
Automatic Testing of Access Control for
Security Properties?

Hervé Marchand, Jérémy Dubreil, and Thierry Jéron

INRIA, centre Rennes - Bretagne Atlantique, first.last@irisa.fr

Abstract. In this work, we investigate the combination of controller
synthesis and test generation techniques for the testing of open, par-
tially observable systems with respect to security policies. We consider
two kinds of properties: integrity properties and confidentiality proper-
ties. We assume that the behavior of the system is modeled by a labeled
transition system and assume the existence of a black-box implemen-
tation. We first outline a method allowing to automatically compute an
ideal access control ensuring these two kinds of properties. Then, we show
how to derive testers that test the conformance of the implementation
with respect to its specification, the correctness of the real access control
that has been composed with the implementation in order to ensure a
security property, and the security property itself.

1 Introduction

There has been an increasing interest in research about computer security in the
past decades. Indeed, the emergence of web services and the improvements of the
possibilities of mobile and embedded systems allow lots of new and interesting
features. But some of these services such as on-line payment, medical informa-
tion storage or e-voting systems may deal with some critical information. In the
meantime, having more applications and devices for accessing these services also
increases the possibilities for such information to flow or to be erased/corrupted.
To avoid security breaches, using automatic tools based on formal methods for
security analysis can be beneficial. In this context, there has been a growing
interest in verification [4, 13], active testing of security properties [8] or passive
testing (supervision) [14]. In order to specify such automatic analysis meth-
ods, security properties are generally classified into three different categories [3]:
availability (actions allowed by the security policy are always available), integrity
(something illegal cannot be performed) and confidentiality (secret information
cannot be inferred) [5]. We focus here on particular classes of confidentiality and
integrity properties.

In this paper, we assume that the system can be modeled by a finite transi-
tion system labeled over an alphabet Σ. The communication interface between
the system and a user (possibly an attacker) is given by a subalphabet Σa ⊆ Σ.
The integrity properties we are considering are properties that can be expressed
? This work was partially supported by the Politess RNRT project.



by means of regular sets of execution trajectories in Σ∗. To describe the confi-
dentiality properties, we adopt the formalism of [5]: the confidential information
is the membership of trajectories to a secret given by a regular language, and
the secret is said to be opaque whenever the attacker, partially observing the
system, cannot infer that the current trajectory belongs to the secret. Note that
the definition of opacity is general enough to model other notions of information
flow like trace-based non-interference and anonymity (see [5]). Notice also that
secrecy [1] can be handled as a particular case of opacity and thus our framework
applies to secrecy as well.

In order to avoid security breaches (information flow or integrity violation),
a possible solution consists in coupling the system with a monitor, in charge
of detecting when confidential information has leaked (resp. integrity has been
violated) or will leak (resp. will be violated). Assuming that monitors observe
only a subset Σm of the actions of the system, necessary and sufficient conditions
for the existence of monitors were obtained in [11]. In [9], we went one step
further and provided techniques allowing to compute the least restrictive access
control allowing to restrict the behavior of the system in order to avoid the
violation of the properties. In this work, we assumed that the controller observes
only a subset Σm of Σ, including all controllable actions, and in the case of
confidentiality, we also requested the two alphabets Σm and Σa, the alphabet of
the attacker, to be comparable.

In this paper, we investigate the problem of testing whether an implementa-
tion conforms to a security policy. We consider an implementation I of the sys-
tem, a specification S and an implementation IAC (composed with I) in charge
of ensuring the required security policy. To validate this implementation I×IAC
(having Σa as communication interface with the users), we adapt the classical
conformance testing method by deriving testers that test both the security prop-
erties and the conformance of the implementation (as in [7] for observable safety
properties1) to its specification, and also test the implemented access controls
IAC . Our testing process is as follows: Step 1 concerns the automatic synthesis
from S of a formal model C of an access control with respect to the security
properties; Step 2 is a test generation algorithm that takes the specification, a
security property and its corresponding access control, and produces a test case
for checking the security property on the implementation and the implemented
access control; finally, Step 3 is standard conformance test execution, which may
detect the following inconsistencies:

– violation of the access control by the controlled implementation;
– violation of the security policy by the controlled implementation;
– violation of conformance of the implementation w.r.t. its specification

To generate the testers, we first adopt the attacker’s point of view (i.e. the test
execution is performed via the interface Σa) and then the administrator’s point
of view (whose communication interface may differ from Σa and Σm).

1 In [7], the safety properties are only concerned with the observable behavior of the
system and not with its internal behavior, as it is the case in this paper.



The structure of the document is as follows: In section 2, we define the math-
ematical terminology and notions used throughout the paper. In Section 3, we
formalize the notions of confidentiality and integrity and outline the verification
of these properties. Section 4 describes how to compute an access control that
prevents the violation of an information flow or an integrity property. Finally,
Section 5 is devoted to the presentation of our testing methodology.

2 Models & Notations

Let Σ be a finite alphabet of actions. A string is a finite-length sequence of
actions in Σ and ε denotes the empty string. Given a string s. The set of all
strings formed by actions in Σ is denoted by Σ∗. Any subset of Σ∗ is called a
language over Σ. Let L be a language over Σ. L is said to be extension-closed
when L.Σ∗ = L. The prefix-closure of L is defined as L = {s ∈ Σ∗ | ∃t ∈
Σ∗ s.t. st ∈ L}. A language L is said prefix-closed whenever L = L.

We assume that the behaviors of systems are modeled by Labeled Transitions
Systems (LTS for short). The formal definition of an LTS is as follows:

Definition 1 (LTS). An LTS is a 4-tuple S = (QS, Σ,→S, q
0
S) where QS is a

finite set of states, Σ is the alphabet of actions, q0
S ∈ QS is the initial state, and

→S⊆ QS ×Σ ×QS is the partial transition relation.

Notations. we consider a given LTS S = (QS, Σ,→S, q
0
S).

– We write q a→S q
′ for (q, a, q′) ∈→S and q

a→S for ∃q′ ∈ QS, q
a→S q

′. We
extend →S to arbitrary sequences by setting: q ε→S q for every state q, and
q
sσ→S q

′ whenever q s→S q
′′ and q′′ σ→S q

′, for some q′′ ∈ QS.
– Given Σ′ ⊆ Σ, S is said to be Σ′-complete whenever ∀q ∈ QS,∀a ∈ Σ′, q

a→S.
– We set for any language L ⊆ Σ∗ and any set of states X ⊆ QS,

∆S(X,L) ∆= {q ∈ QS | ∃s ∈ L,∃q′ ∈ X, q′
s→S q}.

A set of states X ⊆ QS is said to be stable if ∆S(X,Σ∗) ⊆ X.
– L(S) = {l ∈ Σ∗,0S

l→S} denotes the set of trajectories of the system S. Given
a set of marked states FS ⊆ QS, the marked language is defined as LFS(S) =
{l ∈ Σ∗ | ∃q ∈ FS, q

0
S

l→S q}, i.e. the set of trajectories that may end in FS .

We now define the parallel composition of two LTSs.

Definition 2 (Parallel composition). Let Si = (Qi, Σi,→Si , q
0

Si
), i = 1, 2 be

two LTSs. The parallel composition between S1 and S2 is an LTS S1 × S2 =
(Q1 × Q2, Σ1 ∪ Σ2,→S1 × S2 , (q0

S1 , q0

S2)), where →S1 × S2 is the smallest relation
in (Q1 ×Q2)× (Σ1 ∪Σ2)× (Q1 ×Q2) satisfying

(q1, q2)
σ→S1 × S2


(q′1, q

′
2) if σ ∈ Σ1 ∩Σ2 ∧ q1

σ→S1 q′1 ∧ q2
a→S2 q′2

(q′1, q2) if σ ∈ Σ1 \Σ2 ∧ q1
σ→S1 q′1

(q1, q′2) if σ ∈ Σ2 \Σ1 ∧ q2
σ→S2 q′2



Clearly, if Σ1 = Σ2, L(S1 × S2) = L(S1) ∩ L(S2) and for sets of marked states
Fi ⊆ Qi, i = 1, 2, we have LF1×F2(S

1 × S2) = LF1(S
1) ∩ LF2(S

2). If for i = 1, 2
the set Fi is stable in Si, F1 × F2 is stable in S1 × S2.

Definition 3 (Completion). Given an LTS S = (Q,Σ,→, q0), a fresh state
qnew and a subalphabet Σ′ ⊆ Σ, the (Σ′, qnew)-completion of S is an LTS
CompqnewΣ′ (S) = (Q ∪ {qnew}, Σ,→′, q0), where

→′=→ ∪{q a→ qnew | q ∈ Q ∪ {qnew}, a ∈ Σ′ s.t. ¬(q a→)}

Observable Behavior. The interface between a user and the system is specified
by a subalphabet of actions Σa. The behavior that is visible by a user, is then
defined by its projection. denoted byΠΣa fromΣ∗ toΣ∗a that erases in a sequence
of Σ∗ all actions not in Σa. Formally,

ΠΣa : Σ∗ → Σ∗a
ε 7→ ε

sσ 7→
{
ΠΣa(s)σ if σ ∈ Σa
ΠΣa(s) otherwise

This definition extends to any language K ⊆ Σ∗: ΠΣa(K) = {µ ∈ Σ∗a | ∃s ∈
K, µ = ΠΣa(s)}. In particular, given an LTS S over Σ and a set of observ-
able actions Σa ⊆ Σ, the set of observed traces of S is TΣa(S) = ΠΣa(L(S)).
Conversely, given K ⊆ Σ∗a, the inverse projection of K is Π−1

Σa
(K) = {s ∈

Σ∗ | ΠΣa(s) ∈ K}. Given an observation trace µ of S, we define [[µ]]Σa as the set
of trajectories of S compatible with µ. These are trajectories of S having trace
µ. Formally:

[[µ]]Σa
∆= Π−1

Σa
(µ) ∩ L(S)

An LTS S is said to be deterministic if for all q ∈ QS, for all a ∈ Σ, q a→S q
′ and

q
a→S q

′′ implies q′ = q′′. In the sequel, we will need to build, a deterministic
LTS DetΣa(S) over the alphabet Σa preserving the set of traces of a (non-
deterministic) LTS S, i.e. L(DetΣa(S)) = TΣa(S).

Definition 4 (Determinization). Let S = (QS, Σ,→S, q
0
S) be an LTS and

Σa ⊆ Σ the subalphabet of observable actions. The determinization of S with
respect to Σa is the LTS DetΣa(S) = (X , Σa,→d, X

0) where X = 2QS (the set
of subsets of QS called macro-states), X0 = ∆S({q0

S}, [[ε]]Σa) and →d defined by
the set {(X, a,∆S(X, [[a]]Σa) | X ∈ X and a ∈ Σa}.

With the above definition, ∆DetΣa (S)(X0, µ) consists of states reached from q0
S

by trajectories in [[µ]]Σa in S.

3 Security Properties

In this section, we formalize two kinds of security properties, namely confiden-
tiality (something secret cannot be revealed to an attacker) and integrity (an
attacker cannot make the system evolve into some bad configurations). We also
outline the verification of these properties on the specification of the system S.



3.1 Integrity property

We consider integrity properties that can be expressed as safety properties on
the trajectories of the system. As usual we model their negation by an observer.

Definition 5 (Integrity). The negation of an integrity property ψ is given by
the marked language of a complete deterministic LTS ψ̄ = (Qψ̄, Σ,→ψ, q

0
ψ̄
), with

a stable set of accepting states Fψ̄. We denote Lψ̄ = LFψ̄ (ψ̄). �

Intuitively, the trajectories of S that belong to Lψ̄ are sequences that violate
the integrity property. Note that the set of states Fψ̄ is stable, because, once the
integrity property is violated, it is forever. The verification is as follows:

Definition 6. Given a system S and an integrity property ψ, ψ is satisfied
(noted S |= ψ) whenever LFψ̄ (ψ̄) ∩ L(S) = ∅.

If ψ is not satisfied by the system, the unique supremal sublanguage of L(S)
that satisfies ψ is regular and given by L(S) \ Lψ̄.

3.2 Confidentiality property

Consider an LTS S over Σ and Σa ⊆ Σ. The alphabet Σa defines the interface
allowing a user to interact with S. We formalize a secret ϕ as follows:

Definition 7 (Secret). A secret ϕ is defined by the marked language of a
complete and deterministic LTS, ϕ = (Qϕ, Σ,→ϕ, q

0
ϕ) with a set of accepting

states Fϕ ⊆ Qϕ. We denote Lϕ = LFϕ(ϕ). �

The language Lϕ represents the confidential information on the execution of S.
Now a user is considered as an attacker (A) willing to catch this confidential
information. It is armed for this with full information on the structure of S but
only partial observation upon its behavior, namely the observed traces in Σ∗a.
This leads to the definition of opacity adapted from [5] for secret predicates given
as regular languages.

Definition 8 (Opacity). Given a system S, a secret ϕ is said to be opaque
w.r.t. L(S) and the interface Σa if for all s ∈ L(S), [[ΠΣa(s)]]Σa 6⊆ Lϕ �

Intuitively, a secret is opaque whenever every secret sequence s of the system is
observationally equivalent to at least one non secret sequence s′. Equivalently,
Lϕ is opaque w.r.t. L(S) and Σa if and only if for all µ ∈ TΣa(S), [[µ]]Σa 6⊆ Lϕ.

p

h

a

a

b a, b

a, b

a, b

Fig. 1. An example of interference



Example 1. Let S be the LTS of Figure 1 with Σ = {h, p, a, b}, Σa = {a, b}.
The secret, that should not be revealed is the occurrence of the (unobservable)
action h (namely, Lϕ = Σ∗hΣ∗). Lϕ is not opaque w.r.t. S and Σ as the sole
compatible sequence with the trace b is h.b ∈ Lϕ. �

The definition of opacity extends to a family of languages L = {L1, L2, · · · , Lk}:
the secret L is opaque with respect to S and Σa if for all L ∈ L, for all s ∈ L(S),
[[ΠΣa(s)]]Σa) 6⊆ L. Thus within our framework, it is also possible to express other
confidentiality properties. For example, [1] introduced the notion of secrecy of
a language Lϕ. Intuitively, Lϕ is secret w.r.t. S and Σa whenever after any
observation µ, the attacker neither knows that the current execution is in Lϕ
nor in L(S) \ Lϕ. Secrecy can thus be handled considering the opacity w.r.t. to
the family {Lϕ, L(S) \Lϕ}. This notion is suitable when the secret concerns the
value of some variables.

Remark 1. All the results presented in this paper for opacity with a single secret
can be extended to a family of secrets and thus to secrecy.

The following proposition gives a necessary and sufficient condition for opacity.

Proposition 1. Given a system S = (QS, Σ,→S, q
0
S), a secret ϕ = (Qϕ, Σ,→ϕ

, q0ϕ) equipped with Fϕ ⊆ Qϕ, and an interface Σa ⊆ Σ, ϕ is opaque w.r.t. S and
Σa if and only if LF (DetΣa(S × ϕ)) = ∅, with F = 2QS×Fϕ .

It is easy to see that LF (DetΣa(S × ϕ)) is the set of observations traces µ
such that all trajectories in S compatible with µ fall into LFϕ(ϕ), i.e. the set of
observations for which the attacker A knows that the current execution reveals
ϕ. Hence, checking the opacity of ϕ consists in checking that this language is
empty. This can be done by checking that F is not reachable in DetΣa(S × ϕ).

Remark 2. Let S1 and S2 be two LTSs acting upon Σ, a secret ϕ such that
Lϕ ⊆ Σ∗ and an interface Σa. If ϕ is opaque w.r.t. L(S1) and L(S2), then it
is opaque w.r.t. L(S1) ∪ L(S2), but not necessarily w.r.t. L(S1) ∩ L(S2). Given
three LTSs S1, S2 and S3 acting upon Σ such that L(S1) ⊆ L(S2) ⊆ L(S3), ϕ
may be opaque w.r.t. L(S2) but not opaque w.r.t. L(S1) or L(S3).

When ϕ is not opaque w.r.t. L(S) and Σa, it may be still possible to restrict the
behavior of S so that Lϕ becomes opaque. This is the aim of the next proposition.

Proposition 2 ([2]). Given a system S and a secret ϕ, the supremal prefix-
closed sub-language L′ ⊆ L(S), s.t ϕ is opaque w.r.t. L′ is regular and given
by

Op↑(L(S), Lϕ, Σa) = L(S) \ ((L(S) \Π−1
Σa

(ΠΣa(L(S) \ Lϕ))).Σ∗) (1)

Intuitively, the language Π−1
Σa

(ΠΣa(L(S) \ Lϕ)) is the set of “safe” trajecto-
ries that do not reveal Lϕ, whereas any trajectory in its complement L(S) \
Π−1
Σa

(ΠΣa(L(S) \ Lϕ)) reveals Lϕ (as well as any extension with a sequence in
Σ∗, because, once Lϕ has been revealed, this holds forever). Complementing
again gives the supremal language Op↑(L(S), Lϕ, Σa).



4 Automatic synthesis of an Access Control

In this section, we propose to enforce opacity or integrity by supervisory control
which consists in restricting the system behavior by pairing it with an access
control. For implementability reasons, conditions on the admissible restrictions
of L(S) have to be put (controllability and normality). We assume that the
interface of the controller is Σm ⊆ Σ. We will explicit the conditions under
which the most permissive opacity (resp. integrity) control can be computed.
The next section introduces a few notions of supervisory control theory.

4.1 Supervisory control theory overview

Given a prefix-closed behavior K ⊆ L(S) ⊆ Σ∗ expected from the system S, the
goal of supervisory control is to enforce this behavior on S by pairing this system
with a monitor (also called controller) modeled by an LTS C = (QC , Σm,→C

, q0C) that observes a subsetΣm of the actions inΣ and controls a subsetΣc of the
actions in Σ, i.e. enables or disables each instance of these controllable actions.
Σ \ Σc is the set of uncontrollable actions. Σ \ Σm is the set of unobservable
actions. We now recall some basic concepts of supervisory control theory [6].

Definition 9 (Controllability and Normality). A prefix-closed language
K ⊆ L(S) is

– controllable w.r.t. L(S) and Σc if K.(Σ \Σc) ∩ L(S) ⊆ K.
– Normal w.r.t. L(S), Σm if K = Π−1

Σm
(ΠΣm(K)) ∩ L(S),

Controllability means that no uncontrollable action needs to be disabled to ex-
actly confine the system L(S) to K. Normality means that K can be exactly
recovered from its projection and from S. Under the assumption Σc ⊆ Σm, there
exists a supremal controllable and normal prefix-closed sub-language K↑ of K
corresponding to the largest language included in K that can be enforced by
control and this language is regular. If not empty, there exists a controller C,
said maximal such that L(C × S) = K↑. Example 2 in Section 4.2 illustrates
the computation of this controller ([6] for a more complete review of the control
theory of discrete event systems).

4.2 Access Control Synthesis

In the sequel, we assume that an attacker has full knowledge of the structure
of S, that he knows the controller’s interface Σm and is able to perform all the
computations made by the administrator to compute the controller. In particu-
lar, the attacker knows that the controller is maximal and since there is only one
optimal controller, the structure of the controller can be deduced by the attacker.
In the rest of the paper, it is always assumed that Σc ⊆ Σm (the controllable
actions are observed by the controller). Next, we outline the methodologies al-
lowing to compute access controls for ensuring a confidentiality property and
then for ensuring an integrity property.



0 1 2 3

4 5

6 7

τ

a

c

b

b

τ

uc

a

b
c

uc

Fig. 2. S × ψ̄

Ensuring an Integrity property. Given a system S and an integrity property ψ,
modeled by the negation of a safety property ψ̄, the aim is to compute (when
it exists) the maximal controller C = (QC , Σm,→C , q

0
C) such that C × S |=

ψ. For such a property, the solution can be simply obtained using the control
theory presented in the previous section by computing the greatest controllable
and observable sublanguage of L(S) \ Lψ̄. The following example illustrates the
computation of this controller.

Example 2. Figure 2 describes the product S× ψ̄ in which the state 3 is marked.
Hence, a sequence that reaches the state 3 is violating ψ. We assume that Σm =
{a, b, c, uc} and that Σc = {a, b, c}. The controller decisions are performed ac-
cording to the observed behavior of the system (depicted in Figure 3(a)). If the
controller observes a sequence in a.(c.a)∗.b.uc, then he knows that the system is
either in state 3 or 7. Thus, in order to avoid the state 3,7 , the controller
needs to disable the event b (uc being uncontrollable). The obtained LTS (only
keeping the accessible part) is the maximal controller such that C × S |= ψ. The
behavior of the controlled system is given in Figure 3(b). �

Ensuring a confidentiality property. Given a system S and a secret ϕ, our pur-
pose is to decide whether there exists a maximally permissive controllable and
observable access control C = (QC , Σ,→C , q

0
C) such that ϕ is opaque w.r.t.

L(S×C) and then to compute this controller C. We first illustrate the approach
through an example.

0,4 1,5,6 2,4,7 3,7 7

0,4,5 5 4

a b uc

a c a

uc

c

uc

b

a

(a) detΣm(S × ψ̄)

0 1

4 5

6

τ

a

c

τ

a

c

(b) C × S

Fig. 3. Ensuring an integrity property by control



0 1 2 3

4 5

6 7 8 9 10

11

a

τ

c1

e

b

h

d

a c2

e

a

h

h

b

e

a

a

Fig. 4. Control of non-opacity (I)

Example 3. The system to be controlled is given in Figure 4. We assume that
Σa = {a, b, d, e}, Σm = {a, c1, c2, b, d, e}, and Σc = {b, c1, c2, e}. The secret is
given by the language Lϕ = Σ∗.h.Σ∗. When observing d, the attacker knows
that h occurred and the secret is revealed (in state 5). By control, action c1 is
disabled, thus avoiding the uncontrollable sequence h.d to be triggered, and the
LTS depicted in Figure 5(a) is obtained. However, doing so, the secret is now

0 1

6 7 8 9 10

11

a

τ

e

a c2

e

h

h

b

e

a

(a) Step 1

0 1

6 7

11

a

τ

e

a

e

h
e

(b) Step 2

Fig. 5. Control of non-opacity (II)

revealed to the attacker who knows the control law after the observation of the
action b, which leads to disable the action c2, giving the LTS of Figure 5(b). The
secret is now opaque with respect to this LTS, which is the maximal sub-LTS of
the system with this property. �

We now give sufficient conditions under which such a maximal access control
exists. For details, please refer to [9, 10].

Theorem 1. [9, 10] Let S be a system and ϕ a secret. Under the assumption
Σc ⊆ Σm, there exists a maximal access control C such that ϕ is opaque w.r.t.
L(S × C) and Σa whenever

– ϕ is opaque w.r.t. L(S) ∩Σ∗uc and Σa,
– (1) Σm ⊆ Σa, or (2) Σa ⊆ Σm.



Assumption (1) means that the attacker’s observation is better than the con-
troller’s one. In this case the controlled system can be obtained by computing
Op↑(S, ϕ,Σa) and the supremal controllable and observable sub-language of this
language. Assumption (2) means that all actions of the attacker are observable
by the controller, but only a subset is controllable. One can imagine a firewall
for Internet services where the controller can filter out the requests sent by the
attacker to the system, whereas the outputs of the system cannot be disabled by
the controller. In this case, a novel algorithm has been introduced to compute
the controller (details can be found in [9, 10]).

5 Automatic test generation for security policies

In this section, we propose to test whether an implementation of the system
behaves as expected with respect to its specification model, and with respect to
the security properties and the access control computed in the preceding section.
We adapt the conformance testing framework whose aim is to establish whether
a black-box implementation conforms to its specification model.

We consider an implementation I of the system2, a specification model S
and a security property (either a confidentiality property for which the secret is
given by ϕ or an integrity property ψ). We assume that an access control C with
interface Σm has been computed for S in order to ensure one of these security
properties at the specification level, and that an implementation of this access
control IAC has been connected to I (we thus have L(I × IAC) ⊆ L(I)) with
the same interface.

We consider the test architecture depicted in Fig. 6, in particular the tester is
considered as an attacker with interface Σa, and we make explicit the difference
between inputs and outputs of the system by partitioning the set of observable
actions as Σa = Σ? ∪Σ!, where Σ? are inputs and Σ! are outputs.

The aim of the test campaign is then to check that the implemented access
control IAC reduces the behavior of I such that the security property is ensured.
Hence, test execution is expected to detect the following inconsistencies:

– invalidation of the access control specification C by the controlled imple-
mentation,

– violation of the security property by the controlled implementation,
– violation of conformance between the implementation I and its specification
S. The chosen conformance relation is ≤io, a version of Ioco [15] in which

2 As usual we consider that the implementation behaves like a model.

I TesterIAC
Σa

Σm

Fig. 6. Tester Architecture



quiescence is not taken into account. ≤io is formally defined by:

I ≤io S
∆= TΣa(S).Σ! ∩ TΣa(I) ⊆ TΣa(S) (2)

Intuitively, after any trace of the specification and implementation, all out-
puts of the implementation must be specified.

We propose a test generation algorithm, which takes a specification S and a
security property ϕ (or ψ) and its corresponding synthesized access control C,
and produces a test case that, when executed on an implementation, attempts to
push the implementation first into invalidating the implemented access control
and second into violating the security property.

It is worthwhile noting that the properties on which the tests will be based do
not only concern the observable behavior, but also the internal behavior. Thus
assumptions are needed that bind the internal behavior of the implementation
to the one of the specification. Hence, in the sequel, we shall assume that:

Assumption 1 : I ≤io S ⇒ L(I) = L(S)

This assumption means that the behavior of the implementation corresponds to
the one of the specification as far as the test campaign does not reveal any non
conformance. Even though relatively restrictive, this assumption is necessary if
one wants to test the implemented access control. Indeed, if L(I) differs from
L(S), then the access control plugged on I would be different from the one on
S. Remember (Remark 2) that opacity is not preserved by inclusion. Thus, if
we assume that, for example, L(I) ⊆ L(S), then there could exist in I some
information flows not present in S and reciprocally, which entails a different
mechanism to enforce opacity.

Remark 3. If the aim of the test campaign was to discover whether an informa-
tion flow exists (and if we were not interested in testing the access control itself),
then Assumption 1 could be relaxed and become:

Assumption 2 : ∀µ ∈ TΣa(I) ∩ TΣa(S),Π−1
Σa

(µ) ∩ L(I) ⊆ L(S)

This assumption means that whenever an observation trace of the implementa-
tion is accepted by the specification, then all the sequences of the implementation
compatible with this observation are also sequences of the specification. In par-
ticular, it entails that, if the secret is revealed in S after a trace µ, then it would
be surely revealed in the implementation. �

In the sequel we shall assume that assumption 1 holds.

5.1 Computation of the Canonical Tester

In the following sections we focus on the automatic test generation for confiden-
tiality properties (the methodology for integrity properties would be similar).



We first build a Canonical Tester which is the most general tester that can de-
tect the inconsistencies described above. In the following section we will then
describe how to select some test cases from this canonical tester.

As previously mentioned, we want to test the confidentiality property as well
as the access control that has been plugged with the implementation in order
to ensure confidentiality. The tester will thus be derived from the specification
S = (QS, Σ,→S, q

0
S), the secret ϕ = (Qϕ, Σ,→ϕ, q

0
ϕ) equipped with Fϕ, and the

system controlled by the access control computed previously SC = S × C =
(QSC, Σ,→SC, q

0
SC). SC specifies a safety property, the largest observable and

controllable safety property included in L(S) which guaranties that the secret
ϕ is not leaked. CompVACΣ (SC) equipped with the marked state VAC is then
an observer recognizing the negation of this property. Let us first consider the
following LTS:

SCϕ = (QCϕ , Σ,→C
ϕ , q

C
0ϕ) = S × ϕ× CompVACΣ (SC)

SCϕ can be equipped with the two following sets of marked states

– F = QS × Fϕ × (QC ∪ {VAC});
– FAC = QS ×Qϕ × {VAC}.

Let us describe some properties of SCϕ . As both ϕ and CompVACΣ (SC) are com-
plete, we get L(SCϕ ) = L(S). Moreover, LF (SCϕ ) = L(S) ∩ Lϕ ⊆ Lϕ whereas
(L(SCϕ ) \LF (SCϕ ))∩Lϕ = ∅ and LFAC (SCϕ )∩L(SC) = ∅. The role of F is to rec-
ognize trajectories of S satisfying the secret, while the role of FAC is to recognize
trajectories of S that violate the access control.

Example 4. Back to Example 3, the LTS SCϕ is represented in Figure 7 with the
rules that the square states belong to FAC whereas the dashed square states
belong to F . �

0 1 2 3

4 5

6 7 8 9

11 12 13

10

a

τ

c1

e

b

h

d

a c2

e

a

h

h

b

e

a

a

e
h

c2

h

Fig. 7. SC
ϕ .



A canonical tester for testing the conformance with respect to S is usually defined
by Test(S) = CompFailΣ!

(DetΣa(S)) [7]. As our aim is also to test the access
control and confidentiality, the canonical tester is here built from SCϕ as follows:

Test(S, ϕ) = (X,Σa,→t, Xo) = CompFailΣ!
(DetΣa(S

C
ϕ ))

Test(S, ϕ) can be seen as a refinement of Test(S). In fact, besides the detection
of the non conformance of the implementation, Test(S, ϕ) can also be used to
detect the information flow induced by the secret ϕ as well as an incorrect im-
plementation of the access control. But due to the test architecture, in particular
the fact that the tester partially observes the system through Σa, the tester’s
verdicts are not given to trajectories but to observation traces, thus identifying
all trajectories with the same observation.
For an observation µ ∈ T (I × IAC) ∩ L(Test(S, ϕ)), the following verdicts are
attached to Test(S, ϕ):

OTest(S,ϕ)(µ) =

NotConf if ∆Test(S,ϕ)(X0, µ) = {Fail}
Leak if ∆Test(S,ϕ)(X0, µ) ⊆ F
V iolateAC if ∆Test(S,ϕ)(X0, µ) ⊆ FAC ∧∆Test(S,ϕ)(X0, µ) 6⊆ F

The interpretation of the verdicts is as follows:

– If OTest(S,ϕ)(µ) = NotConf , then by definition of CompFailΣ!
(DetΣa(S

C
ϕ )),

∃µ′ ∈ Σ∗, a ∈ Σ!, µ = µ′.a with µ′ ∈ L(DetΣa(S
C
ϕ )) = TΣa(SCϕ ) = TΣa(S),

which entails that µ ∈ TΣa(S).Σ!, and µ ∈ TΣa(I × IAC) ⊆ TΣa(I), but
µ /∈ L(DetΣa(S

C
ϕ )) = TΣa(S). Thus by definition of ≤io, ¬(I ≤io S) and the

test campaign can be stopped.
– If OTest(S,ϕ)(µ) = Leak, it means that [[µ]]a ⊆ LF (SCϕ ) thus [[µ]]a ⊆ Lϕ,

which entails that there is an information flow and the access control is not
well implemented.

– If OTest(S,ϕ)(µ) = V iolateAC , it means that [[µ]]Σa ⊆ LFAC (SCϕ ). But as
LFAC (SCϕ ) ∩ L(SC) = ∅, we get [[µ]]Σa ∩ L(SC) = ∅.
Now, as [[µ]]Σa 6⊆ LFAC (SCϕ ), there exists s ∈ [[µ]]Σa \ Lϕ. This implies that
the access control is not well implemented, but the secret is not revealed so
far.

Example 5. Back to example 4, The tester Test(S, ϕ) is given by the LTS of
Figure 8. We here assume that Σa = {a, b, d, e} with Σ! = {b, e} and Σ? = {a, d}.
The verdict V iolateAC is emitted if the state 3,10 is reached, meaning that the

access control is not well implemented. If the sequence a.d is observed, the secret
is revealed and the tester emits the verdict Leak (the state 5 belongs to F ).
The verdict Fail is emitted whenever the Fail state is reached (the output ”e”

should not be observed when the tester is either in state 0,6 or 3,10 ). �

Remark 4. Test from an administrator point of view. If the test campaign
is performed via the interface Σ′m = Σ′! ∪ Σ′? of an administrator M and does



1, 2, 7, 8
9, 11, 12, 13

1, 2, 4, 7
8, 9, 11

Fail

3,10

0,65

Test(S, ϕ)

Leak

NotConf

V iolateAC

a

e

e

b

a

a

d
d

b e

e

Fig. 8. Test(S, ϕ).

not use the interface of the users, we need to adapt the computation of the tester
in order to take into account the difference of observations [11].

The main difference concerns the computation of the verdict Leak. Indeed,
the secret ϕ is revealed to the attacker by an execution s ∈ L(S) if and only
if Πa(s) ∈ LF (DetΣa(S × ϕ)). In other words, we are interested in testing the
property: ”The secret ϕ has been revealed to the attacker”, which corresponds
to the extension-closed language: Π−1

a (LF (DetΣa(S × ϕ))) · Σ∗. This language
can be recognized by an LTS Ω, equipped with a set of final states FΩ such that:

LFΩ (Ω) = Π−1
a (LF (DetΣa(S × ϕ))) ·Σ∗ (3)

Further, the computation of the tester TesterM can simply be done by replacing
ϕ by Ω in the test generation algorithm that we just described. �.

I AttackerIACTesterM
Σa

ΣmΣ′m

Fig. 9. Tester Architecture (II)

5.2 Test Selection

This operation is useful to target the test cases with respect to some particular
behavior of the systems under test. For example, if we want to discover informa-
tion flow, this operation consists in suppressing from Test(S, ϕ) the subgraphs
that cannot lead to some accepting set of states (e.g. F 3). In that case, the main
goal of testing is to check the violation of the opacity property after a trace of
the specification and, if an implementation leads a tester (extracted from the
specification) into a subgraph that cannot lead to Leak, the current test exper-
iment will never be able to achieve this goal and it could be interesting to stop
the test campaign. It that particular case, a new verdict Inconclusive is emitted.
3 The selection can be performed with any combination of accepting states, depending

on what the test campaign is focused on.



There are two situations, depending on whether the subgraph (from which Leak
is unreachable) was entered through an input or an output:

– the subgraph has been entered by an input. In this case, the transition labeled
by that input (together with the whole subgraph) are removed. Intuitively,
the tester has control over this action, thus, it may decide not to stimulate
the implementation with such input if it is sure that this will never lead to
a Leak verdict.

– the subgraph has been entered by an output (that does not directly lead to
Fail). In this case, only the transition labeled by that action is kept (the
rest of the graph is removed). The destination of the transition is set to a
new state called Inconc, which means that no Leak verdict can be given any
more (but the conformance was not violated). Hence, for completeness, in
this situation the verdict Inconclusive is emitted, i.e.
∀µ ∈ TΣa(I × IAC) ∩ L(Test(S, ϕ)),

OTest(S,ϕ)(µ) = Inconclusive if ∆Test(S,ϕ)(X0, µ) ⊆ {Inconc}.

Example 6. Applying this operation to the tester Test(S, ϕ) of Figure 8 leads
to the LTS depicted in Figure 10. After the reception of a ”a” from the imple-
mentation, if the tester observes the output ”b”, then the tester knows that the
secret cannot be revealed anymore, and the test campaign can be stopped.

1, 2, 7, 8
9, 11, 12, 13

1, 2, 4, 7
8, 9, 11

Fail

Inconc

0,65Leak

NotConf

Inconclusive

a

e

e

b

a

d
d

b
e

Fig. 10. The new tester Test(S, ϕ).

6 Conclusion

In this work, we have been interested in the automatic test generation for se-
curity properties on partially observed systems by using the controller synthesis
methodology to drive the test. Adopting a model-based approach, we assumed
the existence of a specification of the system modeled by a finite transition sys-
tem as well as the existence of a black-box implementation. We focused on two
kinds of properties: integrity (safety property) and confidentiality (opacity prop-
erty). The first step of our method consists in automatically computing access
controls ensuring these two kinds of properties on the specification. We then



show how to derive testers that not only test the conformance of the implemen-
tation with respect to its specification, but also the security property itself as
well as the correctness of the implemented access control composed with the
implementation in order to ensure the security policy.

An interesting extension of this work would be to consider more expressive
models mixing control and data. For these infinite models, the problem is that
the computations of the controller and the tester rely on approximate analyses.
This leads to investigate control and test techniques for security properties using
the abstract interpretation theory. It would also be important to define the exact
knowledge of the attacker in a case where computing the set of all behaviors may
be impossible, as tackled by [12] for non-interference. Another issue would be
to relax the hypothesis (1) linking internal behaviors of the implementation and
the specification, while preserving the soundness of verdicts.

References

1. R. Alur, P. Černý, and S. Zdancewic. Preserving secrecy under refinement. In
ICALP ’06: Proceedings (Part II) of the 33rd International Colloquium on Au-
tomata, Languages and Programming, pages 107–118. Springer, 2006.

2. E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau.
Concurrent secrets. Discrete Event Dynamic Systems, 17:425–446, 2007.

3. M. Bishop. Introduction to computer security. Addison-Wesley Professional, 2004.
4. B. Blanchet, Abadi; M., and C. Fournet. Automated Verification of Selected Equiv-

alences for Security Protocols. In 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), pages 331–340, Chicago, IL, June 2005.

5. J.W. Bryans, M. Koutny, L. Mazaré, and P. Ryan. Opacity generalised to transition
systems. International Journal of Information Security, 7(6):421–435, May 2008.

6. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

7. C. Constant, T. Jéron, H. Marchand, and V. Rusu. Integrating formal verification
and conformance testing for reactive systems. IEEE Transactions on Software
Engineering, 33(8):558–574, August 2007.

8. V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier. Test
generation for network security rules. In TestCom 2006, vol. 3964 of LNCS, 2006.

9. J. Dubreil, Ph. Darondeau, and H. Marchand. Opacity enforcing control synthesis.
In Workshop on Discrete Event Systems, WODES’08, Gothenburg, Sweden, 2008.

10. J. Dubreil, Ph. Darondeau, and H. Marchand. Supervisory control for opacity.
Technical Report 1921, IRISA, February 2009.

11. J. Dubreil, T. Jéron, and H. Marchand. Monitoring information flow by diagnosis
techniques. In European Control Conference (ECC), August 2009.

12. R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing non-
interference by abstract interpretation. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
186–197. ACM, 2004.

13. G. Lowe. Towards a completeness result for model checking of security protocols.
Journal of Computer Security, 7(2-3):89–146, 1999.

14. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

15. J. Tretmans. Testing concurrent systems: A formal approach. In Concurrency
Theory (CONCUR’99), number 1664 in LNCS, pages 46–65, 1999.


