
Towards Automatic Generation of a Coherent

TTCN-3 Template Framework

Roland Gecse

Ericsson Hungary Ltd., P.O.Box 107, H-1300 Budapest 3, Hungary
roland.gecse@ericsson.com

Abstract. The template framework is a subset of TTCN-3 template
declarations, which determines the entire template hierarchy within an
abstract test suite. This paper introduces a deterministic method for
generating such a template framework from type definitions.

1 Introduction

Test data and particularly TTCN-3 [1] templates account for significant part of
test suite design both in terms of size and development time. The template frame-
work expresses the relationship between the individual templates. It consists of
template declarations, which describe the messages required for implementing
dynamic test behaviour. TTCN-3 offers dedicated language constructions for or-
ganizing the template framework such as template parameterization or modifica-
tion. A well-designed template framework is a precondition to concise templates,
which are compact, well-organized and easy to maintain.

The template framework should be designed before test suite development
with several requirements in mind. Excessively short or long as well as similar
template declarations should be avoided. The template parameterization and
modification shall also be used moderately. The perfect arrangement is hard to
find because the requirements are often contradictory. It is thus desirable to have
an automated template framework generation method even when the obtained
result is not optimal.

The present article intends to facilitate test design by introducing the means
and methods for generating an initial template framework from given type defi-
nitions with the ambition of assisting testers especially in the early phase of test
suite design.

2 Type Structure Graph (TSG)

The TSG represents the encapsulation of structured types in order to reason
about the hierarchy of the generated template framework. It captures the es-
sential structural information but neglects some otherwise important properties
such as the number and ordering of elements within a type. The simple and enu-
meration types are not container types so these are excluded from the model.
The sub-type constraints of input type definitions are also ignored in TSG.

Formally, the TSG = (V, E) is a directed graph whose V vertices model
structured type definitions and E ⊆ V 2 directed edges express containment.
An uv , (u, v) ∈ E edge means that u includes v. The vertices of TSG are
subdivided depending on the modeled structured type into pairwise disjoint sets
VR = {record ∨ set types}, VC = {union types} and VL = {record of ∨
set of types}, such that VR ∪ VC ∪ VL = V . The sets VR, VC and VL are called
record, choice and list nodes, respectively. The vertices of the graph are labeled
with the structured type identifiers. The TSG edges are categorized, similarly
to vertices, into pairwise disjoint sets ER = {uv : u ∈ VR}, EC = {uv : u ∈ VC}
and EL = {uv : u ∈ VL}, such that ER ∪ EC ∪ EL = E. The sets ER, EC and
EL are named record, choice and list edges, in the order of definition.

The TSG may include self-loops and cycles as TTCN-3 supports recursive
types. Multiple edges can also appear because a structured type definition may
contain many identical type elements. The TSG is disconnected when the mod-
eled type hierarchy includes independent messages. The sinks of TSG represent
those structured types, which consist of simple type elements only. The sources of
TSG do not necessarily correspond to the Protocol Data Units (PDUs). Hence,
the VD ⊆ V set is used to mark those distinguished types for which the tem-
plates are declared. The PDU types, which represent the initial content of VD,
are obtained from the TTCN-3 port type definitions.

Certain TSG properties reveal interesting features of type hierarchy. The
graph diameter, for instance, corresponds to the maximal depth of type hier-
archy, which is a measure of encapsulation. The out-degree and the all-pairs
shortest path length distribution of nodes express the size and complexity of
type hierarchy.

The presence of Strongly Connected Components (SCCs) in TSG indicates
recursion. The introduced method, however, does not intend to generate tem-
plates for recursive structures. However, the vertices of SCCs are saved into the
set VS as these require special attention during template framework generation.

3 Preliminaries of template generation

The template framework is constructed using an incremental method without
backtracking. The join procedure merges templates in order to reduce the small
ones while the makepar adds formal parameters to templates to avoid the large
ones. The algorithm in Section 4 performs a careful analysis of arguments to
determine the procedure to be invoked during the generation.

3.1 Template join

The join(t(u), t(v)) procedure creates some new templates for type u by attach-
ing the t(v) templates to the t(u) templates at each reference to v. The resulting
templates replace the original content of t(u) but t(v) is not modified. The for-
mal parameter lists of argument templates are also merged when necessary. The
templates of u and v can be joined if TSG has at least one u · · · v path. If there

exists only an uv edge then t(v) is joined to t(u) directly at u. Otherwise, the
t(u) and t(v) templates are joined recursively, in reverse topological order of
edges along the set of all possible u · · · v paths.

The exact method of joining the templates of some neighbouring u, v nodes
along the uv edge depends on the type of u, the |t(u)|, |t(v)| number of tem-
plates for the involved nodes and the |uv| number of connecting edges. If u ∈ VR

then the |t(v)| pieces of templates are attached to all |uv| places in every |t(u)|
templates. Since each template can appear in many positions at the same time,
the number of resulting templates can increase drastically. If u ∈ VC then u gets
a new template declared for each t(v) attached to all |uv| places. The number
of obtained templates is less than in case of records because the choice tem-
plates consist of a single field only. The u ∈ VL nodes are never joined with
their elements. The number of templates after joining along the uv edge can be
calculated with Equation 1.

|t(u)| ←

{

|t(u)| · |t(v)||uv| if u ∈ VR

|t(u)|+ |t(v)| · |uv| if u ∈ VC

(1)

3.2 Template parameterization

The makepar(t(u), v) procedure creates formal parameters from all type v fields
of t(u) templates. The newly created parameters are appended to the existing
formal parameter list of templates. The number of templates in t(u) does not
change during the execution. Similarly to the join procedure, performing the pa-
rameterization is only possible if v is reachable from u. The parameter references
are inserted at those u′ nodes for which u · · ·u′v path exists. If there are many
u · · · v paths then more type v parameters are appended. The original content of
t(u) is overwritten at u′ elements by a reference to the new type v parameter. If
v becomes a formal parameter then it must also be added to VD so that its t(v)
templates are preserved during the generation.

4 Algorithm

The introduced direct method produces a template framework from the type
definitions. The created templates together cover the entire TSG except the
SCCs. The coverage of a template is defined as the set of TSG nodes, whose
fields appear in the template declaration. The resulting templates may partially
overlap and can also be parameterized but template modification is avoided. The
algorithm comprises of three steps. Initially, a set of default templates is declared
for each node. Next, the TSG is partitioned into subgraphs along the choice and
list edges. The obtained subgraphs are rather small and include all record edges
of TSG. The default templates of subgraph nodes are merged into subgraph
templates using the join and makepar procedures. The subgraph templates
cover all nodes and record edges of TSG. The final step assembles the template
framework by joining the subgraph templates along the remaining choice and
list edges either statically or dynamically using parameterization.

4.1 Default template generation

The default templates are declared for the V \ VS nodes of TSG such that the
nested assignment of structured type fields is avoided.

The present approach assigns predefined values to all simple type fields, which
remain unmodified during the template generation. Hence, the value used at
initialization represents the final value of that field in all templates of the frame-
work. The content of structured type fields of default templates can be set arbi-
trarily (e.g. to any value matching) as these get overwritten during generation.

The number of default templates varies by type. The records get only a single
default template declared. The choices, however, get a separate default template
generated for each field. The list nodes get a single parameterized template
assigned, in which the formal parameter list comprises of the list type itself. The
obtained default templates serve as input for the subgraph template generation.

4.2 Subgraph Template Generation

The generation of the template framework begins with splitting the TSG into
TSG[Si] vertex induced subgraphs. The Si nodes correspond to the (Si, Ei)
subgraphs obtained by excluding the EC ∪ EL edges from TSG. The induced
subgraphs have pairwise disjoint vertex sets such that ∀i, j : Si ∩ Sj = ∅ and
⋃

i Si = V . The adjacent subgraphs are connected with the EB = E \ (
⋃

i Ei)
edges whose terminating vertices are called entry nodes. The SCCs are always
considered independent subgraphs regardless of their internal structure.

The goal of subgraph template generation is to declare a minimal number
of templates covering the maximal number of subgraph nodes. The default tem-
plates of adjacent nodes are joined recursively in bottom up order along the
Ei edges until all entry nodes have their subgraph templates ready (Figure 1).
According to Equation 1, the join procedure may create a huge number of tem-
plates even when the parameters (i.e. |t(u)|, |t(v)| and |uv|) are small. Therefore,
join is performed only if the join condition (Equation 2) is satisfied.

{

|t(u)| = |t(v)| = 1 ∨ |t(v)| = |uv| = 1 ∨ |t(u)| = |uv| = 1 if u ∈ VR

|t(v)| = 1 ∨ |uv| = 1 if u ∈ VC

(2)

The join condition constrains the template generation to permit only an
additive increase in the number of resulting templates. It allows at most one
of the three parameters to exceed one for VR nodes. The join condition for VC

nodes is less restrictive as it does not include t(u). When Equation 2 is not
satisfied then the makepar procedure is invoked instead of join. It adds type
v fields to formal parameters of all templates in t(u) and promotes them to the
VD distinguished types.

The default templates, which could not be joined with any other templates
become subgraph templates. The original default templates in t(v) can be dis-
carded after processing the templates of all predecessors if v /∈ VD.

S3

D 1 E 1 F 1

G 1

H 1

J 1I 1

K 2

A 1

B 20 C 1

S2

S1

6

1 1 1
2 2

2

20

Fig. 1. An extract from an imaginary TSG: All entry nodes are shaded; vertex A

is a distinguished node. The number of default templates appears next to the name
inside the nodes. The S1, S2, S3 subgraphs and the generated subgraph templates are
marked distinctively. S1 is covered by 20 overlapping subgraph templates while S2 has
2, and S3 contains 1 subgraph template for each entry node. The template framework
generation algorithm joins the t(H), t(D), t(E), t(F) templates with t(B) and produces
21 templates for A (not shown in the Figure). The 2 + 2 subgraph templates of I, J

nodes are also preserved.

4.3 Template Framework Generation

The template framework is assembled from the templates generated for the
TSG[Si] subgraphs (Figure 1). The Sp, Sc adjacent subgraphs are processed in
reverse topological order such that Sp must not be a subgraph of an SCC (Sc

can be any subgraph of TSG). The algorithm iterates through the entry nodes
of the Sc subgraph and processes the xy ∈ EB : x ∈ Sp, y ∈ Sc edges one by
one. It locates those T ⊆ t(Sp) subgraph templates, which cover the xy edge
(i.e. include a reference to node x containing y). The types of T templates are
collected into set W ⊆ Sp. Clearly, W consists of those nodes of Sp subgraph,
which have a path including the xy edge. The node x may not even appear in W
because its default templates may have been joined with some of its predeces-
sors’ templates or became parameters during the subgraph template generation.
If y ∈ VS then makepar(T, y) is invoked to make all references to the SCC
node formal parameters in all referencing templates. Otherwise, the algorithm
examines the w ∈W types of T templates.

If the processed w type is a record then all of its t ∈ t(w) ∩ T templates
are joined with the t(y) templates of the given entry node provided the join
condition is satisfied. The join condition for records in Equation 2 normally
checks |t(x)|, |t(y)| and |xy| properties of the edge. This time, it can happen

that w 6= x meaning that the t(w) ∩ T and t(y) arguments of the join are
not adjacent templates. If the w and y nodes are not adjacent then the join
needs to be performed along all the w · · ·xy paths as described in Section 3.
Consequently, the join condition for records needs to be interpreted differently.
The selected templates of w are processed one by one, thus |t| = 1 needs to
appear in the join condition instead of |t(x)|. Furthermore, the |xy| has to be
replaced with the number of references to xy in t, which is denoted by N . The
join condition depends thus on N and |t(y)| only. Therefore, the join({t}, t(y))
is only performed if N = 1 ∨ |t(y)| = 1. If the join condition does not hold then
makepar({t}, y) is executed in order to replace all references to type y with
parameters in template t.

If the processed w type is a choice then the join(t(w) ∩ T, t(y)) is executed
once the join condition in Equation 2 is satisfied. When joining the subgraph
templates is not feasible then the references to y become formal parameters by
invoking makepar(t(w) ∩ T, y).

Finally, at the end of generation all unnecessary templates, which are not
declared for distinguished types, are removed.

5 Conclusion

The introduced deterministic algorithm creates some subgraph templates cov-
ering the adjacent record nodes of TSG and constructs the template framework
by joining or parameterizing the obtained templates. The join is performed only
if the number of resulting templates increases moderately. The parameterization
is used to rule out a multiplicative increase of template declarations. The final
values of simple type fields are set to dummy values by default because the pro-
tocol type definitions alone are insufficient for assigning template elements with
semantically correct data. A more advanced method of value assignment exists
but its discussion exceeds the limits of this article.

The template framework generation algorithm has been implemented as a
prototype plugin of TITAN TTCN-3 Test Executor. It has been evaluated on
some protocols with satisfactory results, which proved that it is possible to create
a proper template framework exclusively from the type hierarchy. Nevertheless,
the framework generation can be further optimized using the methods and infras-
tructure presented in [2]. The algorithm could be improved to take the statistical
properties of abstract protocol syntaxes into account. The generated framework
could be refined interactively during test suite development. A comparison with
heuristic algorithms would also be meaningful.

References

1. Methods for Testing and Specification; The Testing and Test Control Notation ver-
sion 3; Part 1: TTCN-3 Core Language, ETSI ES 201 873-1 Edition 3.4.1, 2008.

2. A. Wu-Hen-Chang, D. Le Viet, G. Bátori, R. Gecse and Gy. Csopaki: High-Level
Restructuring of TTCN-3 Test Data, FATES 2004, Lecture Notes in Computer
Science 3395, pp. 180–194, Springer, 2005.

