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Abstract. This paper studies the structural testing of Erlang applica-
tions. A program transformation is proposed that represents the program
under test as a binary tree. The challenge of achieving structural coverage
can thus be interpreted as a tree-search procedure. We have developed
a testing-technique that takes advantage of this tree-structure, which we
demonstrate with respect to a small case study of an Erlang telephony
system.
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1 Introduction

Erlang [1] was, along with its Open Telecoms Platform (OTP), originally devel-
oped by Ericsson for the rapid development of network applications. However,
its usage has now spread beyond that domain to a number of sectors. Erlang
has been designed to provide a paradigm for the development of distributed soft
real-time systems, where multiple processes can be spread across many nodes in
a network.

With its OTP libraries, complex Erlang applications can be rapidly developed
and deployed across a large variety of hardware platforms, and this has caused it
to become increasingly popular, not only within large telecoms companies such
as Ericsson, but also with a variety of SMEs in different areas. It is increasingly
used to develop applications that are business-critical, for example, its use in
Ericsson’s AXD-301 switch that provides British Telecom’s internet backbone.

The ability to rigorously test Erlang applications is vital. In recognition of
this, there has recently been a concerted drive to develop more automated testing
tools, which complement the rapid Erlang development cycle. Tools such as
QuickCheck [2] are being eagerly adopted within the community.

So far, the main thrust of the Erlang testing effort has been directed towards
functional testing. Structural code-coverage has not been considered. This is
however an important problem, and is often a requirement if the system un-
der test is to be certified for a range of safety standards (e.g. the US Federal
Aviation Authority software standards [13]). Achieving code coverage is a well-
established challenge; the tester has to find a suitable set of test inputs that
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will exercise every branch for every predicate in the program. Finding a suit-
able (and reasonably sized) set of inputs is often problematic, and a number of
techniques such as symbolic execution [7], evolutionary search algorithms [9] and
testability-transformations [6] have been proposed to address it.

This paper presents a technique that leverages certain features of the Erlang
language to enable complete structural test coverage. The approach is inspired
by Harman et al.’s notion of testability transformations [6]. We have developed a
transformation that transforms an Erlang program into a binary tree. Each node
in the tree corresponds to either a true or a false evaluation of a predicate in the
original program. Predicates that may be hidden within functions in the original
program are made explicit. Identifying a suitable test set to achieve structural
coverage is thus reduced to a search over the binary tree.

To facilitate the debugging process, a simple debugging framework is pre-
sented. The framework takes advantage of the tree structure of the transformed
program. This enables the developer to control and observe the execution of a
program by directly manipulating the internal variable and parameter values.

The paper is structured as follows. Section 2 provides a background to Erlang
and the structural testing problem. Section 3 introduces our program transfor-
mation. Section 4 shows how tests can be generated to cover the transformed
program. Section 5 contains a case study with respect to a small telecommuni-
cations system, and section 6 contains conclusions and future work.

2 Background

This section provides a brief introduction to Erlang.

2.1 Erlang

Erlang is a concurrent functional language with specific support for the develop-
ment of distributed,fault-tolerant systems with soft real-time requirements [1].
It was designed from the start to support a concurrency-oriented programming
paradigm and large distributed implementations that this supports.

The Open Telecom Platform (OTP) is a set of Erlang libraries for build-
ing large fault-tolerant distributed applications. Extensive libraries for common
network-applications and protocols are included, and there is a collection of
source code and trace-analysis tools that provide a base for debugging and pro-
filing tasks. It also provides a set of common and reusable behaviours, which
encapsulate common behavioural patterns for processes, where the library mod-
ule implements the generic behaviour, and the developer is left to add those
aspects of behaviour that are specific to their system.

With the OTP, Erlang applications can be rapidly developed and deployed
across a large variety of hardware platforms, and this has caused it to become
increasingly popular, not only within large telecoms companies such as Ericsson,
but also with a variety of SMEs in different areas such as Yahoo! Delicious, and
the Facebook chat system.
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However, verification and validation of Erlang systems is to-date a largely ad-
hoc, manual process. Consequently there is an inherent danger that important
functionality remains untested and undocumented. Thus along with its recent
growth in popularity, there has been a concerted drive to develop more auto-
mated and systematic techniques.

2.2 Structural Testing of Erlang Implementations

In structural testing, the goal is to achieve some level of coverage of the source
code. Branch coverage, where the aim is to cover every branch from every decision
point in the source code, is one of the most popular measures. The challenge of
generating a suitable test set is two-fold: (1) to identify a suitable set of test
inputs that will reach every branch, and (2) to ensure that this set of tests is
sufficiently small so that can be executed in a reasonable amount of time.

An Erlang program consists of a set of modules, each of which defines a
number of functions. Functions that are accessible from other modules need to
be explicitly declared by the export command. A function named f name in the
module module and with arity N is denoted as module:f name/N. An Erlang
function fi is coded as a sequence of executional units fi = 〈cpi(1), ..., cpi(n)〉,
each of which defines a set of statements. An example is demonstrated in Figure
1.

-module(client). : {error,already connected}→
-export([idle/2]). : action:show(already connected),
idle(AT,{MB,RS,CSs})→ : {next state,connected,

P1 = gen server: : {MB,RS,CSs},?T};
call(hd(CSs),{request,AT,MB}), : {error,busy}→

case P1 of : action:show(sever busy),
{error,invalid mobile}→ : idle(AT,{MB,RS,

action:show(invalid mobile), : lists:append(tl(CSs),hd(CSs))});
{next state,idle,{MB,RS,CSs}};: Other→

{ok,connected, CalledFS, RS}→ : action:show(action invalid),
action:show(mobile connected), : {next state,idle,{MB,RS,CSs}}
{next state,connected, : end.

{MB,RS,CSs},?T}; :

Fig. 1. An Erlang Example

From the structural-testing perspective, the aim is to identify a set of test-
inputs that will collectively ensure that every branch in client:idle is executed
at least once. Along with the input parameters, it is also necessary for the tester
to control the values that are returned by gen server. In this case, we would
need to ensure that the variable P1 is at some point assigned to one of the four
predicate conditions (e.g. {error,invalid mobile}), as well as an aribitrary value
that corresponds to none of them.
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The simplest strategy is to construct a separate test set for each branch.
For each unit cpi(k) a test set is designed and applied to fi. The I/O behavior
observed from 〈cpi(1), ..., cpi(k)〉 is used to evaluate cpi(k). When the test of cpi(k)

is complete, the process continues to the next unit. The process continues until
all units have been tested.

Such a test strategy could give rise to two disadvantages. First, this ap-
proach can be wasteful; testing cpi(k) requires the execution of all preceding
units, {cpi(1), ..., cpi(k−1)}, regardless of whether cpi(l), l < l < k, has already
been tested. Secondly, identifying a suitable combination of inputs can be very
challenging. The execution of cpi(k) is heavily dependent by the results of execut-
ing 〈cpi(1), ..., cpi(k−1)〉 as the parameters for cpi(k) may be affected by previous
results.

From this small example, it is possible to identify the input requirements by
hand, simply from inspecting the predicate conditions. However, this approach
becomes intractable when the software increases in scale and complexity. Given
a conventional Erlang system with multiple modules, where certain branches can
only be reached by complex combinations of conditions, an automated approach
is required.

3 Transforming an Erlang Program into Binary Format

This paper proposes a program transformation that converts an Erlang function
into a tree-structure. The transformed function retains the functional behavior,
but makes the predicates that control its behavior explicit. This has two benefits
that address the problem mentioned above. The tree-shaped structure makes it
possible to identify an efficient test-set. Making the predicates explicit makes it
possible to automatically identify the set of inputs that are required to reach
every unit in a function. The rest of this section will introduce the program
transformation.

3.1 Notations

To formalize the description, we introduce the following notations. Let cpi(k)|cond(k)

denote that the unit cpi(k) ∈ fi is executed under the condition of cond(k). If
cond(k) = true, cpi(k) is activated for execution; otherwise a dummy operation1

is performed. Let cpi(l) << cpi(m) denote that cpi(m) is executed after cpi(l). The
function fi can be expressed as fi = cpi(1)|cond(i(1)) << ... << cpi(n)|cond(i(n)),
cpi(l)|cond(i(l)) << cpi(m)|false << cpi(n)|cond(i(n)) ≡ cpi(l)|cond(i(l)) << cpi(n)|cond(i(n)),
∀(l < m < n). If cpi(l) ∈ fi is an unconditional unit, cond(i(l)) is automatically
set to true; otherwise, the value of cond(i(l)) is determined by the pattern eval-
uation. For example, the function idle shown in Figure 1 is expressed as:

1 A dummy operation is a function that maps the inputs to the outputs without
changing the values of the inputs.
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func =
P1 = gen server : call(hd(CSs), {request, AT,MB})|true <<
(action : show(invalid mobile)|true <<
{next state, idle, {MB,RS, CSs}})|cond(matches(P1,{error,invalid mobile})) <<

(action : show(mobile connected)|true <<
{next state, connected, {MB,RS, CSs}, ?T})|cond(not(matches(P1,

{error,invalid mobile})) ∧ matches(P1,{ok,connected, CalledFS,RS})) <<
<< ... <<

(action : show(action invalid)|true<<

{next state, idle, {MB,RS, CSs}})|cond(not(matches(P1,{error,invalid mobile}))

∧... ∧not(matches(P1,{error,busy}))∧ matches(P1, Other))

where the function matches evaluates whether P1 matches PV, PV∈ {{error, in-
valid mobile}, {ok, connected, CalledFS, RS}, {error, already connected}, {error,
busy}, Other}.

The above expressions show how each unit cpi(k) ∈ fi can be represented
by a generic pattern, cpi(k)|cond(i(k)). If cond(i(k)) is true, cpi(k) is executed;
otherwise, cpi(k+1)|cond(i(k+1)) is evaluated.

3.2 Function Transformation

The transformation we introduce here decomposes a single large function fi into
a set of atomic functions f

′

i(k). Each function fi is transformed into a set of

ordered calls to atomic functions f
′

i(1) << ... << f
′

i(n) where n is the number of
executional units of fi. The benefit of this is that the guards on the execution of
these atomic functions are made explicit, and it becomes easier to control their
execution, or even influence their execution for the purpose of debugging (this
is demonstrated in the following sections).

The unit cpi(k) ∈ fi is transformed into a called function defined as:
f

′

i(k)(true, Args) → cpi(k);

f
′

i(k)(false, Args) → f
′

i(k+1)(cond(i(k + 1)), Args).

The function f
′

i(k) is guarded by a switch that can only be set to true or false. If
switch is true (cond(i(k)) = true), the functional executions defined in cpi(k) are
performed; otherwise, the function f

′

i(k+1) is invoked where cpi(k+1)|cond(i(k+1))

is evaluated.
When f

′

i(k) is invoked, if f
′

i(k) is derived from a unconditional unit cpi(k),
switch is automatically set to true; otherwise, the pattern match evaluation
function patterns match is applied to decide the value of switch. Definition of
the function patterns match is discussed in the subsection 3.3. According to the
pattern under evaluation, the function patterns match returns true or false. If
cpik ∈ fi defines a list of variables RVk, when cpim ∈ fi,m > k, is transformed
to f

′

i(m), RVk is configured as an argument of f
′

i(m).
Thus, the defined rules transform the original function fi into a set of calls

to functions {f ′

i(1), ..., f
′

i(n)} where n is the number of units defined in fi. Each
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function f
′

i(k) is coded by generic pattern with a true branch and a false branch
being defined. The true branch performs the functional executions defined in
cpik ∈ fi, while, the false branch invokes the function f

′

i(k+1) where cond(i(k+1))
is evaluated. Such a transformation is called Binary Transformation (BT). The
true branch of a called function is called Functional Execution Branch (FEB)
and the false branch is called Pattern Evaluation Branch (PEB). By applying
the defined rules, the function idle shown in Figure 1 is transformed as shown
in Figure 2.

idle(AT,{MB,RS,CSs})→ {next state,connected,{MB,RS,CSs},?T};
idle st 1(true, idle case2(false,[AT,MB,RS,CSs,P1])→

[AT,MB,RS,CSs,do not care]). idle case3(pattern match([P1],[{error,
already connected}]),

idle st 1(true,[AT,MB,RS,CSs, P1])→ [AT,MB,RS,CSs,P1]).
P1 = gen server:call(hd(CSs),

{request,AT,MB}), idle case3(true,[AT,MB,RS,CSs,P1])→
idle case1(pattern match([P1],[{error, action:show(already connected),

invalid mobile}]),[AT,MB,RS,CSs,P1]); {next state,connected,{MB,RS,CSs},?T};
idle st 1(false,[AT,MB,RS,CSs,P1])→ idle case3(false,[AT,MB,RS,CSs,P1])→

idle case1(pattern match([P1],[{error, idle case4(pattern match([P1],
invalid mobile}]),[AT,MB,RS,CSs,P1]). [{error,busy}]),[AT,MB,RS,CSs,P1]).

idle case1(true,[AT,MB,RS,CSs,P1])→ idle case4(true,[AT,MB,RS,CSs,P1])→
action:show(invalid mobile), action:show(sever busy),
{next state,idle,{MB,RS,CSs}}; {next state,idle,{MB,RS,CSs}};

idle case1(false,[AT,MB,RS,CSs,P1])→ idle case4(false,[AT,MB,RS,CSs,P1])→
idle case2(pattern match([P1], idle case5(pattern match([P1],

[{ok,connected,do not care,sys var}]), [do not care]),[AT,MB,RS,CSs,P1]).
[AT,MB,RS,CSs,P1]).

idle case5(true,[AT,MB,RS,CSs,P1])→
idle case2(true,[AT,MB,RS,CSs,P1])→ action:show(action invalid),

action:show(mobile connected), {next state,idle,{MB,RS,CSs}}

Fig. 2. Transformed Erlang program.

The defined rules only transform the structure of P into P
′
. The functional-

ities implemented in P are preserved in P
′
. The functions in P

′
are of simpler

structures. The predicates that guard the execution of those functions are ex-
plicitly defined. Compared to P , P

′
is well structured and easier to test.

Proposition 1 Given an Erlang program P and its BT P
′
, P

′
is functionally

equivalent to P .

Proof: Given an Erlang program P and its BT transformation P
′
, it is sufficient

to prove P
′

is functionally equivalent to P , if for fi ∈ P , i = 1, ...,m, the
following conditions hold: (1) each unit cpl ∈ fi has a unique called function



Applying Testability Transformations to Erlang Programs 7

f
′

i(l) in P
′
; (2) the functional behavior (input/output) of f

′

i(l) is identical to

that of cpl and (3) the called order of the FEB of f
′

i is defined by the order of
the executions of cpi, namely, (cpi(m)|cond(i(m))=true << cpi(n)|cond(i(n))=true) →
(f

′

i(m)(true, Args) << f
′

i(m+1)(false, Args) << ... << f
′

i(n−1)(false, Args) <<

f
′

i(n)(true,Args)), ∀(n > m).
The proof for the first condition is obvious as the transformation rules define

that the relation between a unit and its called counterpart is a one-to-one map-
ping, that is, for each unit cpi(l) ∈ fi, there is only one called replacement f

′

i(l)

in P
′
.

The transformation rules define that (1) the functional executions defined in
cpi(l) are performed in the FEB of f

′

i(l); (2) if cpi(g) ∈ fi, g < i, returns a value

to the variable RVi(g), RVi(g) is defined as an input of f
′

i(l), and (3) the name of
RVi(g) is unique (module name plus function name plus variable name). These
rules guarantee that the function f

′

i(l) and the unit cpi(l) receive the same input

set and perform the same functional executions. Thus, f
′

i(l) and cpi(l) have the
same functional behavior.

The third condition can be obtained by contradiction. Let cpi(m)|cond(i(m))=true

<< cpi(n)|cond(i(n))=true be true. This implies that cond(i(k)) = false, m < l <
n, as cpi(m)|cond(i(m))=true << cpi(n)|cond(i(n))=true ≡ cpi(m)|cond(i(m))=true <<
cpi(l)|cond(i(l))=false << cpi(n)|cond(i(n))=true, ∀(m < k < n). Suppose in the
transformation counterpart, there exists a called function f

′

i(l), m < l < n, such

that f
′

i(l)(true,Args) is activated. According to the transformation rules, the

PEB of the function f
′

i(l−1) must have invoked the function f
′

i(l)(cond(i(l)),Args)

with cond(i(l)) being evaluated to true. This, however, contradicts to the fact
that cond(i(l)) is false. Thus, (cpi(m)|cond(i(m))=true << cpi(n)|cond(i(n))=true) →
(f

′

i(m)(true, Args) << f
′

i(m+1)(false, Args) << ... << f
′

i(n−1)(false, Args) <<

f
′

i(n)(true, Args)), ∀(n > m). �

3.3 Pattern Match Transformation

Erlang makes extensive use of pattern matching in its function definitions. This
work transforms the pattern matching clauses into a binary format. To do so, the
technique [4] proposed to eliminate overlapping between patterns are applied.
Specifically, pattern match clauses in a function are replaced by a series of called
functions, each of which is guarded by the pattern match function.

A data type called the Structure Splitting Tree (SST) [4] is defined and
applied for pattern evaluation, and its use guarantees the pattern match clauses
being represented in binary formats.

3.4 Functional Binary Tree

After P is transformed into P
′
, it is easily to see that all functions in P

′
are

represented with a generic pattern as shown in Figure 3. The pattern is a binary
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tree with one entry and two exits. The entry is identified with a function name
func name that takes a list of arguments Args as input. Both exits define a
tuple {Next Func, Next Switch, Next Args} where Next Func states the function
next to be called; Next Switch defines the guard for Next Func, and Next Args
consists of the arguments for Next Func. Switch is applied to guard the selection

Fig. 3. Generic pattern of the called function.

of the true and the false branches. The true branch defines both the functional
executions and the function to be called next, while the false branch only states
the next called function. Such a binary tree is defined as a Functional Binary
Tree (FBT).

If all called functions in P
′

are represented with their FBTs, a Complete
Functional Binary Tree (CFBT) can be derived where the nodes that define
no Next Func constitute the terminals. For example, Figure 4 demonstrates the
CFBT of the program shown in Figure 2.

4 Structural Testing from Transformation

This section discusses the test generation for structural coverage from the pro-
gram transformation.

4.1 Test Generation

As discussed in the Section 3, a program P can be transformed into its BT P
′
.

Proposition 1 proves that P
′
is functionally equivalent to P . This suggests that,

instead of testing P directly, one can test P
′
and use the test results to evaluate

the correctness of P . Any errors detected in P
′

imply that the implementation
of P is faulty. The structure of P

′
is a binary format and the predicates for

controlling the execution of a node are explicitly specified. Deriving data to test
an execution branch in P

′
should not be a difficult task. Compared to P , P

′
is

easier to achieve structural coverage.
This section discusses the derivation of tests for P

′
. As P

′
can be represented

by a CFBT, it is easy to see that a test set whose elements traverse and test
all nodes in the CFBT will test P

′
, and the test achieves complete structural
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Fig. 4. Complete Functional Binary Tree derived from the program shown in
Figure 2.

coverage. Thus, the generation of a test set for P
′
is achieved by the construction

of data that traverse every node in the CFBTP ′ and test the corresponding
function at least once. As a CFBT is a binary tree, standard techniques for
the search of nodes in a tree such as a breadth-first search algorithm [3] or a
depth-first search algorithm [3] can be applied.

As an example, a test for the CFBT shown in Figure 4 is defined by construct-
ing a set of data TS whose elements traverse and test each node in the graph
at least once. To do so, each terminal terminali ∈ {terminal1, ..., terminal5}
needs to be tested by tsi ⊆ TS at least once. Let ts3 test terminal3. The test ts3

is constructed by examining the path between the root node (the entry of the
function idle) and the terminal terminal3. The path between terminal3 and idle
is 〈terminal3, idle case3(true), idle case2(false), idle case1(false), idle st 1,
idle〉. The function idle st 1 can pass P1 to its successor. The value of P1 can be
either computed from the execution gen server : call() or preset. The subsection
4.2 discusses the technique on deriving partial testing by presetting the inputs
for the functions under evaluation.

Thus, in the test, P1 should receive {error, already connected} (either re-
ceived from the gen server:call() or preset). When the test is applied, the IUT
must produce the message already connected.
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Proposition 2 Given a program P and its binary transformed P
′
represented by

the complete functional binary tree CFBTP ′ , if a test set TS achieves complete
structural coverage of P

′
, the elements in TS must traverse all nodes in CFBTP ′

and test the corresponding functions at least once and vice versa.

Proof: Let n be the number of functions in P
′

and Ni be the node that stands
for the function f

′

i ∈ P
′

in the CFBTP ′ . Suppose a test set TS has achieved
complete structural coverage of P

′
, there must exist a subset tsi ⊆ TS such that

tsi tests the function f
′

i ∈ P
′
, which implies that the function f

′

i is executed
by tsi at least once. This is equivalent to that tsi traverses the node Ni in the
CFBTP ′ at least once. Similarly, if a set of data tsi traverses the node Ni in
CFBTP ′ , it should execute and test the function defined in Ni once. The union
of all such sets of data constitutes a test set TS, TS = ts1∪...∪tsn, that achieves
complete structural coverage for P

′
. �

4.2 Improving Test Controllability and Observability

Once faults are detected, tests need to be constructed to isolate these faults. The
process of identifying the locations of faults is called debugging. The debugging
process defines a number of tests, each of which executes a set of designated
functions whose outputs should exhibit the properties defined by the design. A
test in the debugging process is called a partial test. By observing the results of
all partial tests, the faults are expected to be isolated.

The effectiveness of the debugging process is primitively determined by two
factors - the test controllability and the test observability. The test controllability
determines whether it is always possible to derive a partial test, while the test
observability determines whether it is always possible to observe the outputs
when the test is executed.

This work shows that, by applying the program transformation, the test
controllability and the observability are improved. As discussed in the section 3,
in the transformation program P

′
, all functions are represented by the BFTs. If

f
′

i ∈ P
′

is further modified into the format as shown in Figure 5, the function
under test is then assigned with two running modes, the normal mode and the
debugging mode. In the debugging mode, a debugging framework is associated.
The debugging framework is used to track the values of the variables under
evaluation, or bypass the functional execution of f

′

i by presetting its switch to
false.

For example, in Figure 5, if f
′

i is previously set to the debugging mode, the
results of all internal computations RS1, ..., RSi will be posted to the debug-
ging framework for comparison. Before f

′

i+1 is called, the values of the inputs
Switch, Arg1, ..., Argk will be sent to the debugging framework. The debugging
framework returns a tuple {NextMode, DSwitch, [DArg1, ..., DArgk]} where
NextMode specifies the running mode of f

′

i+1; DArg1,...,DArgk] consists of the
inputs for f

′

i+1 with DArgl, 1 ≤ l ≤ k, being preset; DSwith saves the value
of switch. If DSwith is set to false, the evaluation of f

′

i+1 is bypassed and the
testing moves on to f

′

i+2.
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f
′
i(Switch,[Arg1,...,Argk],Mode)→

RS1 = functional execution 1([Arg1,...,Argk]),
...

RSn = functional execution n([Arg1,...,Argk]),
case Mode of

normal→ nothing;
debugging→ RS={funci,[{‘RS1’,RS1},...,{‘RSn’,RSn}]},

debug panel:setting(RS)
end,

Switch = pattern match([Arg1,...,Argk],[pattern defined for f
′
i+1]),

{NextMode,DSwitch,[DArg1,DArgk]} =
debug panel:setting(funci+1,[{‘Switch’,Switch},{‘Arg1’,Arg1},...,{‘Argk’,Argk}])

f
′
i+1(DSwitch,[DArg1,...,DArgk],NextMode).

Fig. 5. The generic debugging pattern of a function.

Fig. 6. Debugging framework.

Thus, the configuration of the debugging process can be modelled as shown in
Figure 6. Each function f

′

i either takes input values computed from f
′

i−1 or preset
by the debugging framework. The functional executions of f

′

i can be controlled
by presetting the value for switch. If switch is preset to false, the functional
execution of f

′

i is bypassed; otherwise, f
′

i will be functionally evaluated. When
f

′

i is running on the debugging mode, all computational results performed within
the function can be externally observed.

By using the debugging framework to control the values of the inputs for
a function under test, the test controllability is improved and, by opening the
observation windows in the debugging framework, tracking the changes of the
variables under evaluation is possible, which helps to improve the test observ-
ability.

5 A Case Study

A case study is used to evaluate the proposed model. The case study simulates
a telecommunication system.
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5.1 System Infrastructure

The telecoms uses a client-server structure, and comprises of a database server
(DBS) that maintains all client’s data and a number of functional servers to
process clients’ requests. An FS has a capacity that defines the maximum number
of mobiles to be connected.

A client can communicate with any FSs and perform some functional oper-
ations such as calling and top-up. Each client has an account maintained in the
DBS, and in order to make a phone call, a client needs to top-up enough money
in its account. Before performing any functional operations, a client needs to
connect to an FS. A client can only be connected to one FS, and if a client
has connected to an FS and tries to connect to another FS, the request will be
denied.

Fig. 7. Client behaviour modelled as an FSM.

The behavior of a client (mobile) is modelled as a finite state machine (FSM),
and the initial design is shown in Figure 7. There are four states: idle, connected,
calling and top up, where initially, the system is set to the idle state.

The FSM defines the behavior of a number of operations: connecting, dis-
connecting, calling, terminating, top up and cancelling. Before performing any
operations, a client FSM needs to connect to an FS through sending the con-
necting request.

A client FSM has a timing restriction applicable when in states connected or
top up. Specifically, when the FSM is directed to the state connected or top up,
a timer will be instantiated which enables the timing process. If, within the
predefined time period, no action is performed by the client, a timeout event
will be generated and sent to the FS. By receiving timeout event, the FS cuts
off the connection and releases the resource from its user list. The FSM is then
reset to the state idle.
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5.2 Erlang Implementation

Erlang is used to implement the telecoms system, making use of the OTP design
patterns as is common practice. The FS is implemented using the Erlang/OTP
gen server module. A generic server is implemented by providing a callback mod-
ule where (callback) functions are defined specifying the concrete actions of the
server such as server state handling and response to messages.

The client behavior is realized using the OTP gen fsm module. In accordance
with the design, four state functions are defined: idle, connected, calling and
top up. The state function idle shown in Figure 1 initiates a connecting request
to an FS.

The state function connected evaluates the requests for the consequent ac-
tions. For example, if calling is requested, the function will call the FS to check if
the client has saved enough money to make a call. The reply {ok,calling} enables
the client’s calling request, which moves the FSM to the state calling.

connected(timeout,{M,SVR,SVRList})→ : display(client,calling),
gen server:call(SVR,{request,timeout,M}), : {next state,calling,
display(M,timeout), : {M,SVR,SVRList}};
{next state,idle,{M,nil,SVRList}}; : {error,low prepaid}→

connected([Act, SVR],{M,SVR,SVRList})→ : display(low prepaid),
case Act==terminating of : {next state,connected,

true → : {M,SVR,SVRList},20000};
display(action,invalid), : {ok,ready to top up}→
{next state,connected, : display(ready to top up),

{M,SVR,SVRList},20000}; : {next state,top up,
false → : {M,SVR,SVRList},20000};

F=gen server:call(SVR,{request,Act,M}): Other →
case F of : display(action,invalid),
{ok,disconnected}→ : {next state,connected,

display(disconnected), : {M,SVR,SVRList},20000}
{next state,idle, : end

{M,SVR,SVRList}}; : end.
{ok,calling}→ :

The state function calling enables the calling process and when the FSM is in the
state calling, only the terminating action can stop the process. This prevents the calling
from being disrupted by any unintended actions.

calling([Act, SVR],{M,SVR,SVRList})→ : {M,nil,SVRList}};
case Act of : false →

terminating → : display(server,invalid),
gen server:call(SVR,{request,Act,M}),: {next state,calling,
display(call,terminating), : {M,SVR,SVRList}}
{next state,idle, : end.

When being in the state connected, the client can ask to top up its account by
sending the top up request to the FS. If {ok,ready to top up} is replied, the top up
process is enabled, and the FSM moves to the state top up. An action will trigger the
state function top up to either start the transaction by {top up, Prepaid} operation
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(Prepaid is the amount of money the client is about to transfer), or cancel the process
by sending the cancelling request.

top up(timeout,{MB,RS,CSs})→ : {MB,RS,CSs},20000};
gen server:call(RS,{request,timeout,MB}),: {ok,cancelled} →
action:show(timeout), : action:show(top up cancelled),
{next state,idle,{MB,nil,CSs}}; : {next state,connected,

top up(AT,{MB,RS,CSs})→ : {MB,RS,CSs},20000};
P3=gen server:call(RS,{request,AT,MB}) : Other →
case P3 of : action:show(action invalid),
{ok,top up} → : {next state,top up,

action:show(top up completes), : {MB,RS,CSs},20000}
{next state,connected, : end.

When the FSM moves to the state connected and top up, a timer is initiated. The
timer is set to 20,000ms. If within the time period, no action is performed, a timeout
event will be generated and sent to the FS. The FSM is reset to the state idle. A
function command is defined to simulate the receiving of external actions. It calls
gen server:send event to triggers the state functions.

5.3 Test Design

The implementation is tested by applying the proposed testing scheme. The programs
of the FS and the client are transformed into the BT formats. The corresponding CF-
BTs are constructed for test generation. The BT programs are further modified into the
debugging mode as discussed in the subsection 4.2. For example, the function idle st 1
shown in Figure 2 is modified to the debugging mode:

idle st 1(true,[AT,MB,RS,CSs, P1],Mode)→
P1 = gen server:call(hd(CSs),{request,AT,MB}),
case Mode of

debugging→ debug panel:posting({{idle st 1,true},[{‘P1’,P1}]});
running→ nothing

end,
{NextMode,DSwitch,DAT,DMB,DRS,DCSs,DP1} =

debug panel:setting({idle case1, [{‘Mode’,debugging},
{‘Switch’,pattern match([P1],[{error,invalid mobile}])},
{‘AT’,AT},{‘MB’,MB},{‘RS’,RS},{‘CSs’,CSs},{‘P1’,P1}]}),

idle case1(DSwitch,[DAT,DMB,DRS,DCSs,DP1],NextMode);
idle st 1(false,[AT,MB,RS,CSs, P1],Mode)→
{NextMode,DSwitch,DAT,DMB,DRS,DCSs,DP1} =

debug panel:setting({idle case1, [{‘Mode’,debugging},
{‘Switch’,pattern match([P1],[{error,invalid mobile}])},
{‘AT’,AT},{‘MB’,MB},{‘RS’,RS},{‘CSs’,CSs},{‘P1’,P1}]}),

idle case1(DSwitch,[DAT,DMB,DRS,DCSs,DP1],NextMode).

To derive a partial test to check a particular system property, one needs to identify
the set of designated functions from the CFBT and preset the inputs for each function
by using the debugging framework. For example, to test “A client is the state idle and
sends the connecting request to the FS svr 1. When {ok,connected, CalledFS,svr 1} is
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replied, the connection is set up”. The set of functions is identified from the CFBT
(Figure 4) as [idle st 1, idle case1, idle case2 ]. The settings for the the corresponding
functions are: [{idle st 1, [ ]}, {idle case1, [{‘Switch’,false}, {idle case2, [{‘P1’, {ok,
connected, CalledFS, svr 1}}]}]}]. The debugging framework presets P1 to {ok, con-
nected, CalledFS, svr 1} and bypasses the functional executions of idle case1. For
each function, the default running mode is debugging. The function idle st 1 will post
the result of P1 to the debugging framework for comparison before the executions are
completed.

After the inputs being applied, the program should produce the message mo-
bile connected ; otherwise, the implementation on such a property is faulty.

6 Conclusions and Future Work

Erlang is becoming an increasingly popular language, because it provides a sophisti-
cated platform for the rapid development of concurrent and distributed applications.
These often play a business-critical role, which makes testing a crucial component of
the Erlang development process. So far, the majority of testing techniques and tools
that have been developed for Erlang have focussed on functional testing. Tools such as
QuickCheck [2] have become popular because they can rapidely test the system during
development.

So far there has been no established technique for the structural testing of Erlang
programs. Achieving targets such as branch-coverage has always depended on the abil-
ity of a developer to manually identify the necessary sets of test inputs. This paper has
presented a technique to automate this process by applying a testability transformation
[6].

The basic technique transforms an Erlang IUT into a functionally equivalent coun-
terpart where each atomic function is represented by a binary format called the Func-
tional Binary Tree. These functions are then aggregated into a complete tree (the
Complete Functional Binary Tree). An important attribute of the tree is that every
predicate that is required to reach any part of the tree is made explicit. The set of
tests required to exercise the entire program simply correspond to those tests that are
required to explore the entire tree.

A debugging framework is presented to facilitate the observation and manipulation
of internal program variables as it is executed. As a function is executed, it provides the
ability to track variable values. The execution of specific functions can be bypassed, and
the input parameters to functions can be altered via the framework. This is particularly
valuable for homing in on faulty areas in the source code.

A small telecoms case study has been presented to illustrate and evaluate the pro-
posed model. By applying the proposed testing scheme, the components in the imple-
mentation were transformed into binary formats and then modified into the debugging
mode. The CFBT was then constructed to derive the tests.

There still remains much to be done. Future work will apply the techniques here
to larger industrial examples. When deriving a partial test to check a particular sys-
tem property, the proposed model manually checks the CFBT to identify the set of
functions. This on occasion can be very time consuming, and it is of interests if one
can express the system properties with a formal language such as temporal logic [8],
and use the formal expression as a guide to automatically identify the set of functions.
This, however, remains a topic for the future work.
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