
Generating Checking Sequences  

for Partial Reduced Finite State Machines 

Adenilso Simão 
1
 and Alexandre Petrenko 

2 

1
 Instituto de Ciências Matemáticas e de Computação 

Universidade de São Paulo 

São Carlos, São Paulo, Brazil 
2 Centre de recherche informatique de Montreal (CRIM) 

Montreal, Quebec, Canada 

adenilso@icmc.usp.br, petrenko@crim.ca  

Abstract. The problem of generating checking sequences for FSMs with 

distinguishing sequence has been attracting interest of researchers for several 

decades. In this paper, a solution is proposed for partial reduced FSMs with 

distinguishing sets, and either with or without reset feature. Sufficient 

conditions for a sequence to be a checking sequence for such FSMs are 

formulated. Based on these conditions, a method to generate checking sequence 

is elaborated. The results of an experimental comparison indicate that the 

proposed method produces shorter checking sequences than existing methods in 

most cases. The impact of using the reset feature on the length of checking 

sequence is also experimentally evaluated. 

1   Introduction 

Test generation from a Finite State Machine (FSM) is an active research topic with 

numerous contributions over decades, starting with the seminal work of Moore [9] 

and Hennie [5]. Given a specification FSM M and a black box implementation N, the 

objective is to construct a test suite that can check whether N behaves correctly 

according to M. It is usual to assume that N behaves like an unknown FSM with the 

same input alphabet and has at most as many states as M.  

A checking sequence is an input sequence that can be used to check the correctness 

of the implementation. Many methods for generating checking sequences have been 

proposed, e.g., [5], [8], [4], [2], [11], [6], [3], [10], [7], and [12]. The crucial issue for 

these methods is how to guarantee that a black box implementation is in a known state 

after the application of some input sequence. This problem is somewhat simplified if 

the specification FSM M has a distinguishing sequence, that is an input sequence for 

which different states of M produce different outputs. However, not every FSM has a 

distinguishing sequence. A distinguishing set is a set of input sequences, one for each 

state of M, such that for each pair of distinct states, the respective input sequences 

have a common prefix for which both states produce different outputs. A 

distinguishing set can be obtained from a distinguishing sequence. Notice, however, 

that there exist FSMs with a distinguishing set which do not have distinguishing 

sequence [2]. 

Several generation methods have been proposed for generating checking sequence 

when a distinguishing sequence is available, e.g., [5], [4], [11], [6], [3], [10], [7], and 



[12]. In [5], Hennie elaborates the basis for the existing generation methods. Hennie 

divides the checking sequence into two parts: in the first part, the distinguishing 

sequence and some (possibly empty) transfer sequence are applied to each state, 

verifying that the distinguishing sequence is also a distinguishing sequence for the 

implementation under test, while in the second part, each transition is verified 

certifying that the source and target states are correctly implemented. A graph-

theoretical method for generation of checking sequence is presented in [4]. No 

attempt to optimize the checking sequence is made, though. Recently, interest in 

improving methods for generating checking sequence with distinguishing sequence 

has revived again. Ural et al. [11] state an important theorem with sufficient 

conditions for a sequence to be a checking sequence for a complete FSM with a 

distinguishing sequence. A graph-theoretical method is also suggested, which casts 

the problem of finding a checking sequence as a Rural Chinese Postman Problem, 

following Aho et al.’s work [1]. This work has later been improved in [6] and [7], 

which fine-tune the modeling of the problem; Chen et al. [3] demonstrate that it is 

sufficient to consider only a subset of the FSM transitions; and Ural and Zhang [10] 

use the overlapping of the distinguishing sequence with itself to shorten the checking 

sequence. 

Boute [2] shows how to generate a checking sequence for FSMs which may not 

have distinguishing sequences, but have distinguishing sets. The method also 

determines when transitions are “automatically” verified (i.e., when the verification of 

a transition is a consequence of the verification of other transitions) similarly to a 

more recent work [3]. 

All the above methods deal only with complete FSMs. Moreover, when the 

implementation under test has the reset feature, these methods do not attempt to use 

the reset input to shorten the checking sequence. 

The contributions of this paper are twofold. First, we claim a theorem that states 

sufficient conditions for a sequence to be checking sequence for a (possibly partial) 

FSM with a distinguishing set. Notice that this theorem generalizes Ural et al.’s 

theorem [11]. The second contribution is a constructive method that generates 

checking sequence from FSM with a distinguishing set. Differently from recent works 

(namely, [11], [6], [3], [7], and [10]), the proposed method does not attempt to make a 

global optimization. Instead, it makes a local best choice in each step. Although the 

global optimization is expected to lead to shorter checking sequence, the graph-

theoretical methods require that some choices be made a priori which may reduce the 

effectiveness of global optimization to that of local optimization if not lower. For 

instance, the method of Hierons and Ural [7] requires that a set of transfer sequences 

to be defined, and, moreover, the so-called α-set is determined by a separate 

algorithm, which may influence the effectiveness of the method. We present 

experimental results which indicate that the proposed method based only on local 

optimization performs better than existing methods in most cases. 

This paper is organized as follows. In Section 2, we provide the necessary basic 

definitions. In Section 3, we define the notion of confirmed sets and use it to state 

sufficient conditions for an input sequence to be a checking sequence. A method for 

generating checking sequences based on the proposed conditions is presented in 

Sections 4. In Section 5, we present an experimental evaluation of the method. We 

discuss the related work in Section 6. Section 7 concludes the paper. 



2   Definitions 

A Finite State Machine is a deterministic Mealy machine, which is defined as follows. 

Definition 1. A Finite State Machine (FSM) M is a 6-tuple (S, s0, I, O, DM, δ, λ), 

where 

• S is a finite set of states with the initial state s0, 

• I is a finite set of inputs, 

• O is a finite set of outputs, 

• DM ⊆ S × I is a specification domain, 

• δ : DM → S is a transition function, and 

• λ : DM → O is an output function. 

If DM = S × I, then M is a complete FSM; otherwise, it is a partial FSM. A tuple (s, 

x) ∈ DM is a (defined) transition of M. A string α = x1…xk, α ∈ I*, is said to be a 

defined input sequence at state s ∈ S, if there exist s1, …, sk+1, where s1 = s, such that 

(si, xi) ∈ DM and δ(si, xi) = si+1, for all 1 ≤ i ≤ k. We use Ω(s) to denote the set of all 

defined input sequences for state s and ΩM as a shorthand for Ω(s0), i.e., for the input 

sequences defined for the initial state of M and, hence, for M itself. 

Given sequences α, ϕ, β ∈ I*, if β = αϕ, then α is a prefix of β, denoted by α ≤ β, 

and ϕ is suffix of β. For a sequence β ∈ I*, pref(β) is the set of prefixes of β, i.e., 

pref(β) = {α | α ≤ β}. For a set of sequences T, pref(T) is the union of pref(β), for all 

β ∈ T. 

We extend the transition and output functions from input symbols to defined input 

sequences, including the empty sequence ε, as usual, assuming δ(s, ε) = s and λ(s, ε) 

= ε, for s ∈ S, and for each αx ∈ Ω(s), δ(s, αx) = δ(δ(s, α), x) and λ(s, αx) = λ(s, 

α)λ(δ(s, α), x). Moreover, we extend the transition function to sets of defined input 

sequences. Given an FSM M, a set of input sequences C ⊆ Ω(s), s ∈ S, we define δ(s, 

C) to be the set of states reached by the sequences in C, i.e., δ(s, C) = {δ(s, α) | α ∈ 

C}. For simplicity, we slightly abuse the notation and write δ(s, C) = s', whenever δ(s, 

C) = {s'}. Let also Φ(C, s) = {α ∈ C | δ(s0, α) = s}, i.e., Φ(C, s) is the subset of 

sequences of C which lead M from the initial state to s, if any, thus containing the 

sequences of A converging on state s.  

An FSM M is said to be strongly connected, if for each two states s, s' ∈ S, there 

exists an input sequence α ∈ Ω(s), called a transfer sequence from state s to state s', 

such that δ(s, α) = s'.  

Two states s, s′ ∈ S are distinguishable, denoted s � s′, if there exists γ ∈ Ω(s) ∩ 

Ω(s′), such that λ(s, γ) ≠ λ(s′, γ). We also use the notation s �γ s′ when we need to 

refer to a sequence distinguishing states. If a sequence γ distinguishes each pair of 

distinct states, then γ is a distinguishing sequence. If γ distinguishes a state s from 

every other state, then γ is an identification sequence for state s. A distinguishing 

sequence is an identification sequence for each state, however, the converse does not 

hold. A distinguishing set ΞΞΞΞ is a set of |S| identification sequences, such that for each 

pair of distinct states s, s' ∈ S, there exists a sequence distinguishing s and s' which is 

a common prefix of the respective identification sequences. Notice that, given a 

distinguishing sequence E, the set of the shortest prefixes of E, each of which is an 



identification sequence of a state, is a distinguishing set. Moreover, for a given FSM, 

there may exist a distinguishing set even if no distinguishing sequence exists [2]. 

Given a set C ⊆ Ω(s) ∩ Ω(s′), states s and s′ are C-equivalent, denoted s ∼C s′, if λ(s, 

γ) = λ(s′, γ) for all γ ∈ C. We define distinguishability and C-equivalence of machines 

as a corresponding relation between their initial states. An FSM M is said to be 

reduced, if all states are pairwise distinguishable, i.e., for all s, s′ ∈ S, s ≠ s′ implies s 

� s′. An FSM N is quasi-equivalent to M, if ΩM ⊆ ΩN and N is ΩM-equivalent to M. 

Given a reduced FSM M, let ℑ(M) be the set of all reduced complete FSMs with 

the input alphabet of M and at most n states, where n is the number of states of M.  

Definition 2. A finite input sequence ω ∈ ΩM of FSM M is a checking sequence (for 

M), if for each FSM N ∈ ℑ(M), such that N � M, it holds that N �ω M.  

Let N = (Q, q0, I, O', DN, ∆, Λ) be an arbitrary element of ℑ(M). Given an input 

sequence α, let ℑα(M) be the set of all N ∈ ℑ(M), such that N and M are α-equivalent. 

Thus, ω is a checking sequence for M if every N ∈ ℑω(M) is quasi-equivalent to M.  

A finite set K ⊆ ΩM is a state cover for M if δ(s0, K) = S. A state cover K is 

minimal if |K| = |S|. 

3   Generalizing Sufficient Conditions for Checking Sequences 

Constructing checking sequence, a crucial issue is how to guarantee that the black box 

implementation is in a known state after the application of some input sequence. We 

propose a new way of addressing this issue by introducing the notion of confirmed 

sets of defined input sequences. In particular, a set of prefixes of an input sequence is 

confirmed if and only if it has transfer sequences for each state of the specification 

FSM M and any sequences that converge, i.e., lead to a same state (diverge, lead to 

different states) in any FSM that has the same output response to the given input 

sequence and has as many states as M if and only if they converge (diverge) in M. 

Definition 3. Let ω be a defined input sequence of an initially connected reduced 

FSM M = (S, s0, I, O, DM, δ, λ) and K ⊆ pref(ω). The set K is ℑω(M)-confirmed (or 

simply confirmed) if K is a state cover and, for each N ∈ ℑω(M), it holds that for all 

α, β ∈ K, ∆(q0, α) = ∆(q0, β) if and only if δ(s0, α) = δ(s0, β). An input sequence is 

confirmed if there exists a confirmed set that contains it.  

In this paper, we assume that the FSM M is strongly connected, reduced, and has a 

distinguishing set Ξ. Given Ξ, ω ∈ ΩM and α ≤ ω, α is said to be Ξ-recognized in ω, 

if αEs ≤ ω,where Es ∈ Ξ and δ(s0, α) = s. 

Lemma 1. Let ω ∈ ΩM and K be a minimal state cover. If each α ∈ K is Ξ-recognized 

in ω, then K is ℑω(M)-confirmed. 

Proof. Let N ∈ ℑω(M) and α, β ∈ K. We demonstrate that δ(s0, α) ≠ δ(s0, β) implies 

∆(q0, α) ≠ ∆(q0, β). Suppose that s = δ(s0, α) ≠ δ(s0, β) = s'. Notice that α and β are 

followed in ω by Es and Es', respectively. Thus, there exists a sequence γ ∈ pref(Es) ∩ 

pref(Es'), such that λ(s, γ) ≠ λ(s', γ). As N is ω-equivalent to M, it follows that Λ(∆(q0, 

α), γ) = λ(s, γ) ≠ λ(s', γ) = Λ(∆(q0, β), γ). Therefore, ∆(q0, α) ≠ ∆(q0, β).♦ 

From Lemma 1, we state the following corollary. 



Corollary 1. Let ω ∈ ΩM and K be a minimal state cover and ℑω(M)-confirmed. Then 

K is a minimal state cover for any N ∈ ℑω(M). 

The next lemma indicates when a state cover K is confirmed, even if it is not 

minimal. 

Lemma 2. Let ω ∈ ΩM and K be a state cover. If each α ∈ K is Ξ-recognized in ω, 

then K is ℑω(M)-confirmed. 

Proof. Let N ∈ ℑω(M). Let α, β ∈ K. If δ(s0, α) ≠ δ(s0, β), we can use the same 

argument used in the proof of Lemma 1 to prove that ∆(q0, α) ≠ ∆(q0, β). Suppose 

then that δ(s0, α) = δ(s0, β). Let K' ⊆ K be such that both Kα = K' ∪ {α} and Kβ = K' 

∪ {β} are minimal state covers for M. By Corollary 1, we have that Kα and Kβ are 

also minimal state covers for N. Thus, ∆(q0, α) is distinct from each of the n – 1 states 

in ∆(q0, K'). As ∆(q0, β) is also distinct from each of the n – 1 states in ∆(q0, K') and N 

has n states, it follows that ∆(q0, α) = ∆(q0, β).♦ 

The next statement relies on the fact that if proper prefixes of some transfer 

sequences converge in a deterministic FSM, then the sequences converge as well. We 

use the following definitions. If α and αϕ are confirmed sequences (in a confirmed 

set K), then ϕ is verified in δ(s0, α) (w.r.t. to K). If x ∈ I is verified in s, then the 

transition (s, x) is verified. 

Lemma 3. Let K be a ℑω(M)-confirmed set. If α, β ∈ K, δ(s0, α) = δ(s0, β), and ϕ is 

verified in δ(s0, α), then the set K ∪ {βϕ} is also ℑω(M)-confirmed. 

Proof. As α and β are confirmed in K and ϕ is verified in δ(s0, α), αϕ is also 

confirmed. Thus, we have that ∆(q0, α) = ∆(q0, β) and, therefore, it follows that ∆(q0, 

βϕ) = ∆(∆(q0, β), ϕ) = ∆(∆(q0, α), ϕ) = ∆(q0, αϕ).♦ 

Thus, each sequence that is Ξ-recognized or is concatenation of Ξ-recognized and 

verified sequences can be included into a confirmed set. This key property of 

confirmed sets suggests a method for constructing a checking sequence which we 

elaborate later in the paper. 

Theorem 1. Let ω be an input sequence of a reduced FSM M = (S, s0, I, O, DM, δ, λ) 

with n states. ω is a checking sequence for M, if there exists a confirmed set K with 

the following properties:  

1. ε ∈ K.  

2. Each defined transition is verified. 

Proof. Let N ∈ ℑω(M). As M is strongly connected, for each s ∈ S, there exists α ∈ K, 

such that δ(s0, α) = s. For each β ∈ K, if δ(s0, β) ≠ δ(s0, α), then ∆(q0, β) ≠ ∆(q0, α). 

Thus, |Q| = n. Consequently, there exists a bijection f : S → Q, such that for each α ∈ 

K, f(δ(s0, α)) = ∆(q0, α). As ε ∈ K, f(s0) = q0.  

We prove that, for each ν ∈ ΩM, f(δ(s0, ν)) = ∆(q0, ν) using induction on ν, and, 

moreover, λ(s, x) = Λ(f(s), x) for each (s, x) ∈ DM. 

If ν = ε, we have ν ∈ K, and, by definition, f(δ(s0, ν)) = ∆(q0, ν). Let ν = ϕx and 

assume that f(δ(s0, ϕ)) = ∆(q0, ϕ). As the transition (δ(s0, ϕ), x) is verified, there exist 

α, αx ∈ K, such that δ(s0, α) = δ(s0, ϕ). Thus, we have that ∆(q0, α) = f(δ(s0, α)) = 

f(δ(s0, ϕ)) = ∆(q0, ϕ) and f(δ(s0, αx)) = ∆(q0, αx). It follows that f(δ(s0, ϕx)) = f(δ(δ(s0, 

ϕ), x)) = f(δ(δ(s0, α), x)) = f(δ(s0, αx)) = ∆(q0, αx) = ∆(∆(q0, α), x) = ∆(∆(q0, ϕ), x) = 

∆(q0, ϕx). Therefore, f(δ(s0, ϕx)) = ∆(q0, ϕx) and, by induction, for any ν ∈ ΩM, f(δ(s0, 

ν)) = ∆(q0, ν). 



For each transition (s, x) ∈ DM, there exists αx ∈ pref(ω), δ(s0, α) = s, α ∈ K. 

Therefore, λ(δ(s0, α), x) = Λ(∆(q0, α), x). As α ∈ K, we have that ∆(q0, α) = f(s) and, 

as N is ω-equivalent to M, it follows that λ(s, x) = Λ(f(s), x). 

Suppose finally that N can be distinguished from M. Therefore, there exists a 

sequence νx ∈ ΩM, such that λ(s0, ν) = Λ(q0, ν) and λ(s0, νx) ≠ ∆(q0, νx). There exist 

α ∈ K, such that δ(s0, α) = δ(s0, ν), and αx ∈ pref(T), such that λ(δ(s0, α), x) = 

Λ(f(δ(s0, α)), x). δ(s0, α) = δ(s0, ν) implies that f(δ(s0, α)) = f(δ(s0, ν)). Thus, λ(δ(s0, 

ν), x) = Λ(f(δ(s0, ν)), x); and from λ(s0, ν) = Λ(q0, ν), it follows that λ(s0, νx) = Λ(q0, 

νx). The resulting contradiction concludes the proof.♦ 

The theorem presented in [11] is a special case of Theorem 1. While Ural et al.’s 

theorem is applicable to complete FSMs with distinguishing sequence, Theorem 1 is 

applicable to partial FSMs as well as to FSMs with distinguishing sets. In the 

following section, we discuss how the sufficient conditions can be used to elaborate a 

method that generates checking sequence for FSMs with distinguishing sets. In 

Section 5, we present experimental results which demonstrate that the proposed 

method produces shorter checking sequences than known methods in most cases, 

even for complete FSMs with distinguishing sequences. 

4   Checking Sequence Generation Method Based on Distinguishing 

Sets 

In this section, we present a method based on distinguishing sets which exploits 

overlapping between identification sequences shortening the length of a checking 

sequence. The basic idea of the method is to consecutively append identification and 

transfer sequences to a current sequence ω, until a confirmed set K ⊆ pref(ω) is 

obtained and each transition of M is verified in K. We use R(ω) to denote the maximal 

subset of prefixes of ω, such that each α ∈ R(ω) is either Ξ-recognized or there exist 

β, βϕ, χ ∈ R(ω), such that δ(s0, β) = δ(s0, χ) and α = χϕ (Lemma 3). Notice that, if 

R(ω) is a state cover, by Lemma 1 and 2, R(ω) is a confirmed set. Notice also that if α 

≤ ω, then R(α) ⊆ R(ω). Thus, the method obtains a checking sequence by 

guaranteeing that R(ω) is a confirmed state cover and that each transition is verified in 

R(ω). By V(ω) we denote the set of transitions verified in R(ω). Let also U(ω) = DM \ 

V(ω) be the set of unverified transitions.  

The method is described in Algorithms 1 and 2 presented below. Let ωi be a 

sequence obtained in the i-th iteration of Algorithm 1. There exist two cases that are 

dealt with by the algorithm. The first case occurs when ωi ∉ R(ωi). Then, we identify 

the longest suffix χ of ωi, such that αiχ = ωi and χ is also a prefix of the identification 

sequence of s = δ(s0, αi), and append Es to αi. Actually, as αi is already followed by χ 

in ωi, the suffix ϕ of Es, with χϕ = Es, is appended to ωi to obtain ωi+1. Notice that αi 

∈ R(ωi+1), since αi is Ξ-recognized. After doing this a certain number of times, we 

have that ωi ∈ R(ωi) (see Lemma 4 below), which is the second case. In this case, we 

verify a yet unverified transition (w.r.t. to R(ωi)). Notice that, as ωi ∈ R(ωi), if α is a 

verified transfer sequence from δ(s0, ωi) to some state s, we have that ωiα ∈ R(ωiα). 

We then append xEs', for s' = δ(s, x), to ωiα, so that ωiαx ∈ R(ωiαxEs'), i.e., the 



transition (s, x) is verified w.r.t. R(ωiαxEs'). Algorithm 1 terminates when no 

transition remains unverified. Notice that, the determination of R(ωi+1) and U(ωi+1) 

from a given intermediate sequence ωi is a key feature of the algorithm. We provide 

an efficient method for doing this in Algorithm 2. 

 

Algorithm 1 

Input: A distinguishing set Ξ for a reduced FSM M = (S, s0, I, O, DM, δ, λ). 

Output: A checking sequence ω 

i ← 0 

ω0 ← ε 

U(ω0) ← DM 

R(ω0) ← ∅ 

while U(ωi) ≠ ∅ do 

Step 1. if ωi ∉ R(ωi), then  

o let αi ∈ pref(ωi) be the shortest prefix of ωi, such that αi ∉ 

R(ωi), ωi = αiχ, s = δ(s0, αi), Es = χϕ. 

o Update ωi+1 ← ωiϕ. 

o Determine R(ωi+1) and U(ωi+1) using Algorithm 2 with the input 

ωi+1 and αi. 

Step 2. else,  

o determine a shortest verified transfer sequence βi from state 

δ(s0, ωi) to some state s, such that there exists x ∈ I and (s, x) ∈ 

U(ωi). 

o Let αi = ωiβi and s' = δ(s0, αix).  

o Update ωi+1 ← αixEs' 

o Determine R(ωi+1) and U(ωi+1) using Algorithm 2 with the input 

ωi+1 and αix. 

end if 

i ← i + 1 

end while 

Return ω ← ωi 

 

Now, we present an algorithm to calculate R(ωi+1) and U(ωi+1). Actually, these sets 

can be determined directly from their definitions. A straightforward method to find 

R(ωi+1) would require the inspection of all subsequences of ωi+1. Notice, however, that 

it is sufficient to determine the set of verified sequences, since R(ωi+1) and U(ωi+1) can 

be derived from them. Suppose that the sequences β, βϕ and βϕχ are in R(ωi+1). Then, 

the sequences ϕχ and ϕ are verified in δ(s0, β) and χ is verified in δ(s0, βϕ). The fact 

that ϕχ is verified in δ(s0, β) is not used to determine R(ωi+1) and U(ωi+1), since the 

same result is obtained from the fact that the other two sequences are verified. This 

observation suggests that only shortest verified sequences have to be considered for a 

given state. We denote by P(ωi+1) the maximal subset of S × (I*\{ε}), such that (s, α) 

∈ P(ωi+1) iff α is the shortest sequence verified in s. Thus, to determine R(ωi+1) and 

U(ωi+1), we first determine P(ωi+1) as follows. Notice that P(ω0) = ∅. We identify the 



longest β ∈ R(ωi+1), such that α = βϕ, for some non-empty ϕ, and include the pair 

(δ(s0, β), ϕ) in P(ωi+1). Notice that if α is the only recognized sequence, i.e., if R(ωi) = 

∅, such a sequence β does not exist, in which case P(ωi+1) is empty. After the 

inclusion of a new pair into P(ωi+1), we check whether some sequences can be 

removed from P(ωi+1), so that it contains only the shortest verified sequences.  

Once P(ωi+1) is determined, we can obtain R(ωi+1) and U(ωi+1) as follows. If α is 

recognized, for each (δ(s0, α), ϕ) ∈ P(ωi+1), we include αϕ ∈ pref(T) in R(ωi+1). The 

set of verified transitions V(ωi+1) is now DM ∩ P(ωi+1) and, consequently, U(ωi+1) 

becomes DM \ V(ωi+1). The following algorithm shows how P(ωi+1) is determined after 

the Ξ-recognition of a sequence α and how R(ωi+1) and U(ωi+1) are obtained from 

P(ωi+1). 

 

Algorithm 2 

Input: Sequence ωi+1 and Ξ-recognized sequence α; the sets R(ωi) and U(ωi). 

Output: R(ωi+1) and U(ωi+1) 

• R(ωi+1) ← R(ωi) ∪ {α} 

• P(ωi+1) ← P(ωi) 

• if R(ωi) ≠ ∅ then 

o Let β be the longest sequence in R(ωi+1). Let s = δ(s0, β) and ϕ be 

the such that βϕ = α. 

o P(ωi+1) ← P(ωi+1) ∪ {(s, ϕ)} 

o while there exist (s, τ), (s, χ) ∈ P(ω), such that τ = χγ and γ ≠ ε do 

P(ωi+1) ← P(ωi+1) \ {(s, τ)} ∪ {(δ(s, χ), γ)} 

o end while 

o V(ωi+1) ← DM ∩ P(ωi+1) 

o U(ωi+1) ← DM \ V(ωi+1) 

o for each χ ∈ pref(ωi+1) \ R(ωi+1), s = δ(s0, χ) do 

for each (s, ϕ) ∈ P(ωi+1) do 

R(ωi+1) ← R(ωi+1) ∪ ({χϕ} ∩ pref(ωi+1)) 

end for 

o end for 

• end if 

Return R(ωi+1) and U(ωi+1) 

 

The next lemma states that Step 1 of Algorithm 1 cannot be executed infinitely 

many times. This lemma is important to prove that Algorithm 1 terminates and that 

the obtained sequence is actually a checking sequence. 

Lemma 4. In Algorithm 1, Step 1 can be executed at most ∑
∈Ss

sE ||  times without 

executing Step 2. 

Proof. We show that, for a given s ∈ S, the number of executions of Step 1 when αi is 

such that δ(s0, αi) = s is at most |Es|. Let αi and αj be the shortest Ξ-recognized 

sequences (obtained in the i-th and the j-th iterations of Algorithm 1, respectively), 

such that i < j and δ(s0, αi) = δ(s0, αj) = s. Notice that αi ∉ R(ωi), but αi ∈ R(ωi+1). If 



ωi+1 ∈ R(ωi+1), then Step 2 must be executed. Therefore, suppose that ωi+1 ∉ R(ωi+1). 

In the next iteration of the algorithm, we have that ωi+1 = αiEs and, thus, αi+1 < αiEs. 

Let βi be the non-empty prefix of Es, such that αi+1 = αiβi. Consider now αj, i.e., the 

sequence which is Ξ-recognized in the j-th iteration of the algorithm. It follows from 

the definition of R that αjβi ∈ R(ωj+1), since δ(s0, αi) = δ(s0, αj) and αi, αj, αiβi ∈ 

R(ωj+1). In the next iteration, we have that ωj+1 = αjEs and, thus, αj+1 ≤ αjEs. Then, 

there must exist a non-empty sequence βj ≤ Es, such that αj+1 = αjβj and βi < βj ≤ Es. 

As |βi| < |βj| ≤ |Es|, it follows that there exist at most |Es| executions of Step 1, such 

that δ(s0, α) = s.♦ 

Theorem 3. Let ω be a sequence obtained by Algorithm 1. Then, ω is a checking 

sequence. 

Proof. When the algorithm terminates, U(ω) = ∅, which implies that each transition 

is verified in R(ω). The algorithm indeed terminates because after each execution of 

Step 2, the number of unverified transitions is decreased by at least one. Therefore, 

Step 2 can be executed at most |DM| times. As, by Lemma 4, after a finite number of 

executions of Step 1, Step 2 must be executed, the number of iterations of the 

algorithm is finite. 

In the first iteration of the algorithm, ω0 = ε and R(ω0) = ∅. Then, Step 1 is 

executed and yields ω1 = Es0. Thus, ε ∈ R(ω1) and, consequently, ε ∈ R(ω). 

We now show that R(ω) is a ℑω(M)-confirmed set. By the definition of R(ω), we 

have that each α ∈ R(ω) is either (i) Ξ-recognized or (ii) there exist β, βϕ, χ ∈ R(ω), 

such that δ(s0, β) = δ(s0, χ) and α = χϕ. Let K ⊆ R(ω) be the set of Ξ-recognized 

sequences. Observe first that, in the case (ii), we have that δ(s0, βϕ) = δ(s0, α), which 

implies that if α ∈ R(ω) is not Ξ-recognized, then another sequence that takes M to 

the same state as α should be. Thus, if there exists a sequence α ∈ R(ω), δ(s0, α) = s, 

there must exist at least one sequence β ∈ Φ(K, s).  As each transition is verified and 

M is strongly connected, for each state s, there exists a sequence α ∈ Φ(R(ω), s). 

Thus, there exists β ∈ Φ(K, s) for each state s. Consequently, K is a state cover. By 

Lemma 2, K is a confirmed set. By the definition of R(ω) and Lemma 3, it follows 

that R(ω) is a confirmed set and satisfies the conditions of Theorem 1. Thus, ω is a 

checking sequence. ♦ 

4.1 An Example 

We now illustrate the application of the method to the FSM M1 in Figure 1. This 

machine has a distinguishing sequence E = aa. The distinguishing set contains three 

identification sequences E1 = E2 = aa, and E3 = a. The intermediate values of ωi, 

R(ωi), and U(ωi) are presented in Table 1. The obtained checking sequence ω = 

aaaaababaabaa has length of 13. For the same FSM, the method in [6] finds a 

checking sequence of length 32. An improved version of the method generates a 

checking sequence of length 15 [10]. 
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Fig 1. Complete FSM M1 from [11]. 

 

Table 1. Execution of Algorithm 1 
i Step 

Executed 
ωωωωi Recognized Prefixes R(ωωωωi)  Unverified 

Transitions U(ωωωωi) 

0  ε ∅ {(1, a), (1, b), (2, a), 

(2, b), (3, a), (3, b)} 

1 Step 1 aa {ε} {(1, a), (1, b), (2, a), 

(2, b), (3, a), (3, b)} 

2 Step 1 aaa {ε, a, aa} {(1, b), (2, b), (3, a), 

(3, b)} 

3 Step 1 aaaaa {ε, a, aa, aaa, aaaa, aaaaa} {(1, b), (2, b), (3, b)} 

4 Step 2 aaaaaba {ε, a, aa, aaa, aaaa, aaaaa, aaaaab, 
aaaaaba} 

{(1, b), (2, b)} 

5 Step 2 aaaaababaa {ε, a, aa, aaa, aaaa, aaaaa, aaaaab, 

aaaaaba, aaaaabab, aaaaababaa} 

{(2, b)} 

6 Step 2 aaaaababaabaa {ε, a, aa, aaa, aaaa, aaaaa, aaaaab, 

aaaaaba, aaaaabab, aaaaababaa, 

aaaaababaab, aaaaababaaba, 

aaaaababaabaa} 

∅ 

4.2 Reset Feature 

An FSM M has a reset feature if it has a special input (denoted r), which transfers it, 

as well as all its possible implementation machines, from any state to the initial state 

producing a null output, usually represented by the empty sequence ε. The reset 

transitions are assumed to be correct, i.e., verified; so Theorem 1 directly applies to 

FSMs with reset feature. Moreover, Algorithms 1 and 2 can be extended to deal with 

cases where the reset input is available. By default, the reset transitions are verified in 

each state and can be used to construct verified transfer sequences, which may result 

in shorter checking sequences. In Step 2 of Algorithm 1, when searching for a shortest 

verified transfer sequence βi, the reset input may be used. In Algorithm 2, we have 

that (s, r) ∈ P(ω), for each state s and any input sequence ω. 

Consider the partial FSM M2 in Figure 2 (dashed lines represent the reset 

transitions) and the distinguishing set Ξ with E1 = E2 = E3 = E4 = aa. If Algorithm 1 is 

applied to this FSM, it generates the checking sequence ω = aaaaabaaabaabbabaa 

with length 18. However, if M2 has the reset feature, the algorithm generates the 

checking sequence ωr = aaaaabaaabaarabaa with length 17. The execution of the 

algorithm either with or without reset is the same up to the point where ωi =  

aaaaabaaabaa. At that point, the only unverified transition remains (2, b). Notice that 

δ(s0, ωi) = 3. The shortest verified transfer sequence from state 3 to state 2 is ra, if the 

reset input is available, or bba, otherwise. In this case, the reset input contributes to 

shortening checking sequence.  
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(a)     (b) 

Fig. 2. (a) Partial FSM M2 with reset feature; (b) Complete FSM M3 with reset 

feature. 

 

There are cases, however, where the reset feature increases the length of a 

checking sequence generated by Algorithm 1, since the best local choices (e.g., 

shortest paths) made do not guarantee to lead to globally optimized checking 

sequences. Consider, for instance, M3 in Figure 2 with the distinguishing sequence aa. 

The checking sequence without reset is ω = aaaabaaaabbaababaabaa of length 21, 

while the checking sequence with reset is ωr = aaaabaaaabbaarbaababaa of length 

22. The execution of the algorithm in both cases is the same, up to the point where ωi 

= aaaabaaaabbaa, δ(s0, ωi) = 2. At this point, U(ωi) = {(1, b), (4, b)}. If reset is not 

available, the shortest path chosen in Step 2 of Algorithm 1 is βi = ba, which transfers 

to state 4. After this step, we have that ωi+1 = aaaabaaaabbaababaa, δ(s0, ωi+1) = 1, 

and U(ωi+1) = {(1, b)}. Then, Step 2 is executed again, choosing βi+1 = ε. On the other 

hand, if reset is used, the shortest path chosen in Step 2 is βi = r, which transfers to 

state 1. After this step, we have that ωi+1 = aaaabaaaabbaarbaa, δ(s0, ωi+1) = 2, and 

U(ωi+1) = {(4, b)}. Then, Step 2 is executed, choosing βi+1 = ba. An interesting 

question investigated in Section 5.1 is the impact of using the reliable reset feature on 

the length of checking sequence for randomly generated FSMs. 

5   Experimental Results 

This section describes an experimental evaluation of the method for constructing 

checking sequence proposed in this paper and some existing methods. We also 

investigate the reduction provided by the use of the reset feature. The experiments 

involve randomly generated FSMs. Since the existing methods treat only complete 

FSMs with distinguishing sequences, only such machines are considered to have a fair 

comparison. 

We generate complete strongly connected reduced FSMs with a distinguishing 

sequence in the following way. Sets of states, inputs, and outputs with the required 

number of elements are first created. The generation proceeds then in three phases. In 

the first phase, a state is selected as the initial state and marked as “reached”. Then, 

for each state s not marked as “reached”, the generator randomly selects a reached 

state s', an input x, and an output y and adds a transition from s' to s with input x and 



output y, and mark s as “reached”. When this phase is completed, an initially 

connected FSM is obtained. In the second phase, the generator adds transitions (by 

randomly selecting two states, an input, and an output) to the machine until a 

complete FSM is obtained. If the FSM is not strongly connected, it is discarded and 

another FSM is generated. In the third phase, a distinguishing sequence is searched. If 

the FSM does not have a distinguishing sequence, it is discarded and another FSM is 

generated. 

5.1   Reset Feature 

As discussed in Section 4, our method can be applied to FSMs with the reset feature. 

The use of the reset input can result in shorter transfer sequences, which may shorten 

the resulting checking sequence. In this experiment, we evaluate the reduction 

obtained by the usage of the reset input. We randomly generated FSMs which have 

distinguishing sequence. Each FSM has two inputs, two outputs, and the number of 

states n ranging from three to 20. For each value of n, 1000 FSMs are generated. 

For each FSM, a checking sequence ω is obtained using the proposed method. 

Then, we augmented the machine with the reset input and executed the method on the 

resulting FSM, obtaining a checking sequence ωr. Figure 3(a) characterizes the 

variation of the average ratio |ωr|/|ω| with respect to the number of states. We observe 

that on average ωr is about 2.5% shorter than ω. Figure 3(b) shows the frequency of 

the obtained reduction. Notice that in about 40% of the cases, the ratio is between 

0.995 and 1.005, indicating that the reset feature has a little impact on the length of 

the checking sequence (at least for the chosen FSM parameters). However, in some 

cases, the checking sequence for the FSM augmented with the reset input is 20% 

shorter. On the other hand, in some cases it may be 10% longer. Thus, our 

experiments indicate that the reset feature does not significantly influence the length 

of checking sequences. However, more large scale experiments may be needed to 

confirm this conclusion. 

  
(a)     (b) 

Fig. 3: Reduction ratio of the length of checking sequences with and without the reset 

input: (a) average ratio variation with respect to the number of states; (b) histogram of 

the ratio. 



5.2 Comparison with Existing Methods 

In this experiment, we compare the length of checking sequences generated by the 

proposed method and by the methods presented in [7] and [3]. We chose to consider 

machines with two inputs, two outputs, and number of states n ranging from three to 

25. For each value of n, we randomly generated 1000 FSMs which have 

distinguishing sequence. For each FSM, we executed Algorithm 1, generating 

checking sequence ω. No execution took more than one second. Then, we executed 

Hierons and Ural’s method [7], obtaining checking sequence ωh, and Chen et al.’s 

method [3], which results in sequence ωc. Figure 4(a) shows the average length of ω, 

ωh and ωc. The experimental data indicate that ω is, on average, 45% shorter than ωh, 

while ω is, on average, 20% shorter than ωc.  

  
(a)     (b) 

Fig. 4: (a) Average lengths of ω, ωh and ωc; (b) Boxplots of the ratios |ω|/|ωh| and 

|ω|/|ωc|. 

 

Figure 4(b) shows the boxplots of the ratios |ω|/|ωh| and |ω|/|ωc|. Notice that the 

maximum value of |ω|/|ωh| is smaller than 1.0, thus, the proposed method generated 

shorter checking sequences than the Hierons and Ural’s method in all experiments. 

Notice also that the reduction may be as high as 70%. On the other hand, compared 

with the Chen et al.’s method, method proposed in this paper generated shorter 

checking sequences in 75% of the cases, since the 3rd quartile of the boxplot is below 

1.0. However, the maximum value of |ω|/|ωh| is 1.35, as in some experiments, the 

proposed method generated sequences 35% longer than Chen et al.’s method. On the 

other hand, in some cases our method generated sequences 60% shorter than Chen et 

al.’s method. 

6   Related Work 

There has been much interest in the generation of checking sequence, pioneered by 

Hennie’s work [5]. Hennie discusses an approach for designing a checking sequence 

based on a distinguishing sequence. The method consists of two parts. The states are 



assumed to be ordered. In the first part, the distinguishing sequence is applied to each 

state, starting from the initial state, and transfer sequences are used to lead FSM to the 

second state. In the second part, each transition (si, x) is checked. To do this, the FSM 

is brought to a known state. This is done by transferring FSM to si-1, applying the 

distinguishing sequence, transferring to si (the same sequence used in the first part 

must be used), and applying x followed by the distinguishing sequence. Notice that 

Hennie does not assume that the FSM is initialized, thus checking sequence generated 

by his method should be prepended by a synchronizing or homing sequence, in order 

to bring both the specification and the implementation to a known state. Differently, 

we assume that the specification and the implementation are initialized and, thus, we 

do not use a synchronizing or homing sequence. 

Gonenc [4] presents an algorithmic approach to generate checking sequence for 

FSMs with distinguishing sequences. The method, known as the method D, is divided 

into two parts, similarly to Hennie’s work. In the first part, an α-sequence is 

generated, such that the distinguishing sequence is guaranteed to distinguish the states 

in the implementation. In an α-sequence, the distinguishing sequence is applied to 

each state of the FSM, using transfer sequences, if necessary. In the second part, a β-

sequence is generated, such that each transition is checked. A β-sequence is a 

concatenation of transitions, followed by the distinguishing sequence, using transfer 

sequences, if necessary. Notice that α- and β-sequences correspond to the sequences 

generated in the first and the second part of Hennie’s method, respectively. The α- 

and β-sequences are, then, concatenated to form a checking sequence. The number of 

transitions that are checked is reduced, using the fact that the last transition of the 

distinguishing sequence when applied to a state will be checked when all the other 

transitions of the distinguishing sequence were checked. 

Kohavi and Kohavi [8] show that, instead of whole distinguishing sequence, 

suitable prefixes of it can be used to shorten the checking sequence. Boute [2] further 

shows that shorter sequences can be obtained if, instead of distinguishing sequences, 

distinguishing sets are used, and if the overlapping among the identification 

sequences is exploited. 

Ural et al. [11] propose a method that attempts to minimize the length of checking 

sequence generated using distinguishing sequence. Sufficient conditions for a 

sequence to be a checking sequence are formulated there and used in several work, 

e.g., [6], [3], [10], [7], and [12]. The conditions are now further relaxed in Theorem 1 

of this paper. The α- and β-sequences of Gonenc’s method are divided in [11] into 

smaller pieces (the α-set and the set of transition tests) that are combined with 

appropriate transfer sequences to form a checking sequence. The problem of finding a 

minimal length checking sequence is then cast as a Rural Chinese Postman Problem 

(RCPP), as previously proposed by Aho et al. [1]. The RCPP is an NP-complete 

problem of finding a minimal tour which traverses some required edges in an 

appropriate graph. Ural et al. show how a graph can be defined, such that the RCPP 

tour satisfies the stated sufficient conditions and, thus, it is a checking sequence. An 

α-set and a set of transfer sequences must be provided as input parameters of the 

method. Improvements to this method are proposed by Hierons and Ural [6] [7]. 

Chen et al. [3] demonstrate that the verification of last transition traversed by a 

distinguishing sequence applied to a particular state is implied by the verification of 



the other transitions. The authors present an (NP-complete) algorithm that identifies 

transitions to remove sequences ensuring their verification from the RCPP graph. The 

possibility of overlapping the distinguishing sequence, as proposed by Boute [2], is 

exploited by Ural and Zhang [10]. The RCPP graph modelling of Hierons and Ural 

[6] is modified, so that edges with negative cost are added to represent the possible 

overlapping. However, incorporating sequence overlapping comes with the price, 

since the size of the RCPP grows significantly. 

All the above methods only deal with complete FSMs (however, partial machines 

can also be allowed, provided that definitions are adjusted as in this paper), and do not 

attempt to use the reset input to shorten the checking sequence. On the other hand, the 

method proposed in this paper can be used for generating checking sequence for a 

possibly partial FSM with a distinguishing set and, possibly, with the reset feature. 

The proposed method makes a local best choice in each step. This approach diverges 

from methods proposed in recent work (namely, [11], [6], [3], [7], [10]), which use 

graph-theoretical modeling for minimizing the length of checking sequence. We 

consider that our local optimization based approach has at least two advantages over 

the graph-theoretical ones, discussed below.  

Firstly, the graph-theoretical methods attempt to globally optimize the length of 

checking sequence, but only after some input parameters are set, e.g., the α-sequences 

and transfer sequence set used by Ural et al. [11]. However, the length of checking 

sequence is influenced by these parameters and, thus, a sub-optimized sequence may 

be generated anyway. On the other hand, the method proposed in this paper does not 

require any input, besides the distinguishing set. Instead of assuming that suitable 

parameters are furnished, the algorithm makes choices based on the information 

available up to a certain execution point. The results of an experimental comparison 

indicate that the proposed method produces shorter checking sequences than existing 

methods in most cases. However, more experiments are needed to order to find a 

proper compromise between global and local optimization in generating checking 

sequence. 

The second advantage of our approach is in its extensibility. For instance, it is not 

immediately clear how to the ideas of [10], [3] and [12] can be integrated in a same 

method, since each requires adaptations of the graph model which are not 

straightforward to merge. Our approach is based on a new problem casting, using the 

notion of “confirmed sequences”. This formulation allows us to relax the existing 

sufficient conditions and generalize them to partial reduced FSM with distinguishing 

sets. Further generalizations constitute our current work. 

7   Conclusion 

In this paper, we stated sufficient conditions for an input sequence to be a checking 

sequence for possibly partial FSMs with distinguishing sets. Based on these 

conditions, we proposed a method for generating checking sequence. The method can 

be used either with or without the reset feature. Moreover, the method allows the use 

of distinguishing sets, while recent methods deal only with FSMs with distinguishing 

sequences. 



We experimentally compared the proposed method with existing generation 

methods, using randomly generated complete FSMs with distinguishing sequences. 

The results indicate that the proposed method generates shorter checking sequence in 

most cases. We also presented an experimental evaluation of the impact of the reset 

feature on the length of checking sequence. We noticed that, although shorter 

sequences may sometimes be obtained, our preliminary experiments indicate that the 

reset feature does not significantly influence the length of checking sequences.  

As future work, we can mention several possible extensions of the presented 

results. For instance, the improvement suggested by Chen et al. [3] can be 

incorporated into the method proposed in this paper. The set of unverified transitions 

may be initialized with a subset of the defined transitions, following the algorithm of 

Chen et al. Finally, our experiments show that some checking sequences do not 

satisfy the suggested sufficient conditions, so there is still room for improvements on 

the conditions, which may lead to shorter checking sequences. 
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