
Generating Reduced Tests for FSMs with Extra States

Adenilso Simão
1,2

, Alexandre Petrenko
2
 and Nina Yevtushenko

3

1
 São Paulo University

São Carlos, São Paulo, Brazil
2
 Centre de recherche informatique de Montreal (CRIM)

Montreal, Quebec, Canada
3
 Tomsk State University

Tomsk, Russia

adenilso@icmc.usp.br, petrenko@crim.ca, ninayevtushenko@yahoo.com

Abstract. We address the problem of generating tests from a

deterministic Finite State Machine to provide full fault coverage even if

the faults may introduce extra states in the implementations. It is well-

known that such tests should include the sequences in the so-called

traversal set, which contains all sequences of length defined by the

number of extra states. Therefore, the only apparent opportunity to

produce shorter tests is to find within a test suite a suitable arrangement

of the sequences in the inescapable traversal set. We observe that the

direct concatenation of the traversal set to a given state cover, suggested

by all existing generation methods with full fault coverage, results in

extensive test branching, when a test has to be repeatedly executed to

apply all the sequences of the traversal set. In this paper, we state

conditions which allow distributing these sequences over several tests.

We then utilize these conditions to elaborate a method, called SPY-

method, which shortens tests by avoiding test branching as much as

possible. We present the results of the experimental comparison of the

proposed method with an existing method which indicate that the

resulting save can be up to 40%.

1. Introduction

Finite State Machines (FSMs) have been used to model systems in many areas, such

as hardware design, formal language recognition, conformance testing of protocols

[1] and object-oriented software testing [2]. Regarding test generation, one of the

main advantages of using FSMs is the existence of generation methods which

guarantee full fault coverage: given a specification FSM with n states and any black-

box implementation which can be modelled as an FSM with at most m states, m ≥ n,

the methods generate a test suite, often called m-complete test suite, which has the

ability to detect all faults in any such implementations. In the particular case of m = n,

there are many efficient methods which generate complete test suites [7] [3] [5] [10]

[4].

However, on the other hand, in spite of the fact that the problem of generating m-

complete test suites for m > n is a longstanding one which can be traced back to the

work of Moore [11] and Hennie [9], it has received much less attention compared to

the problem of constructing n-complete test suites. One of the main reasons might be

the fact that test generation becomes more challenging in the case of extra states. It is

known that an m-complete test suite should include each sequence in the so-called

traversal set, which contains all input sequences with m – n + 1 inputs [13]. Moreover,

the traversal set should be applied to each state of the specification. Not surprisingly,

all, not numerous, existing methods for generating m-complete test suites [13] [3] [5]

[14] [4] [8] [12] do exactly this and differ only in a type of state identification

sequences they add to traversal sequences.

Driven by this observation and the obvious absence of significant progress in

solving the longstanding problem of generating m-complete test suite, we revisit it in

this paper and aim at answering the question whether m-complete test suite is

irreducible due to the inevitability of the traversal set.

We observe that a considerable part of an m-complete test suite is not related to

the traversal set itself, but to the test branching when a test has to be repeatedly

executed to apply all the sequences of the traversal set. Apparently, the test length

reduction can only be achieved by reducing the test branching, which in turn can be

obtained by distributing the traversal set over several tests. The caveat is that an

arbitrary distribution of the traversal set may break the m-completeness of a resulting

test suite. Thus, we need first to establish conditions for a distribution of the traversal

set such that the m-completeness of a test suite is preserved. The main idea developed

in this paper is to distribute it among those tests in a test suite which are convergent,

i.e., transfer to the same state, in all FSMs of the fault domain which pass the test

suite. The approach we elaborate is based on properties of FSM tests, namely their

convergence and divergence. We investigate when the convergence and divergence of

tests in the specification (which can be easily checked) can be safely assumed to also

hold in the implementation under test. The divergence of two tests can be witnessed

by different outputs produced by the tests. On the other hand, although convergence

of two tests cannot be directly ascertained by considering only the two tests, we show

that the knowledge of the maximum number of states of FSMs in the fault domain can

be used to formulate conditions for the convergence of tests. We then use the notion

of convergence and divergence to state necessary and sufficient conditions for a test

suite to be m-complete.

Based on these conditions, we elaborate a method, called SPY-method, for m-

complete test suite generation. The method distributes the sequences of the traversal

set over several tests in order to reduce test branching and generate shorter test suites.

To assess the potential saving which can be obtained with the approach proposed in

this paper, we experimentally compare it with the HSI method [14]. The results

suggest that SPY-method can generate test suites up to 40% shorter, on average.

The rest of the paper is organized as follows. In Section 2, we provide the

necessary basic definitions. In Section 3, we formally state the problem of generating

m-complete test suites and discuss existing methods. In Section 4, we investigate test

properties and formulate conditions for guaranteeing the m-completeness of test

suites. In Section 5, we develop a generation method based on the proposed

conditions. In Section 6, the method is illustrated on an example. Experimental results

are reported in Section 7 and Section 8 concludes the paper.

2. Definitions

A Finite State Machine is a (complete) deterministic Mealy machine, which can be

defined as follows.

Definition 1. A Finite State Machine (FSM) S is a 6-tuple (S, s0, X, Y, δS, λS), where

• S is a finite set of states with the initial state s0,

• X is a finite set of inputs,

• Y is a finite set of outputs,

• δS : S × X → S is a transition function, and

• λS : S × X → Y is an output function.

A tuple (s, x) ∈ S × X is a transition of S. We extend the transition and output

functions from input symbols to input sequences, including the empty sequence ε, as

usual: for s ∈ S, δS(s, ε) = s and λS(s, ε) = ε; and for input sequence α and input x, δS(s,

αx) = δS(δS(s, α), x) and λS(s, αx) = λS(s, α)λS(δS(s, α), x) . An FSM S is said to be

initially connected, if for each state s ∈ S, there exists an input sequence α ∈ X*,

called a transfer sequence for state s, such that δS(s0, α) = s. In this paper, only

initially connected machines are considered. Input sequences converge if they are

transfer sequences for the same state. Similarly, input sequences diverge if they are

transfer sequences for different states of the same FSM. A set K ⊆ X* is a state cover

for S if it contains at least one transfer sequence for each state of S. A state cover is

minimal if it contains exactly one transfer sequence for each state. A set A ⊆ X*

covers a transition (s, x) if there exist α, αx ∈ A, where α is a transfer sequence for s.

The set A is a transition cover for S if it covers every transition of S. A set of

sequences is initialized, if it contains the empty sequence.

Given sequences α, β, γ ∈ X*, if β = αγ, then α is a prefix of β, and γ is a suffix of

β; if γ is not the empty sequence, then α is a proper prefix of β. We also say that a

prefix of γ extends α (in β) and that β is an extension of α. We denote by pref(β) the

set of all prefixes of β. For a set of sequences A, pref(A) is the union of pref(β), for all

β ∈ A. If A = pref(A), then we say that A is prefix closed. Given two sets of sequences

A and B, we denote by A.B the set of sequences A.B = {αβ | α ∈ A and β ∈ B}. We

will slightly abuse the notation by writing α.B instead of {α}.B and A.β instead of

A.{β}. For a natural number k, we denote by X
≤k

 the set of all input sequences of

length at most k.

Given a set A ⊆ X*, states s and s′ are A-equivalent, if λS(s, γ) = λS(s′, γ) for all γ ∈

A. Otherwise, s and s' are A-distinguishable. We say that γ distinguishes s and s′, if s

and s' are {γ}-distinguishable. States s, s′ are equivalent, if they are X*-equivalent.

Similarly, they are distinguishable if they are X*-distinguishable. We define

distinguishability and equivalence of machines as a corresponding relation between

their initial states. An FSM is minimal, if all states are pairwise distinguishable. In this

paper, all the FSMs are assumed to be minimal. A characterization set is a set of

sequences W such that every two states are W-distinguishable. The set Ws ⊆ W is a

state identifier for state s if any other state is Ws-distinguishable from s. A family of

harmonized state identifiers is a collection of sets {Hs | s ∈ S}, such that states s and s'

are (pref(Hs) ∩ pref(Hs'))-distinguishable.

3. Problem Statement and Existing Methods

In this section, we discuss the problem of generating test suites with full fault

coverage along with the existing methods and present the main idea of the approach

elaborated in this paper.

Henceforth, we assume that S = (S, s0, X, Y, δS, λS) and Q = (Q, q0, X, Y', δQ, λQ)

are a specification FSM and an implementation FSM, respectively. Moreover, n is the

number of states of S. We denote by ℑ the set of all minimal implementation FSMs

with the same input alphabet as S. The set ℑ is called a fault domain for S. For m ≥ n,

let ℑm be the FSMs of ℑ with at most m states, i.e., the set ℑm represents all faults that

can occur in an implementation of S with at most m states. We denote the maximum

number of extra states that an implementation may have by ∆ = m – n. Faults can be

detected by tests, which are input sequences of the specification FSM S.

Definition 2. An input sequence of FSM S is called a test case (or simply a test) of S.

A test suite of S is a finite prefix closed set of tests of S. A test suite T of FSM S is m-

complete, if for each FSM Q ∈ ℑm, distinguishable from S, there exists a test in T that

distinguishes them.

An FSM passes a test suite T if it is T-equivalent to the specification. Thus, a test

suite is m-complete if the FSMs in ℑm which pass it are equivalent to the

specification. Two tests α and β in a given test suite T are T-separable, if there exist

αγ, βγ ∈ T, such that states δS(s0, α) and δS(s0, β) are {γ}-distinguishable. Clearly, if

T-separable tests α and β are convergent in some implementation FSM, it can be

distinguished from S by either αγ or βγ.
Since the distinguishability of FSMs is defined as the corresponding relation of

their initial states, tests are assumed to be applied in the initial state. For accounting to

the reset operation required to bring the FSMs to the initial state, we define the length

of a test α as |α| + 1, where |α| is the number of input symbols in α. As the application

of a test results in the application of all its prefixes, the length of a test suite T,

denoted by len(T), is the sum of the lengths of all tests in T which are not proper

prefixes of other tests in T.

In this paper, we address the problem of generating an m-complete test suite,

when implementation FSMs can have more that n states, i.e., m ≥ n. This problem has

received much less attention compared to the (classical) problem of constructing n-

complete test suites, often called checking experiments. One of the main reasons

might be the fact that test generation becomes more challenging. To illustrate this, let

us consider the FSMs in Figures 1 and 2, where S0 is the specification machine and S1

is an implementation machine, which has two extra states. Notice that states 1 and 2

in S1 are similar to states 1 and 2 in S0, except that S1 has two extra states 1' and 2',

and the transition (2, b) leads to an “erroneous” state 2'.

Fig. 1. FSM S0.

Fig. 2. FSM S1.

The shortest test able to distinguish S0 and S1 should be formed by the input

sequence a, which is a transfer sequence for state 2, and the input sequence baa.

Indeed, for any other input sequence of length three, it is possible to construct a

distinguishable FSM with two extra states for which only that particular sequence

applied to a proper state distinguishes it from S0. As those FSMs are in the fault

domain ℑ4, any 4-complete test suite for S0 should include all input sequences of

length three, applied to all states of S0. In the general case, an m-complete test suite

for an FSM with n states should include all input sequences of length ∆ + 1, applied to

each state. An early work of Moore [11] uses such sequences to establish a lower

bound for sequences identifying ‘‘combination lock’’ machines. In fact, the lower

bound for the length of an m-complete test suite for an FSM with n states and p inputs

is O(n
3
p

∆+1
), i.e., it is exponential on the number of extra states [13].

Existing methods, such as W [13] [3], Wp [5], HSI [14] and H [4], which generate

an m-complete test suite T for a given minimal deterministic FSM S can be

summarized as follows.

Step 1: Determine a minimal initialized state cover K for S.

Step 2: Extend the sequences in K by the (traversal) set X
≤∆+1

.
Step 3: Extend the sequences in K.X≤∆+1 in such a way that any two divergent

sequences, i.e., reaching distinct states in S, are T-separable.

Existing methods differ mainly in the sequences they use to ensure T-separability

in Step 3. In the W method, all sequences in K.X
≤∆+1

 are extended by a

characterization set. The Wp method uses a characterization set for sequences in K.

X
≤∆

 and state identifiers for the other sequences. The HSI method uses the harmonized

state identifiers for all sequences in K.X≤∆+1
. The H method determines on-the-fly a

1 2

a/0

a/1
b/0

b/0
2' 1'

a/0

b/0

a/0

b/0

1 2

a/0

a/1
b/0 b/0

distinguishing sequence for states reached by each pair of divergent sequences in K.

X
≤∆+1

.

We illustrate the generation of a 3-complete test suite for the 2-state FSM in

Figure 1 following the strategy used by the existing methods. For this machine, the

characterization set corresponds to a family of harmonized state identifiers W = H1 =

H2 = {a}. A minimal state cover for this FSM is K = {ε, a}. Then, in the W, Wp, HSI,

H methods the sequences in K.X
≤∆+1

 = pref({aaa, aab, aba, abb, ba, bb}) are extended

by the sequence a. The resulting test suite is T1 = pref({aaaa, aaba, abaa, abba, baa,

bba}) of length 28; Figure 3 shows its tree representation, where nodes are labelled

with states of the specification FSM and edges are labelled with inputs. Each test

corresponds to the sequence of inputs along a path from the root to a node.

Fig. 3. Tree representation of a 3-complete test suite for S0.

If, in Step 1, shortest transfer sequences are included into a state cover and, in

Step 3, shortest distinguishing sequences are used, tests in a resulting m-complete test

suite cannot be shortened and if we want to reduce the total length of a test suite we

need to find a way of reducing test branching. Indeed, once a test of length l branches

into k tests, the test prefix of l inputs contributes kl inputs to the total length of a test

suite. For instance, each of tests aa, ab and b branches into two tests in T1, thus

contributing twice to its total length. In the existing methods, test branching occurs

mainly in Step 2, where each test in a minimal state cover is extended by the

sequences in the traversal set X
≤∆+1

. As a result of this, such a test branches into at

least |X|
∆+1

 tests. Apparently, the test length reduction could be achieved by reducing

the test branching, which in turn can be performed by distributing the traversal set

X
≤∆+1

 over several tests. As soon as one of these tests is a proper prefix of another the

overall test branching and thus the test length are reduced. This key observation is

illustrated in Figure 4. Assume that test α should be extended by the sequences aa and

ba. In Figure 4(a) both sequences extend α, branching the test. Consequently, α

contributes twice to the length of the test suite. Suppose that tests α and αb are

convergent, and, instead of α, the test αb is extended by aa, as shown in Figure 4(b).

We note that this results in a test suite which is, all things being equal, |α| – 1 inputs

1

1

a

b
2

a

a

1

b

2

a

2

1

a

2

a

2

b

1

a

1

2

a

1

a

1

b

2

a

2

1

a

b

shorter than before. The problem is that an arbitrary distribution of the traversal set

may break the m-completeness of a resulting test suite. Thus, we need first to

establish conditions for a distribution of the traversal set X
≤∆+1

 such that the m-

completeness of a test suite is preserved. The main idea developed in this paper is to

distribute it among those tests in a test suite which are convergent, i.e., transfer to the

same state, in all FSMs of the fault domain which pass the test suite, reducing test

branching.

(a) (b)

Fig. 4. Test branching (a) versus test extension (b).

4. Test Properties

The approach elaborated in this paper is based on properties of FSM tests, namely

their convergence and divergence. Recall that two defined input sequences of an FSM

converge or diverge if they are transfer sequences for the same state or for different

ones, respectively. We generalize these notions to sets of FSMs. Given a non-empty

set of FSMs Σ ⊆ ℑ and two tests α, β ∈ X*, we say that α and β are Σ-convergent, if

they converge in each FSM of the set Σ. Similarly, we say that α and β are Σ-

divergent, if they diverge in each FSM of Σ. Two tests are S-convergent (S-divergent)

if they are {S}-convergent ({S}-divergent). Moreover, when it is clear from the

context, we will drop the set in which tests are convergent or divergent.
Test convergence and divergence with respect to a single FSM are

complementary, i.e., any two tests are either convergent or divergent. However, when

a set of FSMs Σ is considered, some tests are neither Σ-convergent nor Σ-divergent.

Notice that the Σ-convergence relation is reflexive, symmetric, and transitive, i.e., it is

an equivalence relation over the set of tests. Given a test α, let [α] be the

corresponding equivalence class in a non-empty set Σ of FSMs with the same input

alphabet. The test convergence and divergence possess the following properties.

s0

s

a

a

s

a

b

s0

s

α

a

s

a

b

α

Lemma 1. Given tests α, β, such that [α] = [β], the following properties hold:

(i) [αγ] = [βγ], for any input sequence γ.

(ii) For any test ϕ, if [α] ≠ [ϕ], then [β] ≠ [ϕ].

An important property of T-separable tests is that they are divergent in all FSMs

which are T-equivalent to S. Given a test suite T, let ℑ(T) be the set of all Q ∈ ℑ,

such that Q and S are T-equivalent, i.e., ℑ(T) is the set of all FSMs in ℑ which pass

the test suite T.

Lemma 2. Given a test suite T of an FSM S, T-separable tests are ℑ(T)-divergent.

Proof. Let tests α and β be T-separable. Thus, there exist a sequence γ such that αγ,

βγ ∈ T and λS(δS(s0, α), γ) ≠ λS(δS(s0, β), γ). Let Q be an FSM T-equivalent to S; thus,

we have that λS(δS(s0, α), γ) = λQ(δQ(q0, α), γ) and λS(δS(s0, β), γ) = λQ(δQ(q0, β), γ). It

follows that λQ(δQ(q0, α), γ) ≠ λQ(δQ(q0, β), γ). Thus, δQ(q0, α) ≠ δQ(q0, β). ♦

Existing methods for test generation ensure that two tests are divergent by

extending them with an appropriate distinguishing sequence. However, Lemmas 1

and 2 indicate that the convergence and divergence of tests also applies to their

equivalence classes. It is thus important to identify under which conditions tests are

guaranteed to be convergent, i.e., belong to the same equivalence class.

Ensuring convergence is more involved than ensuring divergence; divergence of

two tests can be witnessed by different outputs produced in response to a common

suffix sequence. The two tests are thus divergent in any FSM T-equivalent to S.

However, convergence of two tests cannot be directly ascertained by considering only

the two tests. It turns out that the knowledge of the maximum number of states of

FSMs in the fault domain allows us to formulate conditions for the convergence of

tests. Given a test suite T and a natural number m ≥ n, let ℑm(T) = ℑm ∩ ℑ(T), i.e., the

set of FSMs in ℑ which are T-equivalent to S and have at most m states.

As S is in the fault domain ℑm(T), tests which are ℑm(T)-convergent are also S-

convergent. Thus, two tests can be ℑm(T)-convergent only if they are S-convergent.

Definition 3. A set of tests is ℑm(T)-convergence-preserving if all its S-convergent

tests are ℑm(T)-convergent. Similarly, a set of tests is ℑm(T)-divergence-preserving if

all its S-divergent tests are ℑm(T)-divergent.

In other words, a set of tests is ℑm(T)-convergence-preserving if the convergence

in the specification FSM is “preserved” in each FSM which passes the test suite T.

Similarly, a set of tests is ℑm(T)-divergence-preserving if the divergence in the

specification FSM is preserved in each FSM which passes the test suite T.

In the following lemma, the ℑm(T)-convergence relation is considered; thus, [α] is

the subset of tests of T which are ℑm(T)-convergent with test α.

Lemma 3. Given a test suite T for an FSM S and ∆ = m - n ≥ 0, let π and ϕ be S-

convergent tests in T, such that, for any sequence υ of length ∆, there exist tests α ∈

[π], β ∈ [ϕ], and an ℑm(T)-divergence-preserving state cover for S in T containing

{α, β}.pref(υ). Then, π and ϕ are ℑm(T)-convergent.

Proof. Suppose that π and ϕ are not ℑm(T)-convergent. Thus, there exists Q ∈ ℑm(T),

such that π and ϕ are Q-divergent. As π and ϕ are S-convergent, the FSM Q is not

equivalent to S and there must exist an input sequence γ such that S and Q are {πγ,

ϕγ}-distinguishable. Assume that γ is a shortest input sequence with this property.

Thus,

 S and Q are (([π] ∪ [ϕ]).γ')-equivalent, for all γ', such that |γ'| < |γ|. (1)

We have that |γ| > ∆, since otherwise there would exist α' ∈ [π] and β' ∈ [ϕ] such

that {α'γ, β'γ} ⊆ T, implying that S and Q are T-distinguishable.

Let α ∈ [π] and β ∈ [ϕ] be such that there exists an ℑm(T)-divergence-preserving

state cover for S in T containing the set {α, β}.pref(γ∆), where γi is the prefix of γ of

length i. Without loss of generality, we assume that S and Q are {αγ}-distinguishable,

i.e., λQ(q0, αγ) ≠ λS(s0, αγ). Let Ai = {α, β}.pref(γi), 0 ≤ i ≤ ∆. The tests αγi and βγi are

Q-divergent and, moreover, Ai is ℑm(T)-divergence-preserving. We show by

induction that, for all 0 ≤ i ≤ ∆, |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1.

Base case: For i = 0, we have that A0 = {α, β}. As α and β are S-convergent and

Q-divergent, the result follows, since |δQ(q0, A0)| = 2 and |δS(s0, A0)| = 1.

Inductive Step: Suppose that the result holds i, 0 ≤ i < ∆, i.e.,

 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1. (2)

We show that the result holds for i + 1. Let j ≤ i. Suppose that αγi+1 and αγj are S-

divergent; then αγi+1 is Q-divergent with αγj and βγj, since Ai+1 is ℑm(T)-divergence-

preserving. Suppose now that αγi+1 and αγj are S-convergent. Let χ be the suffix

which extends γi+1 in γ, i.e., γ = γi+1χ. If αγi+1 is Q-convergent with αγj, then αγjχ

distinguishes S and Q, since λQ(q0, αγjχ) = λQ(q0, αγi+1χ) = λQ(q0, αγ) ≠ λS(s0, αγ) =

λS(s0, αγi+1χ) = λS(s0, αγjχ). As |γjχ| < |γi+1χ| = |γ|, it follows that αγi+1 should be Q-

divergent with αγj and βγj, since otherwise we have a contradiction to (1). By the

same token, the test αγi+1 is Q-divergent with βγj. Thus, αγi+1 is Q-divergent with αγj,

j ≤ i, i.e., with all tests in Ai and reaches a state in Q which is not reached by the tests

in Ai. Hence,

 |δQ(q0, Ai+1)| ≥ |δQ(q0, Ai)| + |δQ(q0, αγi+1)| ≥ |δQ(q0, Ai)| + 1. (3)

If αγi+1 is S-convergent with some test in Ai, then

 |δS(s0, Ai+1)| = |δS(s0, Ai)|. (4)

The induction thus applies, since

 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1 (inductive hypothesis (2))

 |δQ(q0, Ai)| + 1 ≥ (i + 1) + |δS(s0, Ai)| + 1

 |δQ(q0, Ai+1)| ≥ (i + 1) + |δS(s0, Ai+1)| + 1 (due to (3) and (4))

On the other hand, if αγi+1 is S-divergent with all tests in Ai, then

 |δS(s0, Ai+1)| = |δS(s0, Ai)| + 1 (5)

In this case, βγi+1 is also Q-divergent with all tests in Ai, since Ai+1 is ℑm(T)-

divergence-preserving. Moreover, βγi+1 is Q-divergent with αγi+1. Thus, we have that

 |δQ(q0, Ai+1)| = |δQ(q0, Ai)| + |δQ(q0, {αγj, βγj})| ≥ |δQ(q0, Ai)| + 2 (6)

The induction also applies, since

 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1 (inductive hypothesis (2))

 |δQ(q0, Ai)| + 2 ≥ (i + 1) + (|δS(s0, Ai)| + 1) + 1

 |δQ(q0, Ai+1)| ≥ (i + 1) + |δS(s0, Ai+1)| + 1 (due to (5) and (6))

This concludes the induction proof. Then, for all 0 ≤ i ≤ ∆, it holds that |δQ(q0, Ai)|

≥ i + |δS(s0, Ai)| + 1. In particular, the set of tests A∆ reaches at least ∆ + |δS(s0, A∆)| + 1

states in Q.

Consider now a smallest set K, such that K ∪ A∆ is an ℑm(T)-divergence-

preserving state cover for S in T; thus, |K| = n – |δS(s0, A∆)|, since α and β are S-

convergent. As K ∪ A∆ is ℑm(T)-divergence-preserving, the tests of the set K reach

exactly n – |δS(s0, A∆)| states in Q, and each of them is distinct from all states reached

by A∆. Thus, the tests in K ∪ A∆ reach at least n – |δS(s0, A∆)| + ∆ + |δS(s0, A∆)| + 1 = n

+ m – n + 1 = m + 1 states in Q, contradicting the fact that Q has at most m states. ♦

The importance of Lemma 3 for test generation is that it shows how to ensure the

ℑm(T)-convergence of two S-convergent tests. This in turn, allows including these

tests into the same equivalence class. Then, Lemma 1 can be applied, which indicates

that if a test should be extended by given sequences, e.g., from the traversal set, any

tests of its equivalence class can be chosen, distributing these sequences over several

tests. Lemma 3 also leads to the necessary and sufficient conditions for test

completeness with respect to the fault domain ℑm, where each FSM has at most m

states, m ≥ n.

Theorem 1. Let T be a test suite for an FSM S with n states and m ≥ n. Then, the

following statements are equivalent:

(i) T is an m-complete test suite for S

(ii) T contains an ℑm(T)-convergence-preserving initialized transition cover for S.

Proof.

(ii) ⇒⇒⇒⇒ (i) Let T contain an ℑm(T)-convergence-preserving initialized transition

cover A for S, and Q ∈ ℑm(T). Define the relation h ⊆ S × Q as follows:

(s, q) ∈ h ⇔ there exists α ∈ A, such that δS(s0, α) = s and δQ(q0, α) = q.

As A is a transition cover for S, for each s ∈ S there exists q ∈ Q such that (s, q) ∈ h.

Moreover, as A is ℑm(T)-convergence-preserving, for each s ∈ S, there exists only one

q ∈ Q such that (s, q) ∈ h; thus, h is a mapping. As ε ∈ A,

h(s0) = q0.

Let s ∈ S and x ∈ X. As A is a transition cover for S,

there exists αx ∈ A such that δS(s0, α) = s.

Correspondingly,

h(δS(s0, α), x) = h(δS(s0, αx)) = δQ(q0, αx) = δQ(δQ(q0, α), x) = δQ(h(δS(s0, α)), x)

and

λS(δS(s0, α), x) = λQ(δQ(q0, α), x) = λQ(h(δS(s0, α)), x),

as Q ∈ ℑm(T).

Thus, h is an isomorphism and, as h(s0) = q0, it follows that Q is equivalent to S.

(i) ⇒⇒⇒⇒ (ii) Let T be an m-complete test suite. First, notice that any m-complete test

suite is a transition cover for the FSM S. Otherwise, there exists a transition of S

which is not traversed by the test suite; an FSM that is T-equivalent to, but

distinguishable from, S can be obtained from S by mutating the output in this

transition. By definition, T is prefix closed, thus, it is an initialized transition cover.

As T is an m-complete test suite, each FSM Q ∈ ℑm(T) is equivalent to S, i.e.,

there exists a mapping h: S → Q such that h(s0) = q0 and for each transition (s, x) it

holds that

h(δS(s, x)) = δQ(h(q), x)

and thus, since h(s0) = q0, for each input sequence α it holds that

h(δS(s0, α)) = δQ(h(s0), α) = δQ(q0, α).

Let α and β be S-convergent, i.e., δS(s0, α) = δS(s0, β). It follows that

δQ(q0, α) = h(δS(s0, α)) = h(δS(s0, β)) = δQ(q0, β).

Thus, α and β are also Q-convergent and, consequently, the set is ℑm(T)-

convergence-preserving.♦

Considering the generation methods discussed in Section 3, we note that the

conditions of Lemma 3 are satisfied for all pairs of S-convergent tests in K ∪ K.X,

which turns out to be a transition cover for S. Thus, the test suites generated by these

methods satisfy the conditions of Theorem 1, since K ∪ K.X is an initialized transition

cover. At the same time, Theorem 1 suggests that rather than considering the whole

set of tests in K.X
≤∆+1

 at once, as the existing methods do, it is sufficient to ensure

convergence of tests covering all transitions, using Lemma 3. Moreover, Lemmas 1,

2, and 3 indicate that this can be achieved in an iterative way, namely, the

convergence for tests covering a current transition can be ensured based on the

convergence established for other transitions. In the next section we elaborate this

idea in a method for complete test suite generation.

5. Test Generation Method

In this section, we present a method, called SPY-method, which generates an m-

complete test suite by building an ℑm(T)-convergence-preserving transition cover. In

the method, the knowledge about test convergence and divergence obtained during

the execution helps identify the possibility of extending tests already in the test suite.

Such an extension avoids branching of tests and thus contributes to test suite

shortening. During the execution of the method, the ℑm(T)-convergence of tests is

determined. Notice that any two ℑm(T)-convergent tests are also ℑm(T')-convergent,

for each T' ⊇ T. Thus, the inclusion of new tests in T does not invalidate this property.

As the ℑm(T)-convergence relation is an equivalence relation, it can be

represented by the partition it induces. In a given stage of the method execution only a

subset of the ℑm(T)-convergence relation might be known. We denote by Π the

partition induced by the pairs of tests which are known to be ℑm(T)-convergent. Given

a test α ∈ T, we denote by [α]Π the block of the partition Π which contains α.

We assume that a family H of harmonized state identifiers is provided. Given a

test α, let H(α) ∈ H be the state identifier for state δS(s0, α). The method starts by

determining a minimal initialized state cover K, as in Step 1 of existing methods.

Then, the tests in K are extended by the appropriate state identifiers. Each block in the

initial partition Π is a singleton, since no convergence is initially known. The method

iterates until the set of tests which are ℑm(T)-convergent with the tests in K becomes a

transition cover for S.
During the execution of the method, it is necessary to extend two tests in T to

ensure their divergence. As the divergence of tests also applies to other tests in their

blocks, when more than one test is available in a given block, the one which will

result in a shorter test suite is selected. This is achieved as follows. Suppose that test

α ∉ T should be added to T. Let β be the longest prefix of α which is in T. If β is not a

proper prefix of another test in T, we have that len(T ∪ {α}) = len(T) + |α| - |β|, i.e.,

adding α to T results only in extending the test β by |α| - |β| input symbols. On the

other hand, if β is a proper prefix of some other test in T, it holds that len(T ∪ {α}) =

len(T) + |α| + 1, as it results in an additional testing branching. Thus, selection of a

test which has to be extended by some input sequence, e.g., a state distinguishing

sequence, should result, whenever possible, in extending some test in T that is not a

proper prefix of another test.

After adding new tests two blocks containing tests that are ℑm(T)-convergent, are

merged, i.e., replaced by their union, iteratively. The merge of blocks can result in a

new partition for which the ℑm(T)-convergence of other tests can be concluded, due to

the application of Lemma 1(i) and thus, the procedure of merging should be repeated.

We denote by closure(Π) the partition obtained after merging the blocks of Π as

much as possible, by applying subset merging and Lemma 1(i).

We now present SPY-method.

Input: An FSM S with n states, a family of harmonized state identifiers H and a

natural number m ≥ n.

Output: An m-complete test suite.

Determine a minimal initialized state cover K.

T := pref({α.H(α) | α ∈ K})

Π := {{α}| α ∈ T}

While there exists a transition (s, x) not covered by the set of tests in T which are

ℑm(T)-convergent with some test in K

 Let α, β ∈ K be such that δS(s0, α) = s and δS(s0, β) = δS(s, x)

 For each γ ∈ X
≤∆

, each σ ∈ H(βγ)

 Select α' ∈ [α]Π, such that len(T ∪ {α'xγσ}) is minimal

 T := T ∪ pref(α'xγσ)

 Select β' ∈ [β]Π, such that len(T ∪ {β'γσ}) is minimal

 T := T ∪ pref(β'γσ)

 Π := closure(Π ∪ {{χ} | χ ∈ {α'x, β'}.pref(γσ)})

 End for

 Π := closure(Π ∪ {[αx]Π ∪ [β]Π})

End while

Return T

Theorem 2. SPY-method generates an m-complete test suite T for S.

Proof. Let C = {β ∈ [α]Π | α ∈ K}, i.e., C is the set of tests which are ℑm(T)-

convergent with some test in K. Notice that C is ℑm(T)-convergence-preserving, since

by its definition, any two tests in C which are S-convergent are also ℑm(T)-

convergent. We first show that in each iteration of the method, C is extended to cover

a transition (s, x) which was not yet covered. Let α, β ∈ K be such that δS(s0, α) = s

and δS(s0, β) = δS(s, x). The method then uses the state identifiers required to ensure

that tests αx and β are ℑm(T)-convergent. Indeed, for all γ ∈ X
≤∆

, tests α' and β',

which are ℑm(T)-convergent with α and β, respectively, are selected and the tests α'xγ

and β'γ are extended with the corresponding state identifiers. As the state cover K is

also extended by the state identifiers, we have that for each sequence γ of length ∆,

the set K ∪ {αx, β}.pref(γ) is ℑm(T)-divergence-preserving; thus, the conditions of

Lemma 3 are satisfied and tests αx and β are ℑm(T)-convergent. The the blocks

containing αx and β are merged. As a result, the transition (s, x) is covered by C.

When the method terminates, C is a transition cover for S. As K is initialized and K ⊆

C, C is also initialized. Hence, by Theorem 1, T is m-complete, since C ⊆ T is an

ℑm(T)-convergence-preserving initialized transition cover.♦

In each iteration the proposed method deals with the set X
≤∆

, while the theoretical

results indicate that an m-complete test suite should include all sequences in the

traversal set X
≤∆+1

 [11] [8]. Notice, however, that to obtain a transition cover as

required by Theorem 1, the tests of a state cover has to be extended by X, which is in

its turn extended by X
≤∆

. Therefore, all sequences in the traversal set X
≤∆+1

 are indeed

present in the resulting test suite. Nevertheless, the distribution of the traversal set

over several tests usually results in shorter test suites, as demonstrated by the example

and the experimental results on the next sections.

Compared with the existing methods for m-complete test suite generation, SPY-

method requires the additional operations of handling the partitions of tests and

selecting the tests in a partition which lead to a minimal length increase. We discuss

the overhead imposed by these operations. The partitions used in the method can be

efficiently handled using a union-find structure [6]. The operation of merging blocks

and determining to which block a test belongs can be performed in O(Ack
-1

(l, l)),

where Ack
-1

(l, l) is the inverse of the extremely quickly-growing Ackermann function

[6]. For any reasonable value of l, Ack
-1

(l, l) is less than five, i.e., the running time of

these operations is effectively a small constant. In order to efficiently calculate a

length increase caused by new tests, test suites can be represented by trees. Then it is

possible to identify when a test will create a new test (branching at a non-leaf node) or

extend an existing one (extending a leaf node) by retrieving the information about

nodes in the tree. As the size of the tree is proportional to the length of the test suite,

the overhead imposed by the additional operations required by the method, i.e.,

maintaining the partitions and determining the length increase, is polynomial in the

length of the test suite.

6. Example

In this section, we illustrate the execution of the method. Consider the FSM in Figure

1. We generate a 3-complete test suite, using the family of harmonized state

identifiers as in Section 3, H1 = H2 = {a}. Note that as before, n = 2 and m = 3.

The method determines a minimal initialized state cover K = {ε, a}. The test suite

is initialized with T := {α.H(α) | α ∈ K} = pref(aa) and the partition Π := {{ε}, {a},

{aa}}. Notice that the tests in K already cover the transition (1, a). Then, the method

iterates until all the other transitions are also covered by the tests which are ℑm(T)-

convergent with either ε or a. Notice that in this example, both H1 and H2 contain only

the sequence a. Therefore, each state identifier used in the method is always equal to

{a}, i.e., σ = a throughout this example.

The method selects the transition (s, x) = (1, b); thus α = β = ε. At this stage each

block is a singleton; thus, selecting the empty sequence ε is the only option in the first

iteration. For each γ ∈ X
≤∆

 = {ε, a, b}, the test ε is extended by xγσ and γσ; namely,

the empty sequence is extended by the sequences ba, a, baa, aa, bba, and ba. The test

suite becomes T = pref({aa, baa, bba}) and the partition Π is updated to include the

new tests (each of them also becomes a singleton block in the partition). According to

Lemma 3, ε and b are now ℑm(T)-convergent, thus, blocks {ε} and {b} should be

merged. After updating the partition and determining its closure, the partition Π =

{{ε, b, bb}, {a, ba, bba}, {aa, baa}} is obtained. The resulting test suite is

represented in Figure 4. The nodes with the same color are in the same block of the

partition Π.

Fig. 4. Tree representation of pref({aa, baa, bba}).

The methods selects the transition (s, x) = (2, a). Then α = a and β = ε. In this

iteration, the blocks of the partition contain several tests; thus, there are choices when

selecting the test which is extended by the state identifier. For each γ ∈ X
≤∆

 = {ε, a,

b}, some test in [α]Π = [a]Π should be extended by xγσ and some test in [β]Π = [ε]Π

should be extended by γσ. For γ = ε some test in [a]Π = {a, ba, bba} has to be

extended by xγσ = aa; the test suites resulting from extending a, ba and bba by aa

have lengths 12, 12 and 13, respectively. Thus, the test a is selected and aaa is added

to T. Then, some test in [ε]Π = {ε, b, bb} should be extended by a. As a ∈ T, no

additional test is included. For γ = a, some test in [a]Π has to be extended by xγσ =

aaa and some test in [ε]Π by γσ = aa. A test suite of shorter length can be obtained by

extending either a or ba. The test a is selected and aaaa is added to T. There is no

need to extend any sequence in [ε]Π by γσ = aa, since aa ∈ T. For γ = b, σ = a, some

test in [a]Π should be extended by xγσ = aba and some test in [ε]Π by γσ = ba.

Extending tests a, ba and bba by aba results in test suites of lengths 17, 15 and 16,

respectively. The test ba is, then, selected and baaba is added to T. Again, there is no

1

2 1

a b

1

a

2

a

1

a

1

b

2

a

need to extend any sequence in [ε]Π by γσ = ba. The test suite becomes T =

pref({aaaa, baaba, bba}). The tests ε and aa are now ℑm(T)-convergent and thus,

blocks {ε, b, bb} and {aa, baa} should be merged. After merging these blocks and

deriving the closure, the partition Π = {{ε, aa, aaaa, b, baa, baab, bb}, {a, aaa, ba,

baaba, bba}} is obtained. Figure 5 represents the resulting test suite.

Fig. 5. Tree representation of pref({aaaa, baaba, bba}).

It remains to cover the transition (s, x) = (2, b); thus α = β = a. For γ = ε, some test

in [a]Π = {a, aaa, ba, baaba, bba} should be extended by xγσ = ba and γσ = a. The

test suites obtained by extending either test baaba or bba by ba have the same length;

the test bba is then selected and bbaba is added to T. Some test in [a]Π has to be

extended by γσ = a, which does not need any additional test, since aa ∈ T. For γ = a,

some test in [a]Π should be extended by xγσ = baa and γσ = aa. The test suite of a

shorter length is obtained by extending bba by baa and the test bbabaa is added to T.

There is no need to extend any test in [a]Π by aa, since aaa ∈ T. For γ = b, some test

in [a]Π should be extended by xγσ = bba and γσ = ba. The test suite of a shorter

length is obtained by extending baaba by bba and the test baababba is added to T. To

extend some test in [a]Π by γσ = ba, no additional test is required, since baaba ∈ T

and baa ∈ [a]Π. The resulting test suite is T = pref({aaaa, baababba, bbabaa}) of

length 21. Recall that the test suite T1 obtained by the existing methods for the

machine in Figure 1 has length 28.

7. Experimental Results

In this section, we present the results of an experiment with the HSI method and the

proposed method, comparing the length of the test suites they generate. We randomly

generate minimal FSMs with five inputs, five outputs and the number of states n

ranging from five to 50. We executed both the HSI method and the proposed method

for generating m-complete test suites, for n ≤ m ≤ n + 3 and calculated the ratio of

1

2 1

a b

1

a

2

a

1

a

2

a

1

a

1

b

2

a

1

b

2

a

reduction, i.e., the average ratio of the length of the test suite generated by SPY-

method and the length of the test suite generated by the HSI method. For each setting

(values of n and m), we generated 30 FSMs and the respective test suites, totalling

5520 FSMs. In Figure 6, we plot the variation of the average ratio with respect to the

number of states. We notice that the test suites generated by our method are on

average up to 40% shorter than the test suites obtained by the HSI method; moreover,

the larger the number of states in the specification FSM and the number of extra states

in implementations, the bigger the reduction.

Fig. 6. Average reduction ratio.

8. Conclusions

In this paper we investigated the problem of generating m-complete test suites for an

FSM with n states, when implementation FSMs may have extra states.

The main contributions of this paper are as follows. Firstly, although we have not

refuted the inevitability of including the sequences of a traversal set in an m-complete

test suite, we showed that these sequences can be arranged in such a way that test

branching is significantly reduced. Secondly, we stated conditions which guarantee

that the resulting test suite is indeed m-complete and elaborated a test generation

method based on these conditions. Differently from all existing methods, the proposed

method distributes the sequences in the traversal set over several tests avoiding as

much as possible test branching and thus leading to shortening of the resulting test

suite. Finally, we experimentally compared the proposed method with the HSI-

method. The experimental results indicate that obtained tests are on average up to

40% shorter.

As future work, it is possible to combine the on-the-fly determination of

distinguishing sequences used in the H method with the possibility of distributing

them. Another possible extension is the further investigation of properties of test

convergence and divergence.

Acknowledgements

The authors acknowledge financial supports of NSERC (Grant OGP0194381),

Brazilian Funding Agency CNPq (Grant 200032/2008-9), and FCP Russian program

(contract 02.514.12.4002).

References

1. Bochmann, G. v., Petrenko, A.: Protocol testing: review of methods and relevance for

software testing. In: ACM International Symposium on Software Testing and Analysis

(ISSTA'94), pp. 109--124. ACM Press, New York (1994)

2. Binder, R.: Testing Object-Oriented Systems. Addison-Wesley, Inc. (2000)

3. Chow, T. S.: Testing software design modeled by finite-state machines. IEEE Trans.

Softw. Eng. 4(3), pp. 178--187 (1978)

4. Dorofeeva, R., El-Fakih, K. and Yevtushenko, N.: An improved conformance testing

method. In: Formal Techniques for Networked and Distributed Systems, LNCS, vol.

3731, pp. 204--218. Springer, Heidelberg (2005)

5. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A.: Test

selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), pp. 591--603

(1991)

6. Galil, Z. and Italiano, G. F.: Data structures and algorithms for disjoint set union

problems. ACM Comput. Surv. 23(3), pp. 319--344 (1991)

7. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans. on

Comput., 19(6), pp. 551--558 (1970)

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - a

survey. In: Proceedings of the IEEE. 84(8), pp. 1090--1123, IEEE Press, New York

(1996)

9. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of Fifth

Annual Symposium on Circuit Theory and Logical Design, pp. 95--110. Princeton, New

Jersey (1965)

10. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. on

Comput, 55(5), pp. 618--629 (2006)

11. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies, Annals

of Mathematical Studies (34), pp. 129--153. (1956)

12. Petrenko, A., Higashino, T., Kaji, T.: Handling redundant and additional states in

protocol testing. In: IFIP 8th Inter. Workshop on Protocol Test Systems, pp. 307--322.

Chapman & Hall (1995)

13. Vasilevskii, M. P.: Failure diagnosis of automata. Cybernetics, 4, pp. 653--665 (1973)

14. Yevtushenko, N. and Petrenko, A.: Synthesis of test experiments in some classes of

automata. In: Automatic Control and Computer Sciences, 24(4), pp. 50--55 (1990)

