6 Response Inconsistency Analysis in Concurrent Test Cases

Nowadays test cases are often written with Parallel Test Components (PTCs) that are
executed concurrently, they have queued messages, and ports. Here, the determination
of inconsistent responses is not as intuitive since the behavior is defined by composite
models where non-determinisms can happen easily due to their interleaving structure.
Figure 3 illustrates an example for a concurrent test case. Figure 3a shows the Main
Test Component (MTC) and Figure 3b shows the PTC of a test case. In this test case,
there are three channels involved: s1 and s2 are channels connected to the SUT while
channel p is a connection between the MTC and the PTC. A common paradigm is
that a PTC is placed at each channel of the SUT and hence, the MTC communicates
with the SUT via channel s1 and the PTC communicates with the SUT via channel s2.
The PTC can only send the message s2!e when its behavior is synchronized with the
MTC through p?d and p!d, i.e., the message must only be sent if s1?b was received in
the MTC. The composite model 77 = 77, || T3, according to Definition 5 is presented in
Figure 3c. To reduce the size of this model, we omitted all states and transitions that
are unreachable from the start state. The order of the events depends on which events
are independent from each other and on which events are dependant. For example, s1!a
must take place before s1?b or s1?g, but s2!h may take place any time in between.
Furthermore, in the composite model, we have non-determinisms between inputs and
outputs (e.g., in state (2, 1)) and also between multiple outputs (e.g., in state (1, 1)).
Based on the observations discussed in Section 5, we can compare such test cases
against test case designs that are local, local with different response orders, and test
cases that have concurrent behavior as well. There is no limitation how the response
consistency and partial stimuli equivalence relations are applicable to interleaved mod-
els. We demonstrate this by example. We compare test cases 73 and 75. Both contain the
stimuli sequences s1!a, slla-s2!b, and s1la-s2!b-s2'e. T; contains the additional stim-
uli sequences s2!b, s2!b-slla, s2!b-s1la- s2!e that are not contained in 73 and hence
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(a) MTC T3, (b) PTC T3,

(c) Composite Model T,

Fig. 3: Test Case 77 (Concurrent Test Case)

are left unregarded as the reco relation only regards traces that exhibit equal stimuli
sequences. In every observable s1!a trace in T3, there are not corresponding responses.
After the s1!a-s2!b stimuli sequence in 73, there are states where every response can
be consumed, i.e., s1?b,51?f,s1?g, and s27c. Finally, after the s17a - s2!b - s2!e stim-
uli sequence, there are again no states in which responses are consumable. In 77, the
consumable responses are quite different. After s1!a, there are states in which s1?b and
s17g are expected. The stimuli sequence s1!a-s2!b leads to states that can consume
s1?b,517g, and s27c. Finally, after s1!a-s2!b - s2!e, there may be no more responses in
T;. When evaluating the possible responses after traces with the same stimuli, we notice
that the s1!a sequence delivers a response mismatch where the response sets contradict
each other, i.e., the response set for 73 is empty while it is non-empty for 7;. There-
fore, T3 is not response consistent with 7;7. However, T3 and 77 are partially stimuli
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Fig. 4: Test Case T3: Composite Test Case 77 Without Synchronization

equivalent. They have both common stimuli sequences and for every common stimuli
sequence, they have a common linear extension. Therefore, 73 and 77 are considered
to be partially stimuli equivalent and thus classified as candidates for the response in-
consistency analysis. However, due to missing responses after s1!a in T3, state (2, 1) is
declared a response inconsistent state in /S7 while 1S3 = 0. Since 1S7 UIS3 # 0, T3 and
T; are response inconsistent.

The comparison between 73 and 77 indicates that the comparison between local and
concurrent test cases will often exhibit inconsistencies when they are not necessarily
considered a possible anomaly from the point of view of the test developer. Testers
who write test cases with concurrent test behavior accept or even disregard the fact
that the traces in subsequent executions of the same test may vary. For T3, a possible
interpretation is that the stimuli are independent from each other and the responses on
s1 and s2 are independent from each other as well. However, the test case design is to
send both stimuli s1!a and s2!b before expecting the responses for both stimuli rather
than sending s1!a, then handling the responses for s1!a, and then sending s2!b before
handling the responses for s2!b. While the responses between 73 and 77 are strictly
different (as the violated response consistency criteria suggests), it may be useful to
find an even weaker criterion that declares such test cases as response consistent — after
all, the local test case handles the all responses as well, just not in as many states as in
the concurrent case.

We conclude the discussion with a comparison between two concurrent test cases.
T3 is essentially the composition of test cases 77, and T, without the p!d and p?d
transitions that synchronize the behavior. The purpose of this synchronization is to wait
with the s2!e transition in 77, until s1?b or p!d respectively took place in 77,. Removing
this synchronization essentially means that s2!e can take place anytime after s2?7¢ was
received in T7,. As a result the s1?b and s1?g responses may still take place after the
s2!e transition happened in Tg and thus the response set of the s1!a-s2!b - s2!e stimuli
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sequence is not empty for Tg, but there exist states which consume the responses s1?b
and s17g after the stimuli sequence took place. In 77, such states do not exist after the
same stimuli sequence and thus, 77 and T3 are not response consistent. However, there
exist common linear extensions for all stimuli sequences and thus, they are stimuli
equivalent and candidates for the analysis. Here, states (1,4), and (2,4) are considered
inconsistent states in 7Tg.

7 Conclusion

We have presented what response consistency and inconsistency between test cases in
a test suite means. For that purpose, we have defined a response consistency relation
and described how to analyze test suites for response inconsistent test case pairs. For
the analysis, we have discussed different test case designs (i.e., local behavior, different
response orders, and concurrent test cases) and how the relations are applicable in these
different scenarios.

Additional test suite based inconsistencies exist and may be subject of further stud-
ies. For example, we could analyze follow-up transitions after coinciding traces and
check whether upcoming transitions are consistently responses or stimuli. Another in-
teresting subject of analysis would be to include test case verdicts into the analysis, i.e.,
checking whether verdicts are consistent when the observable traces match. To handle
different (or equal) message parameter values more carefully, it would be interesting to
modify this approach for symbolic LTSs with constraints.

In addition, we are currently evaluating response inconsistencies on industrial-size
test suites, such as the European Telecommunications Standards Institute (ETSI) test
suite for the Session Initiation Protocol (SIP) protocol [17]. For this purpose, we reuse
a refined version of our reverse engineering algorithm that was presented in [6] and
intend to measure how often the described inconsistencies occur in practice. The reverse
engineering algorithm constructs simplified models from TTCN-3 test specifications
and therefore, there is the possibility for false positives when a response inconsistency is
detected. This is a generic problem as the reverse engineering of semantically complete
and correct transition systems from complex languages (like TTCN-3) is arguably not
practically achievable with an acceptable effort. The practical impact of this problem
remains to be evaluated. Furthermore, the analyses presented in this paper obviously
suffer from the state explosion problem when we deal with parallel behavior. However,
in comparison to system specifications, the complexity of test case behavior is (in most
cases) rather low in our experience. Therefore, we suspect that there is a chance that the
computation of the described comparisons is possible with todays machines without the
necessity to define new heuristics or optimizations that may lower the precision of the
approach.

Finally, we believe that the partial stimuli equivalence relation can also be adapted
and used for test case selection, i.e., finding a smaller number of test cases by eliminat-
ing test cases with equivalent stimuli.
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