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Abstract. Conformance testing is a widely used approach to validate a
system correct w.r.t. its specification. This approach is mainly used for
behavior-oriented systems. BAiT (Behavior Adaptation in Testing) is a
conformance testing approach for data-intensive reactive systems. In this
paper, we validate the applicability of BAiT to systems, which are not
behavior-oriented (reactive) but document-centered.
In particular, we apply BAiT to the test of the HTML rendering engine
Gecko, which is used by Mozilla Firefox. In order to do so, we formally
specify a part of the CSS box model in the specification language µCRL
and implement a wrapper for the Gecko renderer. Then, we automatically
generate test cases and run tests with BAiT in a controlled experiment
in order to demonstrate our approach on the relevant part of Gecko.

1 Introduction

Testing as a dynamic approach to software quality assurance is widely accepted
in industry and is a well-studied field in academia. State-of-the-art testing ap-
proaches are model-based [4], i.e. tests are not generated in an ad-hoc manner,
but founded on the specification of the software product under consideration.
One of the most rigorous model-based test approaches is conformance testing,
which tests whether an implementation conforms its specification focusing on
functional requirements. These notions are made precise in the formal methods
community [12].

In this paper, we want to apply conformance testing to rendering engines of
web browsers. In state-of-the-art webdesign, content and design are kept separate
from each other. Content is defined in the Hypertext Markup Language (HTML),
while the design is specified in a Cascading Style Sheet (CSS). When a web
page is rendered, the information from the CSS is used to position elements
of content on the rendered page. If a web document has a complex structure,
rendering algorithms can turn out to be erroneous, leading to “broken” web
pages with mispositioned elements. Rendering a modern web application, whose
? Part of this research has been funded by the Dutch BSIK/BRICKS project.



appearance is dynamically changed on the client side using script languages, like
web applications based on Asynchronous JavaScript and XML (AJAX, [16]), is
even more demanding for rendering engines. Performing a sufficient conformance
test in this context is tedious, so that an automated solution is preferable. In this
paper, we present a feasibility study for automated testing of rendering engines
using the test tool BAiT.

Here, we validate the applicability of BAiT [5, 6], a blackbox test execution
tool for non-deterministic, data-oriented reactive systems, to test the rendering
engine of a web browser w.r.t. the positioning of boxes in the CSS box model.
Boxes in HTML are entities like for instance a complete HTML document (body
element) or a paragraph (elements p or div), which contain content or other
boxes and which are positioned either absolutely or relative to each other. The
box model is part of the W3C CSS Specification [15, Sect. 8].

We present a feasibility study, applying conformance testing using BAiT to
the rendering engine Gecko3, which is used by the open source web browser
Mozilla Firefox 4. In order to perform the tests, we formalize the CSS specifica-
tion and design test purposes. Furthermore, we implement a wrapper component
between the tester and Gecko in order to achieve a mapping between an action-
oriented specification and the document-oriented rendering engine. For several
setups of web pages, we then automatically generate parameterizable test cases.
Those test cases can be instantiated with varying data settings for the posi-
tions of boxes, so that they are reusable for different page layouts. Then, the
test cases are executed automatically against the test wrapper and the results
retrieved from Gecko are interpreted in order to automatically assign verdicts.

1.1 Related Work

There exists a number of static test suites for the rendering capabilities of web
browsers. Each of those test suites consists of a set of HTML and CSS documents
with different page layouts. The most well-known one is probably the ACID 2
Test5. It tests web browsers for their full compliance to the actual version of
CSS by rendering a web page with a vast amount of CSS features enabled.

Another set of test suites for the standard compliance of web browsers are
the W3C Cascading Style Sheets Test Suites6. Here, again, we have a set of static
documents, which test rendering capabilities for distinct features of CSS. Finally,
Mozilla Firefox itself provides a set of static layout regression tests7, which can
be run in debug builds of the software.

Most of the named test suites are, however, not automated. In fact, the files
in the test suites, i.e. the test cases, have to be loaded into the browser and then
the result of rendering the page has to be visually assessed. This process is not

3 http://www.mozilla.org/newlayout/
4 http://www.mozilla.com/en-US/firefox
5 http://acid2.acidtests.org/
6 http://www.w3.org/Style/CSS/Test/
7 http://www.mozilla.org/newlayout/doc/regression_tests.html



automatic at all, neither on the level of test case generation, nor on that of test
execution. This means, that a certain amount of test cases has to be designed and
executed manually and the results have to be visually evaluated. This process is
time-consuming compared to an automated test process, where test cases – or at
least test data – is generated for a number of standard and critical cases. In this
case, the number of test cases to be generated and executed can be optimized in
order to reduce the absolute number of test cases. The regression tests of Mozilla
Firefox are at least automated on the level of test execution, however, they are
still founded on a static set of test cases.

The approach, which we propose in this paper, provides not only an auto-
mated test execution and evaluation of rendering results for a fragment of the
CSS features, the box model, but also an automatic generation and variation of
tested web page layouts. We chose this fragment, because rendering results, i.e.
the position of a box, can be objectively measured (in pixels) rather than having
to be visually assessed. The approach of a fully automatic test case generation
and execution has the advantage regarding the other named approaches, that
the executed test cases can cover more variation w.r.t. data parameters (i.e. the
position of boxes), but also regarding the structure of the rendered web pages.
The first issue enables us to reuse equally structured test cases (i.e. web pages)
and by that to reduce the number of generated test cases. The latter allows us to
test rendering web pages with a different interrelation of elements and by that
cover a larger variety of possible failures in the IUT.

We are aware of several case study reports of model-based testing, concerning
topics like the Conference Protocol [2], the Storm Surge Barrier in the Nether-
lands [9], smart card applications [8], the telecommunication sector [3] or – ver-
tical to our work – the generation of test purposes for the Session Initiation
Protocol [1]. To the best of our knowledge, however, this is the first application
of model-based automatic test generation and testing techniques to document-
centered applications, esp. to HTML rendering engines.

2 The Test Environment

The test environment for our case study consists of two main components. On the
one hand, we have the tester, which controls the run of the experiment. The tester
will be discussed in Sect. 2.1. On the other hand, we have the implementation
under test (IUT), which we will discuss in Sect. 2.3. This is the object under
consideration, which we will actually be testing throughout the case study. In
Sect. 2.2, we will give an introduction to the CSS box model.

2.1 Firefox and Cascading Style Sheets

Firefox. Mozilla Firefox is a stand-alone web browser, which has its roots in
the Netscape Communicator from the 1990s. Most of its code was put under an
open-source license in 1998 and founded the basis for the Mozilla Suite, from
which Firefox arose as a stand-alone browser in 2004.



Web page content (HTML):

...
<div class="warning">

...
<div class="warning"

id="warning1">...</div>
...

</div>
...

Web page layout (CSS):

div.warning {
border-style: solid;
border-color: red;
color:red;

}
div.warning#warning1 {

font-style: italic;
}

Fig. 1. Two differently formatted boxes

A web browser reads and interprets HTML structured data to display web
pages. The task of actually displaying is carried out by a rendering component.
While loading a web page, this component incrementally builds up a Document
Object Model (DOM) tree from the HTML document to be displayed together
with declarative layout information. Mozilla Firefox uses the renderer Mozilla
Gecko, whose version 1.8.1 we consider in this paper as the IUT.

Cascading Style Sheets (CSS). In the 1990s, a declarative stylesheet language
was developed for structured documents in order to properly divide the content
of a web page from its design. Currently, the de-facto standard for CSS is in
version 2.1 [15]. This version is currently not fully supported by all web browsers,
including Mozilla Firefox. This issue, however, does not affect our case study.

The CSS design definition for a web page can be provided in three different
ways: as an external CSS file, which is linked to the HTML file of the web page,
inline the HTML web page and inline a particular element of the web page. In
the first two cases, a stylesheet is a collection of blocks of the following form:

element.class#id {property_1: value_1; ...; property_n: value_n; }

The literal element denotes one of the possible elements of HTML [14],
like – for simple boxes – div or span. The literal class denotes a user-defined
specialization of an HTML element, while id denotes a user-specific identifier
for a particular occurrence of this element in an HTML document. For each of
these elements, we can define pairs of properties and values.

Fig. 1 shows a small example: Boxes of class warning are rendered with
a red border and red text. The one warning box with the identifier warning1
additionally has the text in italic. Since this box is a warning box, too, it also
takes over all properties from the warning boxes (red border and red text). As a
result, the shown HTML code fragment is rendered as two red boxes, embedded
into each other, of which the inner box has italic text.

If a CSS design definition is provided in a separate file, it is linked to the web
page by using the link element of HTML in the following way:

<link rel="stylesheet" type="text/css" href="mycss.css" />
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Fig. 2. CSS Box Model [15], box dimensions

CSS information can also be provided inline the HTML document by nesting it
in a style element. Inline CSS on HTML element level, which we will be using
in our case study, omits the block structure from Fig. 1. The definition of the
outer box from the figure using CSS inline the element itself looks as follows:

<div style="border-style:solid;border-color:red;color:red;"></div>

2.2 The CSS Box Model

In our case study, we will regard the positioning of div-boxes by the Gecko
rendering engine. Therefore, we have to regard both the dimensions of a box
as well as other parameters, which determine the box’s position or its distance
to other elements on a web page. The interrelation of boxes on a web page is
defined by the CSS box model [15, Sect. 8], which we will briefly introduce here.

The dimensions of a div-box are essentially determined by two CSS prop-
erties: width and height. Furthermore, a minimum width and height can be
defined as well as their maximum counterparts.

In addition to its width and height, a box also has a number of distances to
contained or surrounding content. Those settings are displayed in Fig. 2. First
of all, this is the distance to surrounding content (CSS properties margin or
left-/top-/right-/bottom-margin, resp.). Furthermore, the distance of the
box’s border to any contained content can be defined (properties padding or
left-/top-/right-/bottom-padding, resp.). Finally, the width of a box’s bor-
der is defined by the properties border or left-/top-/right-/bottom-border,
resp. We will later come back to these settings.

Boxes can be positioned in a variety of possibilities. The positioning mode
is set in the CSS property position, which can have one of the four values
static, absolute, fixed and relative. The default setting is static, which
does not affect the standard element flow (top to bottom on the web page).
Boxes can furthermore be positioned absolutely to either the HTML document
under consideration (absolute) or the viewport, i.e. the browser window or a



page in print (fixed). Finally, boxes can be positioned relative to each other,
using the setting relative.

An absolutely positioned box is provided with up to four additional param-
eters determining its position: a left, right, top and bottom offset. A box,
which is positioned w.r.t. the upper left corner of the HTML document can, for
instance, be determined by a left and a top offset in addition to its width and
height. A box with the lower right corner as its fix point would accordingly be
defined using the bottom and right offset parameters and leaving the other ones
undefined. For boxes, which are overdefined, e.g. by defining a left and a right
offset as well as a width, the W3C documents define the correct handling.

While the position of an absolutely positioned box is only determined by
the given offsets, the position of a relatively positioned box must be computed
regarding the other boxes on the same web page. One issue which determines
the position of a relatively positioned div-box w.r.t. another one is its position
in the DOM-tree of the HTML document. If a box A appears in the tree before
another box B, then A is rendered above or left of B. If A appears after B, then
it is rendered either right of B or below B. Furthermore, A can enclose B, if B
is a child node of A in the DOM tree.

The absolute position of the box is then computed as the summation of the
other boxes’ measurements. Assume, the box under consideration is anchored to
the upper left corner of the web page. Then, its top offset is the sum of all top
and bottom margins, widths of the top and bottom borders and the heights of
all boxes above the one under consideration. The box’s left offset is computed
as the sum of all left and right margins, widths of the left and right borders and
the widths of all boxes left the one under consideration. The right and bottom
offsets are left undefined. The padding of the one box, which surrounds all the
mentioned boxes, is taken into account by assuming, that the top margin of the
top-most box and the left margin of the left-most box is at least as wide as the
padding of the surrounding box.

2.3 BAiT: Testing and Test Data Selection

Behavior-Adaptation in Testing (BAiT, [5–7]) is a toolset, that implements the
test generation and execution process displayed in Fig. 3. The process starts
from a specification of the IUT. In our case, such a specification is given in the
formal specification language µCRL [10], which is based on a process algebra with
abstract datatypes. In a first step, behavior and data are separately extracted
from the specification. The behavior part forms the abstract specification, which
is further used for the generation of parameterizable test cases. Data relations
in the regarded system form the test oracle, which is later used to actually
parameterize the generated test cases.

The test generation branch of the process regards behavior after having ab-
stracted data using a so-named chaotic data abstraction [6, 7], by which variable
parameters are replaced by a distinct constant chaos. In doing so, we avoid the
problem of state space explosion during the test generation process. The gen-
eration of parameterizable, abstract test cases is performed by the tool Test
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Fig. 3. Test Generation and Execution Process

Generation with Verification Techniques (TGV, [11]), which performs a guided
search over the whole state space of the abstract specification. The test engineer
can guide this process by providing test purposes, which sketch the focus of the
test cases to be generated. The result of test case generation are parameterizable
test cases, which can be instantiated with test data for test execution.

In parallel to test case generation, BAiT also prepares the later instantiation
of the test cases with test data. Therefore, it generates a constraint logic program
(CLP) from the system specification. This CLP holds all data interdependencies
within the tested system and serves as a test oracle during test execution. Using
the test oracle, data can be selected in order to instantiate parameters for the
generated test cases.

Once both the parameterizable test cases and the test oracle have been gen-
erated, the test can be performed against an IUT. Depending, whether the IUT
reacts as expected or not, the test ends with a verdict Pass, Fail or Inconc.

In our setting, TGV does not generate a single test case, i.e. a single trace
through the system’s behavior, but a so-named complete test graph (CTG).
Such a CTG provides a set of traces through the system, whose final states can
be marked as Pass or Inconc states. If during test execution a Pass state is
reached in the CTG, then the test passes, i.e. no failure could be found in the
system. If an Inconc state is reached, then the system behaved according to its
specification, however, the test purpose was not met. This can happen, if the
test purpose disallows a particular behavior which is allowed in the system’s
specification. In this case, it is not clear, whether a failure has been found in the
test run, or not. Finally, a test can lead to the verdict Fail, if the IUT shows
behavior, which is not allowed according to the specification.

For test execution, BAiT first selects a single abstract trace to a Pass ver-
dict from the CTG. This trace is then instantiated and executed in a step-wise
manner. If the IUT diverts from the precomputed trace by sending unexpected
data to the tester, the trace under consideration is pruned. Then, BAiT checks,
whether the IUT is still in an allowed system state according to the test oracle.
If this is not the case, the test run ends with a verdict Fail. If it is the case,



then BAiT tries to find an alternative trace to a Pass verdict. If this attempt
does not succeed, the test ends with verdict Inconc. If a trace to Pass could be
successfully executed to its end, then the test run ends with verdict Pass.

3 Objective of the Case Study

The objective of our case study is to apply BAiT to testing the implementation
of the Gecko rendering engine. BAiT has originally been designed as a tool for
the test of data-oriented reactive systems in general. In this paper, we report
on a feasibility study to validate the applicability of BAiT to HTML rendering
engines. These systems (or system components, resp.) are not reactive systems
in the original sense.

Reactive systems are based on events being sent forth and back between sev-
eral systems. These events can be parameterized with data. A rendering engine
works differently: It is document-centered, i.e. it receives a document and ren-
ders it. While sending the document to the rendering engine is still comparable
to the reactive systems described above, rendering this document is not. It is
no reaction in the original sense, since no evaluable events are sent back from
the IUT. The only event sent back from the renderer states, that rendering is
finished, but it does not contain the actual result of rendering. In many cases,
the result of rendering must even be evaluated visually, while for some aspects,
the relevant information can be retrieved from the rendering engine and can be
computer-processed.

Such an aspect are the positions of div-boxes to which we will restrict the
test. Rules for positioning such boxes are defined in the CSS Box Model, which
has been described in Sect. 2.2. We will, however, not consider the full box model,
but restrict to a fragment of it.

First of all, we concentrate on the settings absolute and relative with a
binding to the top left corner of the web page for the possible positioning of
boxes. Secondly, we consider empty boxes of an explicitly defined width and
height only in order to keep the results of rendering predictable by the test
oracle. Boxes filled with content may lead to overflowing content which results
in a correction by the rendering engine based on information about the viewport
dimensions and the used font dimensions. Treating those details in this feasibility
study would not be purposeful and furthermore would have required arithmetic
division operations, which would complicate the specification in µCRL. For this
reason, we do not regard (overflowing) content in this case study.

Thirdly, we limit the possible scales used in the design definition of a div-
box. Normally, the position and size of a div-box is determined by distances,
which can be defined in a variety of scales. Some of those some are absolute
(pixels, didot points, pico points, inches, millimeters and centimeters) and other
are relative to either the actual font setting (scales em and ex) or the rest of the
page layout (percentages or the auto setting). In this paper, we only consider
absolute lengths of scale px (pixel) in order to avoid scale conversions.
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Finally, we use a “flat” model in our case study rather than one, which re-
sembles the whole nested structure of a web page. This means, that we regard
only a distinct box testbox and its absolute position on the web page. When we
add another box to the web page, then we recompute the position of testbox as
it has changed due to the newly added other box. This means for instance, that,
if we add another box above the regarded testbox, the top offset of testbox is
recomputed as the summation of the previous top offset, the top and bottom
margins of the new box, the top and bottom border width of the new box and
the new box’s height. By doing so, we can easily keep track of the position of the
regarded testbox without having to keep the whole HTML document structure
in our model.

Apart from the applicability of BAiT to HTML rendering engines in partic-
ular, we also aim at two other targets with this case study. On the one hand,
we want to test the adaptability of BAiT to nondeterministic behavior of the
IUT further by introducing some artificial nondeterminism w.r.t. to the system’s
feedback about the rendered boxes. On the other hand, we want to regard the
feasibility of µCRL as a language for the design of test purposes.

4 Realizing the Test Environment

In order to test Gecko, we first had to create a test environment. This environ-
ment, as schematically depicted in Fig. 4, consists of a tester and an implemen-
tation under test (IUT). The tester is in our case the tool BAiT. The IUT is
a component named Gecko Wrapper, which wraps Gecko internally. Both the
tester and the IUT are Java components which communicate with each other
using bidirectional procedure-based communication.

In order to generate and run the tests following the schema from Fig. 3, we
also need a system specification of the CSS box model for Gecko and a test
purpose to sketch out the later test cases. While the design of the tests and
hence also that of the test purposes will be the topic of Sect. 5, we will in the
remainder of this section discuss the specification of the boxmodel. Furthermore,
we will give some details on the Gecko Wrapper.



Action Functionality
Input actions:
resetBoxes Wipes all boxes and starts again with a fresh document.
setupTestbox Defines the distinctly regarded test box.
putBoxRelative Puts a box relatively to the other boxes yet defined in the actual

HTML document. It can be defined, whether this box appears left
of, right of, above, beneath or around all yet defined boxes. Finally,
the measurements can be defined.

putBoxAbsolute Puts a box with an absolute position.
render Renders the actually defined document and starts returning results

(offsets, see below)
Output actions:
offsetLeft Returns absolute left offset of test box.
offsetRight Returns absolute right offset of test box.
offsetTop Returns absolute top offset of test box.
offsetBottom Returns absolute bottom offset of test box.

Table 1. Actions for the CSS box model

4.1 Modelling CSS in µCRL

We modeled a fragment of the CSS box model with the limitations from Sect. 3
in µCRL [10]. The modeled fragment of CSS allows to position boxes relative to
each other or absolutely. In our model, recursive structures of boxes are flattened
by regarding only one distinct box and its position, rather than a structure of
boxes. Whenever a box is added, only the consequences on the position of the
regarded box are computed and applied.

While rendering a web page is in principle a document-centered task, our
specification of the box model is behavior-oriented. Hence, we defined a set of
input actions, which allow us to put boxes into a box structure. Furthermore,
we defined some output actions, which provide information about the current
offset of the regarded box to the tester. The actions are defined in Table 1.

The system behavior for the CSS box model is specified as follows: As a
first step, a testbox must be set up (setupTestbox). The action setupTestbox
accepts parameters, which determine the box’s width and height. Other boxes
can be put in the vicinity of this testbox using the actions putBoxRelative
and putBoxAbsolute in any order. The action putBoxRelative accepts 15 pa-
rameters: The first one determines, whether the box appears above, below, left,
right or around the other boxes, which have yet been inserted into the web page.
This parameter is named “position”, but is actually not related the the position-
property of CSS. The next two parameters determine the box’s width and height.
The last 12 parameters, finally, define the width of the box’s padding, border and
margin as depicted in Fig. 2. The action putBoxAbsolute only accepts seven pa-
rameters. The first three are identical with those from putBoxRelative, while
the remaining four parameters define the box’s absolute position on the page
w.r.t. the four margins of the web page.



Any of these three actions can be followed by an action resetBoxes in order
to delete all boxes and start from scratch, or by an action render. In this case,
the IUT renders the defined structure of div-boxes. Afterwards, the different
actual values for the offsets of the testbox (left, right, top, bottom offset) are
returned by the IUT in an arbitrary order.

As we described in Sect. 3, we only regard a distinct box testbox in the model,
whose position we recompute each time another box is added to the HTML
test document. The actions putBoxAbsolute and putBoxRelative change this
position in the described way. Below, we give the µCRL code, which relates to
the behavior of putBoxRelative:

...
PrepareRendering(position:PositionType,relation:RelationType,

width:Nat,height:Nat,offsetLeft:Nat,offsetRight:Nat,
offsetTop:Nat,offsetBottom:Nat) =

...
+ sum(pposition:PositionType,sum(pwidth:Nat,sum(pheight:Nat,...,

putBoxRelative(pposition,pwidth,pheight,pmarginleft,
pmarginright,pmargintop,pmarginbottom,pborderleft,...).

PositionBoxRelative(position,relation,width,height,...)...)))
...
PositionBoxRelative(position:PositionType,relation:RelationType,

width:Nat,height:Nat,...) =
tau.PrepareRendering(...,offsetLeft+pmarginLeft+

pborderLeft+ppaddingLeft+pwidth+ppaddingRight+
pborderRight+pmarginRight,...)

<|and(eq(relation,relative),eq(pposition,left))|>delta
+ tau.PrepareRendering(...,offsetLeft,0,offsetTop,offsetBottom)

<|and(eq(relation,relative),eq(pposition,right))|>delta
+ tau.PrepareRendering(...,offsetTop+pmarginTop+pborderTop+

ppaddingTop+pheight+ppaddingBottom+pborderBottom+
pmarginBottom,offsetBottom)

<|and(eq(relation,relative),eq(pposition,top))|>delta
+ tau.PrepareRendering(...,offsetLeft,offsetRight,offsetTop,0)

<|and(eq(relation,relative),eq(pposition,bottom))|>delta
...

The above fragment of our specification shows the definition of the action
putBoxRelative within a process PrepareRendering. When putBoxRelative
has been invoked, the system enters another process, PositionBoxRelative. Af-
ter a τ -step, the system leaves PositionBoxRelative and goes back to Prepare-
Rendering. While doing so, the new position of the test box is computed de-
pending on the value of the variable pposition of the newly positioned box.
This leads to a case distinction depending on the position of the new box.



4.2 Wrapping Mozilla Gecko

Mozilla Gecko can be embedded into custom applications as a component, which
can be programmed using its XPCOM interfaces. The Cross Platform Compo-
nent Object Model (XPCOM, [13]) is an unmanaged component framework,
which is used for the Mozilla software products. Gecko can be embedded into
Java applications. In order to do so, one can either instantiate it directly via
its XPCOM interfaces or embed it indirectly via the Browser component of the
Standard Widget Toolkit (SWT)8.

We implemented a wrapper for Gecko in Java using SWT. The wrapper
receives all actions which place boxes and builds up an internal structure for a
test web page. On action render, the wrapper generates actual HTML and CSS
code and sends this code to the renderer. A window is opened for rendering.

When rendering is finished, the renderer is queried for the offsets. For this
procedure, we followed an existing code example9. In order to query an offset, a
short piece of JavaScript code is generated and executed within the web brows-
ing component. This piece of code internally queries for the respective offsets
and writes the result to an (invisible) status bar. When this has happened, the
wrapper can read the value from this status bar in order to store it, and the
next piece of JavaScript is generated and executed (one execution per one of the
four offset parameters). After all offsets have been queried, the tester is informed
by the actions offsetLeft, offsetRight, offsetTop and offsetBottom in a
random order. We chose for a random order in order to test the adaptation of
BAiT to nondeterministic behavior of the IUT, as we have described in Sect. 3.

5 Running the Tests

5.1 Design of the Test Cases

In the BAiT approach, test generation is based on the tool TGV [11]. This tool
takes as input the system specification in the form of an LTS as well as a test
purpose. In a first step, prior to test case generation, we applied data abstraction
on the specification of the system, in order to avoid space explosion induced by
the many unrestricted numerical parameters of the input actions setupTestbox,
putBoxAbsolute and putBoxRelative.

The second step was to design test purposes. We designed two test purposes,
of which one traditionally directly as an LTS, while the second one was specified
in µCRL as was the system itself. According to the first test purpose, we set up
a testbox, put at least one more (relatively positioned) box in its vicinity and
render the resulting HTML document. Having done so, we expect the system to
return at least the top offset of the testbox. The second test purpose is designed a
bit differently, since we still wanted to experiment more with BAiT’s capability

8 http://www.eclipse.org/swt
9 http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/org.eclipse.swt.
snippets/src/org/eclipse/swt/snippets/Snippet160.java



Test purpose in µCRL:

% datatype definitions and action definitions skipped
proc

PASS = ACCEPT.PASS
FAIL = REFUSE.FAIL

PutBox = render + putBoxRelative.PutBox
TP = setupTestbox.putBoxRelative.PutBox.

(offsetLeft.PASS + offsetBottom.FAIL)

init TP

Resulting test purpose as LTS before adding placeholders for action parameters:

4

0

5

1

2

3

offsetBottom

setupTestbox

offsetLeft

putBoxRelative

ACCEPT

putBoxRelative

REFUSE

render

Fig. 5. A test purpose both in µCRL and as an LTS

of behavior-adaptation during a test run. For this purpose, the test purpose
was designed to expect at least the left offset of the testbox and to refuse an
action offsetBottom following directly on the render action. This refusal in
combination with the absolutely random order of offset-events from the IUT
leads to more situations in which BAiT will be led into a trace to an Inconc
verdict, from which it will try to find an alternative trace to a Pass verdict. BAiT
will, however, never find such a trace and it will have to give up terminating with
verdict Inconc. Since the generated test cases can contain loops, BAiT might
search for a trace to Pass without ever terminating. This issue has been solved
by introducing a configuration option for BAiT, which defines the maximum
amount of traces to search for before giving up and assigning Inconc. This second
test purpose is shown in Fig. 5 as a µCRL specification and an LTS.

In a third step, we generated complete test graphs (CTGs) with TGV. The
abstracted system specification as input to TGV was quite manageable with its



17 states and 57 transitions, so that the generation process took place within
negligible time. For the first test purpose, generation resulted in a CTG with
25 states and 70 transitions. The second test purpose put more restrictions on
the behavior of the IUT during the test, so the number of transitions in the
resulting CTG was reduced to 59; the number of states increased slightly to
28. In general, these numbers are relatively low, a circumstance which does not
astonish if one keeps in mind, that we regard only the behavior of a highly
data-intensive system after data abstraction. The main work, as we had already
remarked earlier, is the data selection during test execution.

5.2 Test Execution

Based on the generated CTGs, we ran some tests with BAiT and the Gecko
wrapper. We used the default trace search algorithm of BAiT in order to select
test traces through the CTGs. This algorithm searches only for traces to Pass,
using a breadth-first search. Having automatically selected a trace to Pass, we
then selected data for the different parameters of the box positioning actions
and executed the trace. During the different test runs, we found a few failures.
However, those failures were induced by faults in the used model rather than
by the IUT itself. After having eliminated the faults, we did not find any more
failures in the IUT.

As expected, the test runs based on the first CTG always ended in a Pass
verdict, after we had corrected the model. The test runs based on the second
CTG, randomly went to a Pass or an Inconc verdict. This behavior was depen-
dent on whether the wrapper returned an offsetBottom event before (Inconc)
or after (Pass) the offsetLeft event (cf. the description of the second test pur-
pose). Since the order of events was implemented in the wrapper to be random,
the assignment of verdicts was also as expected a priori.

6 Conclusion

In this paper, we presented the application of an existing approach for con-
formance testing, Behavior-Adaptation in Testing (BAiT), to the test of the
HTML rendering engine Mozilla Gecko. This is a new application for BAiT,
since the toolset was originally designed to treat nondeterministic reactive, and
thus action-based, systems with data. We modeled a fragment of the CSS box
model in the formal specification language µCRL, implemented a wrapper for
Mozilla Gecko in order to be able to apply the BAiT for test execution, and de-
signed some test cases following the BAiT approach. In a controlled experiment,
we validated the applicability of BAiT to document-centered HTML rendering.

We designed the case study as a feasibility study in order to do a first eval-
uation for further experiments with BAiT and Gecko. Focusing on a subset of
aspects and leaving out things like handling of boxes with overflowing content,
decreased the design effort of the model of our fragment of the CSS box model
and the implementation effort w.r.t. the wrapper for Gecko significantly.



Our experiences with the design of test purposes were twofold. On the one
hand the behavior-oriented part of the design was very easy. On the other hand,
this means that most of the test design is induced by data and thus actually
happens during the test run itself and can be computed automatically. We did
not encounter any problems at this point. The main issue was the fact, that the
data parameters for the configuration of the div-boxes were mostly independent
of each other. This did not constitute a problem by itself, however, the capa-
bilities of BAiT guiding test data selection by precomputing the ranges of data
parameters could not be beneficial in this case. Running the second test case, we
encountered, that BAiT’s behavior adaptation can easily lead to test runs, which
do not terminate. In this case, a careful configuration of the search threshold of
BAiT was necessary to prevent infinite test runs while at the same time avoiding
superfluous Inconc verdicts. In real life testing of Gecko, this would not be an
issue, since the superfluous Inconc verdicts are induced by the nondeterminism,
which we artificially built into the IUT.

The feasibility study described in this paper was successful and forms an
important step towards a fully automated model-based test approach for HTML
rendering engines using BAiT. Compared to static test suites, which serve the
document-centered HTML rendering process, our behavior-oriented approach
has the advantage of a higher flexibility w.r.t. data parameters and the tested
document structure. With a wrapper for Gecko and a behavior-oriented approach
to test the IUT, it is far easier to generate a variety of different HTML test
documents, which cover different aspects of the IUT. Special expertise is only
necessary in order to provide BAiT with a formal specification of the CSS box
model. Test data of a sufficient quality can – also for critical values causing
overflowing boxes – can, for instance, easily be selected by the developers of the
rendering engine themselves.

From the reached state, we can now extend the work in some respect. In
order to do a full model-based test of Gecko (or other rendering engines) w.r.t.
the CSS box model, it is necessary to extend the formal specification to the
whole model. Since the model in [15] is given in natural language rather than a
formal notation, it might quite likely be incomplete, ambiguous and may con-
tain semantic variation points. Such aspects would complicate an attempt to
formalize the model. Another, technical, issue concerning the conformance test
with the full box model is the treatment of floating point datatypes rather than
integers. Not only, that the specification language used in this case study does
not directly support floating point datatypes, also some aspects of test data se-
lection must be considered. At the moment, we consider output from the IUT
being exactly equal to the expected output in order to pass the test. In a floating
point setting, we would have to consider the output to be not necessarily exactly
equal to the expected output, but to be within a particular margin around our
expectations. A last issue to consider w.r.t. a full formal model of the CSS box
model is, that this extended model may not be flattened anymore like the one
we used in this case study. It rather has to reflect the nested structure of boxes



on the rendered web page in its system status. This issue also affects the test
data selection approach.
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