
Structural Analyzis of Large TTCN-3 Projects

Kristóf Szabados

Ericsson Hungary

Abstract. Experience has shown that the Testing and Test Control
Notation version 3 (TTCN-3) language provides very good concepts for
adequate test specification, but it was not presented yet how large test
systems written in TTCN-3 are structured. This paper presents my ef-
forts to analyze the structure of TTCN-3 projects, to see if such problems
manifest, and if possible to provide methods that can detect these prob-
lems.

1 Introduction

The Testing and Test Control Notation version 3 (TTCN-3) is a high level pro-
gramming language standardized by the European Telecommunications Stan-
dards Institute (ETSI) for automated black box and reactive tests. It was de-
signed mainly for testing of telecommunication protocols and Internet protocols,
but nowadays it is also used for testing aerospace, automotive or service ori-
ented architectures. Although it was not able to get a wide community yet,
several companies interested in network protocols are already using it for testing
their systems.

Inside Ericsson there are projects whose amount of source code has almost
reached 1 million lines. As we realized the amount of code in existence, it became
a major area of interest to study its structure. When the code structure of a
project becomes too complex, the maintenance costs are expected to grow as
several problems start to surface.

At this point it is important to note, that in TTCN-3 the highest code struc-
turing construct is the module of which every project is built up. TTCN-3 mod-
ules are like classes in C++ or Java (however TTCN-3 is actually closer in its
philosophy to C). But unlike C++, which has namespaces and Java, which has
packages to structure their classes, TTCN-3 does not provide any higher level
primitives that the user could use to group their modules.

2 Motivation

The main interest is to analyze the structure of the large source code bases, to
find a way to provide guidelines for projects to follow, or to compare against
their measured data. Up to now such huge projects were evolving on their own
without any tool to monitor them. So as a first step what was need most was
some kind of visualization of their structure.

3 Experimental setup

The module structure of 9 projects was analyzed by measuring the incoming and
outgoing connections of each module, and creating graphs on the collaborations
between them.

A tool was written to process the semantic graph of the projects and collect
statistics regarding the collaboration graphs of modules. The base for all the
measurements and charts produced was the number of graph nodes and for each
node the number of its incoming and outgoing connections.

Out of these 9 projects 6 are completely different, developed by standalone
organizations inside Ericsson. IMSM SIP and Simple hello are built on the load
test framework of Ericsson Hungary. ETSI IPv6 is a standardized testsuite.

4 Results

I measured for each module how many others it imports (I(project)), and how
many times it is imported (O(project)) by other modules. Table 1 shows for
all projects the Imax(project) (the biggest number of modules imported by the
same module) and Omax(project) (the biggest number of modules importing
the same module). It is easy to see that projects having more modules are more
likely to have a higher Imax(project) and Imax(project) values.

In almost all of the projects we can see that Omax(project) is roughly between
40%-50% of the number of modules (with only CAI3G standing out consider-
ably).

Table 1. importation data

Project vs test Number of modules Imax(project) Omax(project) Linecount

TGC traffic 20 10 6 127.470
ADC OMA 42 23 8 21.174
CAI3G 65 51 57 53.583
ETSI IPv6 68 29 46 67.505
Test automation Wireline 71 15 34 97.672
Simple Hello (TitanSim) 124 38 49 71.751
IMSM SIP (TitanSim) 171 49 71 79.613
W MOCN 205 36 85 442.784
MTAS 331 78 181 794.829

4.1 Importation data analyzed by projects

Figure 1(a) shows the distribution of I(module) and O(module) values for all of
the modules in CAI3G. There are only a few modules that import many others,

(a) CAI3G importation distribution (b) ETSI IPv6 importation distri-
bution

(c) IMSM SIP importation distri-
bution

(d) MTAS importation distribution

Fig. 1. Distributions of importation

or are imported many times, most of the modules import only a few others, often
< 5 others.

Figures 1(b) and 1(c) show that the distributions of O(module) and I(module)
become smoother as the number of modules increases. In fact the distribution
charts of both O(module) and I(module) values visibly converges to the shape
of an exponential function with a long tail.

Figure 1(d) does not fit this schema as for both distributions, there are values
which appear far more often than expected. Possibly indicating serious code
organizational issues, parts of the library section of this project seems to be
highly coupled.

Figure 2, that where I(module) is high, O(module) is usually very low, and
vice versa. This implicitly indicates, that the load of the functionality seems to
be distributed better among the modules, more than in any other project we
have seen so far.

While checking MTAS deeply I have found that in fact the testcases (top level
entry points in TTCN-3) are not concentrated in a few files, but are distributed
among many. About 1/4 or 1/5 of the modules did mostly only contain testcases.

Fig. 2. |I(module) − O(module)| values on MTAS, colored by the larger one

Fig. 3. Diameter of the graphs

4.2 Project diameter

Figure 3 shows one of the most surprising findings of my research. In case of
TTCN-3 the diameter of the module importation graph (the longest path from
the set of the shortest paths between any two nodes in the graph) does not seem
to depend on the number of modules present in the project.

In TTCN-3 this means that the testers working on MTAS does not actually
have to know how every little part works. They only need to understand and
check the modules they are working with, and the ones depending on these. In
this structure the amount of such modules is very limited.

5 Is it scale-free?

As the diameter of projects was very small, we checked whether the projects
were scale-free ([2] showed, that scale-free graphs have a very small diameter).

Scale-free graphs include the physical connection forming the Internet, net-
works of personal contacts [6], and even the connectivity graph of neurons in
the human brain [4] [5]. It was also shown, that the class, method and package
collaboration graphs of the Java language [1], and the object graph (the ob-

jects instances created at runtime) of most of the Object Oriented programming
languages in general [7], [3] also show scale-free properties.

Fig. 4. Simple Hello, IMSM SIP and MTAS on log-log scale

Figure 4 shows that both Simple Hello and IMSM SIP displays the expected
power law distribution (as a straight line with a slope), but MTAS deviates far
from what we expected to see. This has to be checked with the developers of
MTAS as if this is not natural in the language it might show serious structural
problems.

From these data the most we can say is that TTCN-3 is, or seemingly con-
verges to being scale-free as the language has not yet gained wide audience,
leaving the number of lines of code written so far is rather small.

Being scale-free is very important as it was proven [8] that such networks have
good resistance against random failures, but at the same time have an Achilles’
Heel against direct attacks. The more vulnerable nodes can be detected with
Imax(project) and Omax(project).

6 Conclusions

The measured data revealed some interesting information that had to be checked
in more detail to validate that the measured data is in fact showing something
of importance.

TTCN-3 projects tend to have a few modules that are imported much more
often than others. These were identified to be the modules containing the type
definitions, for the protocols being tested. As the language does not support

transitive importation, developers either have to import the types they wish to
work with directly, or have to create wrapper functions for almost all possible
values that the given types can have.

In one of the projects I have found that the Omax(project) was way below
the expected numbers. Looking into the code I have found that the developers
were trying to create a layer between the data types and the actual testcases.
As the messages being sent on the network were rather large, and variant, some
of the functions at the time of my investigation had over 50 formal parameters.

These metrics, both the highest values and their distribution for all modules
turned out to be useful:

1. A low diameter indicates very low complexity for the testers to work with
2. Values and distribution of I(module) being more than expected, indicates

too many direct interactions with the data, which could be improved by
following better code reuse principles(like extracting very often used common
parts into functions).

3. Values and distribution of I(module) being much lower than expected, indi-
cates to many layers in the software, leading to huge hierarchies of functions.

4. For modules not imported (O(module) = 0), their whole subgraph might
not be needed in the given project, or to a given task. Tools can be provided
to allow for more people to work in parallel (as random side effects will
not corrupt the whole graph), and with lower build times (by filtering out
un-needed code parts).

5. Having only a few modules in a project where I(module) is high indicates
that the functionality was not distributed evenly in the code.

References

1. Danny Hyland-Wood, David Carrington, Simon Kaplan, Scale-Free Nature of Java
Software Package, Class and Method Collaboration Graphs, submitted to The 5th
International Symposium on Empirical Software Engineering, September 21-22,
2005, Rio de Janeiro, Brazil.

2. Cohen R. and Hevlin, D., Scale-Free Networks are Ultrasmall, Physical Review
Letters, Vol. 90, 058701, 2003.

3. de Muora A.P., Lai Y.C., Motter A.E., Signatures of small-world and scale-free
properties in large computer programs, Physical review E 68, 017102 July 2003.

4. Jeong, H., Tombor, B. Albert, R., Oltvai, Z.N. & Barabási, A.-L., The large-scale
organization of metabolic networks. Nature Vol. 407, pg. 651-654, 2000.

5. Barabási, A.-L. Linked: The New Science of Networks. Perseus Press, New York,
2002

6. Zipf, G. Psycho-Biology of Languages. Houghtton-Mifflin, Boston, 1935.
7. Potanin A., Noble J., Frean M., Biddle R. Scale-free geometry in OO programs.

Communications of the ACM Vol. 48, issue 5, pg. 99-103, 2005
8. R.Albert, H. Jeong, A.-L. Barabasi: Error and attack tolerance of complex networks.

Nature, Vo. 406, Bo. 6794. (27 Jul 2000), pp. 378-382

