
OConGraX - automatically generating data-�ow

test cases for fault-tolerant systems

Paulo R. F. Nunes Simone Hanazumi Ana C. V. de Melo

University of São Paulo
Department of Computer Science � São Paulo � Brazil

prnunes@ime.usp.br hanazumi@ime.usp.br acvm@ime.usp.br

Abstract. The more complex to develop and manage systems the more
software design faults increase, making fault-tolerant systems highly re-
quired. To ensure their quality, the normal and exceptional behaviors
must be tested and/or veri�ed. Software testing is still a di�cult and
costly software development task and a reasonable amount of e�ort has
been employed to develop techniques for testing programs' normal be-
haviors. For the exceptional behavior, however, there is a lack of tech-
niques and tools to e�ectively test it. To help in testing and analyzing
fault-tolerant systems, we present in this paper a tool that provides an
automatic generation of data-�ow test cases for objects and exception-
handling mechanisms of Java programs and data/control-�ow graphs for
program analysis.

1 Introduction

The more complex to develop and manage systems the more software design
faults increase[1] and, today, a signi�cant amount of code is dedicated to error
detection and recovery[2]. Exception-handling mechanisms provide a clear sepa-
ration of codes for error recovery and normal behavior, helping in decreasing code
complexity and software design faults. Due to these bene�ts, exception-handling
is recognized as a good approach to provide fault-tolerant software[1].

To ensure the quality of fault-tolerant systems, normal and exceptional be-
haviors must be tested. One promising approach is the data-�ow testing, which
focuses on data status[3], analyzing the life cycle of data to �nd out unexpected
or anomalous behaviors. However, testing programs is still an expensive software
development activity because it is aimed at dynamically analyzing the product.
One of the main problems is related to the number of test cases necessary to
cover the whole program, and test criteria [4,5,6,7,8,9] have been created with
this aim. These criteria establish how much a program must be tested to achieve
certain quality requirements. Although they reduce the test space, there is still
a large set of test cases, making in practice the test activity neglected if a tool
support is not provided to support automating test cases and suites.

To help in reducing the test activity cost and enhancing program analysis,
this paper presents OConGraX (Object Control-Flow Graph with eX ceptions),



a tool that generates the data-�ow testing requirements for objects and excep-
tions of Java programs. Using OConGraX, testers can concentrate on generating
test suites for the corresponding data-�ow test cases, instead of manually creat-
ing graphs and test coverage requirements, reducing software development cost.

In this paper, some concepts of data-�ow techniques will be presented in Sect.
2. Section 3 presents the tool and its use for testing the normal and exceptional
behaviors. Finally, Sect. 4 concludes presenting practical uses of the tool, its
limitations and future works.

2 Data-Flow Testing and Fault-Tolerant Programs

Fault-tolerant programs must comprise the normal behavior code, in which errors
are detected and the corresponding exceptions are raised; and the exception han-
dler code[10], in which the exceptional behavior is treated resulting in the error
recovery. To test them, a set of techniques that explore object-�ow information
was developed to guide test cases selection in the object-oriented paradigm[6,8,9].
The tool presented here is based on two coverage criteria: for normal the behav-
ior, the criteria proposed by Chen and Kao[6]; and for the exceptional behavior,
the criteria proposed by Sinha and Harrold[9,8]. Some concepts related to both
criteria are brie�y discussed here:
Object-de�nition: when the constructor of the object is invoked; the value of
an attribute is explicitly assigned; or a method that initiates or update attributes
of the object is invoked.
Object-usage: an object is used when one of its attributes is used in a predicate
or a computation; one method that uses an attribute value is invoked; or an
object is passed as parameter in a method invocation.
DU Pairs: all du (de�nition and use) pairs relating a de�nition and further use
(without rede�nition) of an object in the program control-�ow.
Exception: Object : an exception class instance denoted as eobji, where i corre-
sponds to the code-line in which it is instantiated. Variable: a variable of type
exception. Temporary Variable: an exception related to a throw command �
represented by evari, where i corresponds to the throw code-line. Object activa-
tion/deactivation: an exception object is activated when it is raised with a throw
command and deactivated when it is treated or a null value is given (an active
object is represented by evaractive, and it is unique at each execution instant).
Exception-de�nition: a value is assigned to an exception variable or to an
exception variable in catch; or a temporary variable is used in throw.
Exception-usage: an exception variable value is used; a variable value is used
in catch; or a temporary exception variable is used in throw.
E-DU Pairs: a value is assigned to an exception variable that is further used
in a throw ; a parameter has its value accessed in a catch block; an exception
variable is activated and deactivated (treated).
Object coverage criterion: all-du-pairs: all du pairs are tested.
Exception coverage criteria: all-throw : all throw commands are tested; all-
catch: all catch commands are tested; all-e-defs: all exception de�nitions, asso-



ciated to at least one use, is tested; all-e-use: all e-du pairs are tested; all-e-act :
all activated exception, related to at least one deactivation, is tested; all-e-deact :
all pairs of exception activation-deactivation (e-ad) pairs are tested.

To satisfy those criteria[6,9,8], test cases must be created to cover all object
and exception du and act-deact-pairs. To identify the actual du pairs, one must
�rst identify all du of objects and exceptions and create the object and exception
control-�ow graphs (OCFG). Building the OCFG for objects and exceptions is
very error-prone and cannot be left to users. The forthcoming section presents
a tool to automate these steps.

3 OConGraX - Test Cases for the Normal and

Exceptional Behaviors

OConGraX has been created to help in testing (data-�ow) and analyzing Java
programs. The tool reads a Java Project and provides the following basic services:

� De�nitions, uses and def-use pairs of objects: the set of test cases based on
the criterion of all de�nition-use (du ) pairs of objects are generated;

� De�nitions, uses and def-use pairs of exceptions: the set of test cases based on
the criterion of all de�nition-use (e-du ) pairs of exceptions are generated;

� OCFG with the additional information on exception-handling;
� Graphs and test cases exported as images or XML �les.

OConGraX can be used to automatically generate test cases for normal and
exceptional behaviors of Java systems. This section shows the use of the tool to
this purpose. First, an example is presented (Fig. 1) followed by the data-�ow
test cases generated for the normal and exceptional behaviors. The example was
adapted from the one showed in [9] and illustrates a simple database connection
and update operations. The operations are invoked in DataBaseManipulation

class and they are implemented in DataBaseConnection class.

1: public class DataBaseManipulation {
2: DatabaseConnection dbConn =

new DatabaseConnection();
3: String sqlCmd = "";
4: Array row;
5:
6: void dbUpdateOperation () {
7: dbConn.open();
8: try{
9: row = dbConn.select(sqlCmd);

10: sqlCmd = updateFields(row);
11: dbConn.update(sqlCmd);
12: }
13: catch(UpdateException ue) {
14: showMessage(ue);
15: }
16: finally {

17: dbConn.close();
18: }
19: }
20: }
21: public class DatabaseConnection {
22: void update(String cmd) throws

UpdateException {
23: int status;
24: if ((status = executeCmd(cmd))==0) {
25: UpdateException u = new

UpdateException();
26: throw u;
27: }
28: }
29: void open() {//open DB connection}
30: void close() {//close DB connection}
31: }

Fig. 1. Example code



In OConGraX, once an input is chosen, a tree with all information about the
selected project can be accessed as shown in Fig. 2(a). To obtain the de�nitions
and uses of objects (and exceptions), one can select from the �View� menu the
option �Def-Use�. A tab will come along on the right panel in which the Package,
Class and Method can be selected and the code lines where a de�nition or a use
occur will be presented. Figure 2(b) shows this for the example when package:

default package, class: DatabaseConnection and method: update are se-
lected. To view only the de�nitions and uses of exceptions, one can select the
option �Def-Use Exc� � Fig. 2(c). The du (or e-du ) pairs are obtained by select-
ing the �Def-Use Pairs� option together with the class and object (or exception) �
they are shown as (<def. code-line>, <use code-line>). Figure 2(d) shows
the e-du pairs for the example when class: DataBaseManipulation and excep-
tion: ue are selected. The OCFG with exceptions can also be obtained by select-
ing the �Graph� option and then the Package, Class and Object/Exception. The

(a) Software source information tree (b) De�nitions and uses view

(c) Exception de�nitions and uses
view

(d) Exception du pairs view

Fig. 2. Tool features related to de�nitions and uses view.



option �Full Graph� shows the whole graph, otherwise only parts of the graph re-
lated to the selected object will appear. Figure 3 shows the graph obtained when
we select package: default package, class: DataBaseManipulation and ex-

ception: ue with the �Full Graph� option selected.

Fig. 3. Graph View

4 Concluding Remarks

Despite being widely used, the exception-handling mechanisms are mainly de-
�ned at program level, instead of at the design level. As a result, assuring fault-
tolerant systems functionalities relies on testing and veri�cation at program level.
Testing a program depends very much on tools support; otherwise this activity
could be neglected in the development process to reduce costs.

The data-�ow testing criteria are based on code coverage and can be de�ned
with static analysis. To automate the test cases generation, this paper presented
OConGraX, a tool that can detect de�nition and use of objects and exceptions;
generate du-pairs of objects and exceptions; generate the OCFG (for objects and
exceptions); and export information about du and e-du pairs as XML �les and
graphs as images �les. To actually test programs, the test suites still need to be
created. This feature is not yet provided by the tool and we are now investigating
the viability of integrating it with tools to generate test data. OConGraX has
been developed to automate test cases for objects and exceptions under data-
�ow testing techniques, but can be used to help in understanding programs and



be integrated with veri�cation tools to take advantages of the V&V approach. In
[11], we suggested an approach, and a corresponding tool support, to integrate
and automate testing and veri�cation activities for fault-tolerant systems.

Although OConGraX presents useful features, many other features remain
to be developed: extracting code measures automatically, such as number of
object usages; introducing other code coverage criteria, such as the ones based
on decisions; and generating data test. Besides theses, developing new parsers
for other Object-Oriented programming languages can make all the OConGraX
features available for other languages � more widely applied.

Acknowledgments. This project has been co-funded by the National Council for Scienti�c and
Technological Development (CNPq - Brazil), the State of São Paulo Research Foundation (FAPESP)
and the Ministry of Education Research Agency (CAPES - Brazil). The author Ana C. V. de Melo
also thanks the Oxford University Computing Laboratory for providing research facilities during her
stay on sabbatical leave at the University of Oxford.

References

1. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer-Verlag
New York, Inc., Secaucus, NJ, USA (1990)

2. Randell, B.: The evolution of the recovery block concept. In Lyu, ed.: Software
Fault Tolerance. (1995) 1�21

3. Badlaney, J., Ghatol, R., Jadhwani, R.: An introduction to
data-�ow testing. Technical Report (2006) 22� Available at:
<http://www.csc.ncsu.edu/research/tech/reports.php>. Last access: Feb. 2009.

4. Weyuker, E.J.: The evaluation of program-based software test data adequacy
criteria. Commun. ACM 31(6) (1988) 668�675

5. McGregor, J.D., Korson, T.D.: Integrated object-oriented testing and development
processes. Commun. ACM 37(9) (1994) 59�77

6. Chen, M.H., Kao, H.M.: Testing object-oriented programs � an integrated ap-
proach. In: Proceedings of ISSRE '99, IEEE Computer Society (1999) 73

7. Kung, D., Suchak, N., Hsia, P., Toyoshima, Y., Chen, C.: Object state testing
for object-oriented programs. In: Proceedings of COMPSAC'95, IEEE Computer
Society (1995) 232

8. Sinha, S., Harrold, M.J.: Criteria for testing exception-handling constructs in Java
programs. In: Proceedings of ICSM'99, IEEE Computer Society (1999) 265

9. Sinha, S., Harrold, M.J.: Analysis of programs with exception-handling constructs.
In: Proceedings of ICSM'98, IEEE Computer Society (1998) 348

10. Cristian, F.: Exception handling and software fault tolerance. In: FTCS-25: High-
lights from Twenty-Five Years., IEEE Computer Society (1995) 120

11. Xavier, K.S., Hanazumi, S., de Melo, A.C.V.: Using formal veri�cation to reduce
test space of fault-tolerant programs. In: Proceedings of SEFM'08, IEEE Computer
Society (2008) 181�190


