Debugging into Examples

Leveraging Tests for Program Comprehension

Bastian Steinert, Michael Perscheid, Martin Beck,
Jens Lincke, and Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute, University of Potsdam, Germany
firstname.lastname@hpi.uni-potsdam.de

Abstract. Enhancing and maintaining a complex software system re-
quires detailed understanding of the underlying source code. Gaining this
understanding by reading source code is difficult. Since software systems
are inherently dynamic, it is complex and time consuming to imagine, for
example, the effects of a method’s source code at run-time. The inspec-
tion of software systems during execution, as encouraged by debugging
tools, contributes to source code comprehension. Leveraged by test cases
as entry points, we want to make it easy for developers to experience
selected execution paths in their code by debugging into examples. We
show how links between test cases and application code can be estab-
lished by means of dynamic analysis while executing regular tests.

Key words: program comprehension, dynamic analysis, test coverage

1 Introduction

Developers of object-oriented software systems spend a significant amount of
time reading code. Using, extending, or modifying parts of a system’s source code
requires an in-depth understanding, ranging from the intended use of interfaces
to the interplay of multiple, interdependent system parts. Comprehending source
code is an essential and important part of software development. It is, however,
difficult for several reasons:

Abstraction Source code describes the general behavior desired for a class of
scenarios by abstracting from several concrete execution paths. When read-
ing source code, developers have to imagine the effects on concrete execution
paths.

Context Every single class or method of a complex program can contribute to
a large-scale collaboration of object teams. Knowing related classes and their
contributions is important for efficient and exact source code comprehension.
This context information, however, is not apparent in standard development
environments.

Object-oriented Language Concepts Object-oriented language concepts
such as inheritance, sub-typing, and polymorphism are well-suited to de-
scribe system behavior, but late binding makes understanding the effects of

2 Steinert, Perscheid, Beck, Lincke, Hirschfeld

a method and following a message flow more difficult [4, 16]. For instance, be-
havioral properties, such as message exchange in object-oriented programs,
can only be determined precisely at run-time [1].

We argue that comprehending source code, imagining its effects, and under-
standing usage contexts can be supported by enabling developers to experience
source code by examples of concrete execution paths from which the source code
abstracts.

Related research results have already emphasized the usefulness of examples
and extensions to Integrated Development Environments (IDEs) for source code
comprehension [5, 6,12, 14]. In [5], for example, the author argues that unit tests
can often be considered as usage examples for the units under test. He suggests
using coding conventions to make the link between tests and the corresponding
units explicit. To our knowledge, an approach that allows to experience execution
examples directly while browsing source code has not been reported. Debugging
tools also support familiarization with source code. They offer the opportunity
to understand source code by means of stack trace inspection. Still, being able
to debug requires an appropriate entry point.

In this paper, we suggest to regard test cases as natural entry points to source
code, provided they are linked to the application code. We present an efficient
approach to run-time analysis for establishing these links during the execution
of tests.

In Section 2, we describe our approach to debugging into concrete execution
paths by leveraging test cases. Section 3 explains how the required run-time
information can be collected efficiently during the execution of tests. Section 4
discusses related work and Section 5 summarizes our results.

2 Using Test Cases as Entry Points

We suggest the use of debugging tools to support source code comprehension by
leveraging test cases as entry points. This requires each method of interest to be
covered by at least one test case. Looking at this from another perspective, every
test case covers a set of methods of interest during execution. Consequently, the
set of test cases covering a particular method describes prospective entry points
for debugging this method. So, this set needs to be determined upfront by making
the implicit relationship between test cases and covered methods explicit.

To discover relationships between source code entities, static as well as dy-
namic analysis [2] can be used. Static source code analysis, however, has limited
applicability due to programming language concepts such as inheritance and
polymorphism. In contrast to static analysis, dynamic analysis allows to collect
run-time information such as method bindings [13] during the execution of a par-
ticular path. As this is essential for making coverage links explicit, our approach
is based on dynamic analysis.

Application code is analyzed during test execution. When a test case is exe-
cuted, all covered methods are recorded. Having obtained these run-time data,

Debugging into Examples 3

we can mark the set of test cases that cover a certain method during execution,
so that we can provide developers with the required entry points.

The list of entry points, the test cases, can be leveraged by IDE extensions
enabling developers to experience a run-time view of a method directly while
browsing it. We extended the source code browsing tools of Squeak Smalltalk [9].
Figure 1 depicts an extended Squeak code browser. In its base version, it consists
of four panes containing lists of available packages, classes, method categories,
and methods respectively (from left to right). We added a fifth pane showing
the list of all test cases covering the selected method.

006 OB Package Browser: XpfRestChangesHttpHandler e
C... (class search), i... (implementor search), #C... (class ref search), #s... (sender (() G2 (
()y (imp)y () (—= > g
» BB xpf-CodeTal ® 5 XpfCurrentUser = findChanges: | x5 2 -
BB xpf-Multipoint-Core - i isi PP request processing - XpfRevisionHandlerTest>> #test(
¥ BB xpf-Server - un¢ (5)-- - . = -

Models XpfRestFeedbackHttpHandle -- local (5) - XpfRevisiopflandlerTest=> #testlC

=L

|
Rest -~ lon; | xp ai Test>> #testl
Rfb XpfRestResourceHttpHandler § override (1) -- | | XpfMpllelToProxyTest=> #testRel
> @ xpf-support XpfRestChangesHttpHandle - required (7) - TestCase Pane
> B xpf-Tests \
> Unpackaged Debugger === ==
[] angesHttpHandler=>process:
b XpfRestCt P (RestHttpHandler)>>handle: {[self process: pAHTTPRequest]
S UndeTetotter==r —
@ hier.)(smart grc w 1} in XpfRestChangestittpHandler(RestHttpHandfler)>>handle: {((self i icate: anHTTPRequest he
\Ner smart 9 BlockContext>>on:do:

XpfRestCh
[lin

>handle:
e handle: reauest)

ttpHandler(RestH
ice>>an: T0:

’ |
deTalk - (0 add comment) (0 add code chat)

X topa 5/20/2009 16:42 - request pfocessin :1 implementors - only in change set
process: anHTTPRequest P 9 pl g ;/ P Yy 9

browse) senders) implementgrs | versyns) inheritance) hierarchy) instvars
~ anHTTPRequest isPost Full Stack)| Where [Tally
ifFalse: [HTTPResponse bad|
ifTrue: [
self setOnlineFromRequ
self findChanges: anH

rocess: anHTTPRequest
~ anHTTPRequest isPost

ifFalse: [HTTPResponse badRequest]

ifTrue: [
self setOnlineFromRequest: anHTTPRequest.
self findChanges: anHTTPRequest]

|authentication: a thisContext | XpfRestChangesHttpHan
P all temp vars

authentication . XpfRestAuthentication anHTTPRequest | dler>>process:

root root: a XpfRoot

Fig. 1. An extended code browser and a debugger window in Squeak. The code browser
has an additional pane on the right (C) that shows a list of test cases covering the
selected method named process:. Classes (A) and methods (B) covered by tests are
highlighted with a background color.

Selecting a test case opens a debugger (Figure 1 D), allowing the user to an-
alyze the covered method of interest during execution (Figure 1 E). The selected
test case is executed, the execution halts at the selected method, and the debug-
ger is opened. Developers may now explore collaborating objects and examine
their state. They can further step down in the stack and inspect the execution
of the calling method, or they can step into a called method.

4 Steinert, Perscheid, Beck, Lincke, Hirschfeld
3 Efficient Tracing during Test Execution

In this section, we discuss selected implementation details of our tracing ap-
proach. Traditional tracing approaches are typically inefficient and produce large
amounts of data [3]. As we analyze the execution of test cases, the overhead
caused by tracing has to be minimal. If running tests is time-consuming, devel-
opers will either not run them very often or reject our approach.

Most tracing approaches are designed for general analysis purposes and thus
have to record lots of data such as the state of all objects for each step in the
execution [12]. However, creating and persisting deep copies of many objects is
time consuming. We could significantly reduce the overhead by collecting only
required run-time information, i.e., references to methods being covered during
test execution. Test execution performance is thus only decreased by a factor of
two on average, which is usually not perceivable when single tests are executed.

To record the relevant run-time data, we apply aspect-oriented programming
techniques [8,10]. We developed a tracing aspect that intercepts all calls of se-
lected application methods [7]—developers are usually not interested in tracing
all libraries of the system. The tracing aspect is deployed dynamically during
test execution. For each test case, the aspect code collects for each test case the
set of application methods covered during test execution.

This coverage information is stored in the Squeak system so that tools such
as our browser extension can access it easily and efficiently. In a Squeak system,
source code entities such as classes and methods are managed as objects. We
enriched the interfaces to method objects to manage and persist coverage infor-
mation. This information is managed as a bidirectional relationship between test
case method objects and application method objects. With that, our browser ex-
tension can easily retrieve all test cases that cover a selected method of interest.

4 Related Work

To the best of our knowledge, there are only a few approaches that integrate
results of dynamic analysis into development environments.

The feature driven browser [14] is based on the ideas of feature location [6]
and combines an interactive visual representation of features with its related
source code entities within the Squeak IDE. The feature driven browser summa-
rizes dynamic behavior from the features’ points of view. A case study has shown
that developers using this browser are faster in fixing defects when they know
corresponding solution artifacts. In contrast to this approach, we offer concrete
sample traces that can be further inspected with a debugging tool.

The Squeak IDE extension Hermion [15] enriches source code views with run-
time data. It provides additional type information and offers dynamic reference
information for locating classes actually used. Hermion further supports a new
navigation technique based on executed methods. In contrast to Hermion, our
approach allows developers to explore concrete execution paths at run-time and
to examine how objects behave and change step by step.

Debugging into Examples 5

WhyLine [11] is a debugger rather than an IDE but offers sophisticated means
for inspecting the system at run-time. During the execution, developers can ask
a set of “why did” and “why didn’t” questions derived from the program’s code
and behavior. Based on static and dynamic slicing, call graph analysis, and
several other techniques, WhyLine can answer questions such as why a line of
code was not reached. However, the WhyLine approach can currently not meet
our performance needs. Recording the huge amount of required run-time data
and their analysis is too time-consuming.

5 Summary and Outlook

In this paper, we describe the need for additional views on software systems that
allow developers to explore concrete examples from which source code usually
abstracts. Contemporary debugging tools enable developers to inspect concrete
execution paths, but do not suggest appropriate entry points for application
exploration. In our approach, we propose test cases as candidates for such entry
points.

We present an efficient tracing technique for collecting coverage data during
the execution of test cases; and we show that these data can be used in IDEs
to give developers the opportunity to debug into a method of interest and expe-
rience concrete sample executions of this method. With that, our paper reveals
another benefit of developing and maintaining tests cases; they may be leveraged
to provide a run-time view on source code and thus ease its comprehension.

The benefit of having these links is the ability to re-execute correspond-
ing tests after source code modifications automatically. The debugging facilities
should be integrated into standard code browsing tools, enabling a seamless
transition between static and dynamic views. Furthermore, research results de-
scribed in [5] might be useful to filter and order the list of possible entry points
according to relevance.

Acknowledgments. We gratefully acknowledge the financial support of the
Hasso Plattner Design Thinking Research Program for our project “Agile Soft-
ware Development in Virtual Collaboration Environments”. We thank Michael
Haupt for valuable feedback on earlier versions of this paper.

References

1. Erik Arisholm. Dynamic Coupling Measures for Object-Oriented Software. IEEE
International Symposium on Software Metrics, 2002.

2. Thomas Ball. The Concept of Dynamic Analysis. In ESEC/FSE-7: Proceedings
of the Tth Furopean Software Engineering Conference held jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 216-234, London, UK, 1999. Springer-Verlag.

3. Marcus Denker, Orla Greevy, and Michele Lanza. Higher Abstractions for Dy-
namic Analysis. 2nd International Workshop on Program Comprehension through
DynamicAnalysis (PCODA 2006), pages 32-38, 2006.

6

10.

11.

12.

13.

14.

15.

16.

Steinert, Perscheid, Beck, Lincke, Hirschfeld

Alastair Dunsmore, Marc Roper, and Murray Wood. Object-oriented Inspection
in the Face of Delocalisation. In ICSE ’00: Proceedings of the 22nd International
Conference on Software Engineering, pages 467-476, New York, NY, USA, 2000.
ACM.

Markus Gaelli. Modeling Examples to Test and Understand Software. PhD thesis,
University of Berne, 2006.

Orla Greevy. Enriching Reverse Engineering with Feature Analysis. PhD thesis,
University of Berne, May 2007.

Thomas Gschwind and Johann Oberleitner. Improving Dynamic Data Analysis
with Aspect-Oriented Programming. In CSMR ’03: Proceedings of the Seventh
European Conference on Software Maintenance and Reengineering, pages 259268,
Washington, DC, USA, 2003. IEEE Computer Society.

Robert Hirschfeld. AspectS — Aspect-Oriented Programming with Squeak. In
Mehmet Aksit, Mira Mezini, and Rainer Unland, editors, Objects, Components,
Architectures, Services, and Applications for a Networked World, number 2591 in
LNCS, pages 216-232. Springer, 2003.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to
the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In OOP-
SLA ’97: Proceedings of the 12th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 318-326, New York, NY,
USA, 1997. ACM.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented Programming. Pro-
ceedings of ECOOP’97-11th FEuropean Conference object-oriented Programming,
Jyvdskyld, Finland, June 9-13, 1997, pages 220-242, 1997.

Andrew J. Ko and Brad A. Myers. Debugging Reinvented: Asking and Answering
Why and Why Not Questions about Program Behavior. In ICSE ’08: Proceedings
of the 30th International Conference on Software Engineering, pages 301-310, New
York, NY, USA, 2008. ACM.

Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Execution
Patterns in Object-Oriented Visualization. In COOTS’98: Proceedings of the 4th
Conference on Object-Oriented Technologies and Systems, pages 16—16, Berkeley,
CA, USA, 1998. USENIX Association.

Tamar Richner and Stéphane Ducasse. Recovering High-Level Views of Object-
Oriented Applications from Static and Dynamic Information. In ICSM ’99: Pro-
ceedings of the IEEE International Conference on Software Maintenance, pages
13-22, Washington, DC, USA, 1999. IEEE Computer Society.

David Réthlisberger, Orla Greevy, and Oscar Nierstrasz. Feature Driven Brows-
ing. In ICDL ’07: Proceedings of the 2007 International Conference on Dynamic
Languages, pages 79-100, New York, NY, USA, 2007. ACM.

David Réthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting Runtime In-
formation in the IDE. In ICPC ’08: Proceedings of the 16th IEEE International
Conference on Program Comprehension, pages 63—72, Washington, DC, USA, 2008.
IEEE Computer Society.

Norman Wilde and Ross Huitt. Maintenance Support for Object-oriented Pro-
grams. IEEE Transactions on Software Engineering, 18(12):1038-1044, 1992.

