Test Data Variance as a Test Quality Measure:
Exemplified for TTCN-3

Diana Vega!, Ina Schieferdecker!-2, George Din?

! Technical University Berlin, Franklinstr. 28/29, D-10623 Berlin,
{vega,ina}@Qcs.tu-berlin.de**
2 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin,
{schieferdecker,din } @fokus.fraunhofer.de

Abstract Test effectiveness is a central quality aspect of a test specifi-
cation which reflects its ability to demonstrate system quality levels and
to discover system faults. A well-known approach for its estimatation is
to determine coverage metrics for the system code or system model. How-
ever, often these are not available as such but the system interface only,
which basically define structural aspects of the stimuli and responses to
the system.

Therefore, this paper focuses on the idea of using test data variance anal-
ysis as another analytical approach to determine test quality. It presents
a method for the quantitative evaluation of structural and semantical
variance of test data. Test variance is defined as the test data distribu-
tion over the system interface data domain. It is expected that the more
the test data varies, the better the system is tested by a given test suite.
The paper instantiates this method for black-box test specifications writ-
ten in TTCN-3 and the structural analysis of send templates. Distance
metrics and similarity relations are used to determine the data variance.

1 Introduction

Today’s test specifications used in industry and for standardised test suites are
usually complex (several hundred test cases, several thousand lines of test code,
etc.). As they are hard to evaluate and assess, test quality aspects are constantly
subject of discussions. Various test metrics have been developed already measur-
ing selected aspects [1,2,3]. Therefore [4] provided a framework for the different
quality aspects of test specifications: it proposed a quality model for test spec-
ifications based on the ISO/IEC 9126 [5] quality model. The concrete quality
analysis for Testing and Test Control Notation (TTCN-3) test suites however
concentrated on internal quality aspects only — to analyse potentials of test
suite reuse and maintenance.

However, TTCN-3 [6] being standardized by European Telecommunications
Standards Institute (ETSI) allows not only to specify tests abstractly, but also
to make them executable by compilation and execution together with additional

** This work has been supported by the Krupp von Bohlen und Halbach - Stiftung.

run-time components (such as an SUT adapter). By that not only the internal,
but also the external quality is of interest.

Test effectiveness is the external quality aspect of a test specification which
reflects its ability to demonstrate system quality levels and to discover system
faults — in other words, its ability to fulfill a given set of test purposes. According
to [4], test effectiveness is divided into

— the suitability aspect which is characterised by test coverage. Coverage con-
stitutes a measure for test completeness and can be measured on different
levels, e.g. the degree to which the test specification covers system require-
ments, system model, system code and alike,

— the test correctness aspect which reflects the correctness of a test specifi-
cation with respect to the system specification or the set of test purposes,
and

— finally the fault-revealing capability on the capability of a test specification
to actually reveal faults.

In practice, both system model and system code are not always available to
the testers, for example when testing third-party components, integrated with
off-the-shelf components or tested on system and acceptance level. Hence, the
test correctness and fault-revealing capabilities are hard and if not impossible
to determine. In contrast, system interfaces as such are available (often also
provided in terms of interface specifications and/or documentations) test cov-
erage for the system interfaces could be analysed — despite the fact, that a
more thorough analysis would be possible if more information in terms of sys-
tem model and system code would be available. In the latter case, for white-box
(structural) testing code coverage metrics and for black-box (functional) test-
ing system model coverage metrics are in use. Traditionally, code metrics have
been used only. With the advances of model-based system development, system
model coverage metrics have been adapted from code coverage metrics by using
state coverage (the counterpart for statement coverage), transition coverage (the
counterpart for branch coverage) and alike.

In this paper we investigate the typical, but less comfortable situation where
only the system interface is given. The system interface defines the input data
to the system (the stimuli) and the output data to the system (the reactions).
These are either provided in form of data structures (e.g. accessing the system
information directly), of messages (e.g. accessing the system via asynchronous
communication means) or by means of operations (e.g. accessing the system via
synchronous operation invocations).

This paper describes an approach to analyse system interface coverage by
means of test data variance. It is expected that the more the test data vari-
ates, the better the system is tested by the given test suite. We concentrate on
asynchronous test data only by analysing type and send value templates only?.

% Without loss of generality, we do not consider signatures and signature templates.
The approach however can be extended to handle the case of synchronous commu-
nication.

Please note that although we consider external test quality, we are using anal-
ysis methods that do not execute the test suite itself. We use such an approach
of analysing the abstract test suite itself as every test execution involves also
the SUT. Hence because of the SUT capabilities and quality, a test execution
may reveal selected errors only, may allow to execute a small subset of test cases
only and alike - although the test suite might principally be able to reveal more
errors. Therefore, we are aiming at determining the error revealing potential of
a test suite instead.

The paper is structured as follows: after reviewing related work in Section 2,
the principal approach is explained in Section 3 and the data variance compu-
tation method is presented in Section 4. Distance metrics for TTCN-3 types are
discussed in Section 5 and further aspects of test data variance are discussed in
Section 6. An example is given in Section 7 and details of our implementation are
highlighted in Section 8. Concluding remarks in Section 9 complete the paper.

2 Related work

Independent of a test specification language, the test data adequacy criterion re-
mains among the most important factors for the effectiveness of a test. According
to [7], a test data adequacy criterion is a formalism to decide if a software has
been tested enough by test data. The same author introduces in [8] a theoretical
model for the notion of adequacy in the context of test effectiveness. Many other
test adequacy criteria are defined in the literature [9] such as the well-known
control-flow criteria, but also more complicated ones such as the Modified Con-
dition/Decision Coverage (MC/DC) or Reinforced Condition/Decision Coverage
(RC/DC) criteria introduced by Kapoor [10].

Approaches to study how good the test data is selected include the notion of
distance between programs, where programs are the tested systems. A test data
set is considered to be adequate if it distinguishes the tested program from other
programs which are sufficiently far from it, i.e. produce different input-output
behavior. Close programs producing same results are considered the same [8]. A
similar concept of Adaptive Random Testing is provided in [11] where random
test inputs rely on the notion of distance between the test values. The authors
define the object distance in the context of object-oriented programs. In addition,
they propose a method to compute the distance and use it to generalize their
approach.

Another approach of test data coverage called statistical coverage is pre-
sented in [12]. The concept of statistical coverage derives from statistical testing
and requires continues testing until it is unlikely that new coverage items will
appear. The proposed statistical coverage method uses a binomial distribution
to compute the probability of finding new coverage item and an associated con-
fidence interval, with the assumption that software test runs are independent of
each other.

All these approaches intend to study test data wvariance as a measure of
test data values spread over the input domain. Given the very large number of

possible inputs (e.g. almost all types have a theoretically unlimited number of
values) that could be feed to a program to be tested, the goal is to minimize the
number of test cases (in software testing, test data applied to the same system
behaviour) in a test suite while keeping test effectiveness as high as possible.

3 The principal approach

The basic idea for test data variance of black-box tests is to analyse the coverage
of test inputs with respect to the system interface and its structure as depicted
in Figure 1.

Test System

Data
“~~.__ Quantification

TSI
(Test System Interface)

Data Distance

Size and complexity
of potential data space

SUT
(System Under Test)

Figure 1. The principle test data variance approach

In order to get a conceptual framework for presenting our approach, we use
TTCN-3 terminology [6]. The system under test (SUT) is represented with its
interfaces and in relation to the test system only: the test system interface (TSI)
consists of a number of ports. Every port can be of different port type. A port
type defines the kind of a port to be message-based or signature-based and to be
unidirectional or bidirectional. For every test case, the TSI is defined (explicitly
or implicitly) within the system clause. By that, one test suite represented by a
(set of) TTCN-3 modules can test different TSIs (even of potentially different
SUTs, although that is not recommended).

A high test coverage with respect to a given TSI requires that the test data
has to fulfill the following criteria:

— Every port and every type transportable to the SUT via that port (incl.
every type element in case of structured types) have to be "touched" by the
test data.

— The test data has to be representative with respect to a given type. Repre-
sentative data can be identified either semantically or structurally, i.e. data
can vary with respect to qualitative or quantitative similarity.

While quantitative similarity is by use of distance measures easier to derive,
qualitative similarity is assumed to provide better results. In particular, the par-
titioning method can be used to provide a qualitative characterization of an
input space. In this paper, we provide a computation method open to both the
qualitative and quantitative similarity of test data (see Section 4), but concen-
trate later on quantitative similarity for TTCN-3 (see Section 5) only as this
can be derived purely from the TSI. For the sake of simplicity, we assume in the
following

— that all test cases have the same TSI,

— that the TSI consists of one port only,
that this port is a message-based port, and
which can transport data to the SUT*.

4 The data variance computation method

Let us assume a set of test data of a given type being sent over a given port to the
SUT, from which we select two (i.e. two TTCN-3 templates resolving to concrete
values). Their distance is calculated by use of type specific distance metrics. By
use of a type specific distance threshold, the similarity or dissimilarity of the test
data is being determined. The type coverage is finally determined by the number
of subsets of similar test data, meaning that a set of dissimilar test data covers
a type better than one with similar data.

For that, we consider basically types T. As in structured types however ele-
ments/fields can be optional, a type extended with omit are being considered in
those cases:

T' =T U{omit}

Without loss of generality, we consider subsequently T’ for types. We par-
tition types into subtypes by considering a value v of 77 and the set of values
being logically or numerically nearby w:

partitiong: : T — Il
for v # omit : partitiony: (v) = {v' € T : similar(v,v")}
partitiong: (omit) = {omit}

The similarity of values is a Boolean relation which can be used to determine
qualitative or quantitative similarity. For the moment, we restrict ourselves to

* This is in fact not a limitation, but a precondition that test data can be sent to the
SUT via that port

quantifiable similarity. For that, we use the distance between values and a dis-
tance threshold so that any two values are considered similar whenever their
distance is smaller than the distance threshold®:

similarp T xT' — B
PR __ g true for distanceps (v1,v2)<threshold /s
for v1,ve # omit : similary (v, v2) ={ alse otheraise
L. -\ _ g true for v=omit
szmzlarT/ (’U, OmZt) L false otherwise
The distance of a type is defined as a float value in between 0 and 1:

distancer: : T' x T" — [0..1]
for vy, ve # omit : distancer(v1,va)

for v=omit
1 otherwise

_ {>O as defined in Section 5 for vi#wva
- 0 otherwise

distancer: (v, omit) = {°

Finally, we determine the coverage of a type T’ for a given set of values of
that type:

coverager: : I — [0..1]
coverager: (V) = #partitionsy: (V') * thresholdr

where the number of partitions determines the number of varying data of a
value set for a given type:

#partitionsys : o — N

#partitionsy (B) = 0

for V #£ 0 : #partitionst (V) = 1 + #partitionsr: (V')
with V' = V' \ partitiony: (v) for a selected v € V

That completes the data variance computation method, which allows us to
determine type coverage based on qualitative or quantitative notion of test data
variance.

5 Distance metrics for TTCN-3 values

This section defines the distance measures to derive the quantitative similarity
of TTCN-3 values being sent to the SUT. The TTCN-3 type system consists of
basic and structured types. Their distance definitions are given in Table 1 and
Table 2. Please remember that the distance for omit has been already defined
in Section 4: it is maximum, i.e. 1, between omit and any other concrete value
and minimum, i.e. 0, between omit and omit.

® Please note that this gives us a dynamic classification of values into sets of similar
values — depending on the chosen values, the set of values considered similar will
differ. This is different to the qualitative approach of equivalence classes [13], where
equivalence classes (also representing data partitions) are statically defined.

6 We left out the objid type as it is often used together with ASN.1 specifications only.

Table 1. Distance Metrics for Values of Basic TTCN-3 Types

|Basic Type|Distance based on

[Definition of distance d for values x and y |

Integer One-Dimensional Euclidian o
Distance A(x,Y) = e firmiegen)
Float One-Dimensional Euclidian
- d(z,y) = — lz—y|
Distance Y sizeof(Float)
Boolean Inequality .
0 for xz=1
d(x7 y) =11 otherwi;le
Bitstring |Hamming Distance number of positions for which the bits
are different (the shorter bitstring is ex-
tended into the longer bitstring by fill-
ing it with leading ’0’B) divided by the
longer length: d(z,y) = Wﬁyg(m with
9(z,y) = number of ¢ where z; # y;
Hexstring |Hamming Distance same but with leading '0'H
Octetstring| Hamming Distance same but with leading '0’O
Charstring |[Hamming Distance same but with leading " " (spaces)
Universal |Hamming Distance same but with leading " " (spaces)
Charstring
Table 2. Distance Metrics for Values of Structured TTCN-3 Types
Structured |Distance based on Definition of distance d for values x and y
Type
Record N-Dimensional Euclidian
Distance d(z,y) = VoG
Record of |Hamming Distance S oo
— i=1 0%,y :
d(fL’, y) mamle'rlzgth(m,y) with
0(z,y) = number of i where d(zi,y:) > 3
and where the record sequence is extended
into the longer record sequence by filling it
with leading omit
Set N-Dimensional Euclidian|same as for record
Distance
Set of Hamming Distance same as for record of
Enumerated|Inequality
d(z,y) = M where n is the sequen-
tially numbered index of the enumeration
Union Distance defined above 1 for v(@)—0(y)
r v(x)=v
d(x7 y) = d(D(.T), D(y)) = { (;)oth:rwisey

As defined in Section 4, every type T has an associated thresholdr, which
is the basis to determine data similarity out of the data distance. In spite of
our pure quantitative data analysis, our analysis of selected test suites (i.e. for
Session Initiation Protocol (SIP), IP Multimedia Subsystem (IMS), SS7 MTP3-
User Adaptation Layer (M3UA) and Internet Protocol version 6 (IPv6)) indi-
cated that a uniform threshold of % is a good basis for representing the data
variance requirements: % means that there should be three representative values
such as from the "beginning", "middle" and "end" of a type. Only for the case
of Boolean and two-value enumerations this threshold should even be reduced

1

to 5. However note that, if we consider an optional field of these types (and

hence T instead) we take thresholdr = % as in this case omit constitutes an

own similarity class of the data being sent to the SUT.

6 Distance metrics for TTCN-3 templates

In general, test data to be analysed with respect to their type coverage are
not just concrete values, but templates that are sent over the same port to the
SUT. These templates constitute a template subset to be considered, where the
following aspects complicate the analysis:

— global and local templates: Templates can be defined in global or local scope.
For the latter case, a call flow analysis would be adequate in order to derive
the template subset precisely. For the moment, we analyse all templates
independently of their scope.

— template parameters: Template fields may use parameters directly or pa-
rameters within more complicated expressions. In both cases, a symbolic
analysis is needed to derive the limitations for the template fields. For the
moment, we use for parameterized fields the maximum distance as they have
the potential to spread the field type completely.

— modified templates: Template modifications are used to change the setting
of template fields of global or local templates. The updated field can be
defined in terms of concrete values or more complex expressions, which may
reference parameters, functions and alike. Currently, we use distances for
concrete values only and a maximum distance in all other cases.

— inline templates: In this case, the send template is formed directly in the send
statement where the values may take any form of expression such as func-
tion calls, variables reference and alike. A precise analysis of inline templates
requires a combination of call flow analysis with symbolic computation. As
for modified templates, we use distances for concrete values only and a max-
imum distance in all other cases.

These template aspects make the analysis of data variance tricky and demon-
strate why the quality of a real TTCN-3 test suite is hard to assess. Our current
solution overestimates the coverage of a test suite. However, as tool development
is progressing the provided measures will become more and more precise.

7 An Example

In this section, we show how to apply the introduced concepts to small TTCN-3
examples. In the listing below we define a simple TTCN-3 record type R that
contains two fields: one of type integer of range (1..100) and an optional boolean
field. Based on this type definition, several templates are defined r1,72...,74.

Listing 1.1. TTCN-3 Example

1
type record R {
integer 1 (1..100),
boolean b optional
}
6
template rl:= {1, true}

R
template R r2:= {10,true}
template R r3:= {90,omit}
template R rd4:= {35, false}

Assuming that all these templates are used as SUT stimuli over a port that
carries R, they form a template subset of interest. The next step is to determine
each distance d(r;,7;),i # j — recursively for the fields as given in Table 3 and
Table 4 according to the formulas given in Table 1 and then for the complete
record (see Table 5) according to the formulas in Table 2.

Table 3. Distances for boolean record field in the example

true false omit
true 0 0,5 1
false 0,5 0 1
omit 1 1 0

Table 4. Distances for integer record field in the example

1 10 90 35
1 0 0,09 0,39 0,34
10 0,09 0 0,8 0,25
90 0,89 0,8 0 0,45
35 0,34 0,25 0,45 0

We see that the fields themselves are well covered (and, indeed, we have seen
this immediately because of the simplicity of the example). Looking however at
the records in Table 5, it shows that R is not well covered.

Table 5. Distances for records in the example

rl r2 r3 rd
rl 0 0,05 0,67 0,3
r2 0,05 0 0,64 0,28
r3 0,67 0,64 0 0,57
rd 0,3 0,28 0,57 0

The records r1, r2 and r4 are similar (and are hence considered stimulating
the same system behavior — they are considered belonging to the same simi-
larity class). The separation of the templates into similarity classes is made by
comparing the distances between them and a threshold value. The threshold of
% separates R into three similarity classes: r1,r2 and r4 form one similarity class,
r3 a second, but the third is missing. It is not so obvious that although the field
types are covered, the record type R is not. The situation can be resolved by
adding e.g. rb which represents the third similarity class. The distances between
r5 and the other templates are computed in Table 6.

Table 6. Distances for added record

rl r2 r3 rd
rb 0,49 0,44 0,5 0,41

Listing 1.2. Extended TTCN-3 Example

template

R rl:= {1, true}
template R r2:= {10,true}
template R r3:= {90,omit} 4
template R rd4:= {35, false}
template R r5:= {99 ,true} // added to cover R completely

Whenever representatives for similarity classes are missing, approaches for
test refactoring [14] and/or pattern-driven test generation [15] can help here to
improve the quality of a test suite. Once the analysis has shown that selected
interface aspects are not covered, additional templates (to be sent by additional
test cases) could be proposed for inclusion into the test suite.

8 Implementation

In order to compute the test data variance and system interface coverage, there
is a clear requirement for a TTCN-3 tool to automatically compute the variance
measures.

Our implementation is based on the TTworkbench [16] product, an Eclipse-
based IDE that offers an environment for specifying and executing TTCN-3 tests.
The main reason for selecting this tool, is that it provides a metamodel for the
TTCN-3 language which is technically realized by using the FEclipse Modelling
Framework (EMF) provided by Eclipse. EMF is a Java framework and code
generation facility which helps turning models rapidly into efficient, correct, and
easily customizable Java code.

The generated Java classes provide an interface useful to traverse every
TTCN-3 test suite loaded and access every element of it by creating an as-
sociated metamodel instance. The plug-in based structure of the tool allows
adding new features by plugging them into the core platform. The incorporated
TTCN-3 metamodel is a central test repository that can be used to present the
test suite in various formats: in the core language format (the CLEditor is used
to edit TTCN-3 code in its textual format) or in the graphical format (for which
a GFT Editor is provided).

Our work on the automated template distance collector follows up an earlier
work [2] where TTCN-3 test quality indicators are derivedfrom a statical analysis
of a TTCN-3 test suite. It is designed as a plug-in whose invocation triggers a)
the access to the metamodel instance and b) the traversal of elements of interest
as shown in Figure 2. The most significant steps are:

— visit test cases
— identify templates used in send operations

— recursively traverse pairs of templates in order to measure their distance

In the tool terminology, a TTCN-3 project contains all TTCN-3 modules
composing an overall test suite. Given a project identifier, the metamodel loader
engine is able to load all modules and build a tree-like structure having as root
the main module. The code snippet in Figure 3 shows how to extract the runs
on component name from each test case declaration using the provided EMF
API. This one will be used furthermore to find its definition and extract the list
of ports used in send direction.

Every TTCN-3 element has a corresponding EMF element, that could be ac-
cessed and modified handling only EMF generated Java classes. While searching
for simple EMF element definitions translates into accessing directly the tree
nodes and getting the needed information, obtaining in parallel the values of
two templates whose distance is to be measured, introduces a much more in-
creased degree of complexity. For example, for structured type based templates,
it is required to design a visitor that traverses recursively and in parallel every
child from each template until values in leaves are reached. Then, the distance
formula for templates of basic types is applied to the leaves belonging to the
same level in the tree hierarchy and returned to the upper level in a recursive
process.

Access the metamodel instance

Collect distances
and metrics

Display/store the collected metrics

Figure 2. The principle of the implementation

Iterator it = testcaseleclarationListPerModule.iterator():

while (it .hasNext{)] {
wev = [(MuTTCHMEMNFModuleElementWiew) it.next(]:

= Valuelnterpreter.cregte(this.repository.getId()

ValueInterpreter valuelnterpreter =
[Element)mev.getChiect (1]

if [(wvaluelInterpreter.getInput(] instanceof ConstantDeclarationImpl)

{

ConstantDeclarationImpl currentTestcase
[ConstantDeclarationImpl)valueInterpreter.getInput ()

if [(currentTestcase.getTheType () instanceof FunctionTypeImpl){

FunctionTypeImpl currentTestcaseTheType
[FunctionTypelmpl) currentTesteaze.getTheType () !
if [currentTestcaseTheType.getTheToType () instanceof TestcaseBehaviorTypeImpl) !

TestoaseBehaviorTypeImpl testeaseBehaviorTypeImpl
[TestocaseBehaviorTypeInpl) currentTestocaseTheType.getTheToType () ;

String runsCnComponentMName =
testocasebBehaviorTypeImpl.getTheFromType () . getThelame () . get ThelName () ;2

if (runsOnComponentName . equals (component))
testoasesRunsonComponentlist.add (valueInterpreter) ;

Figure 3. Metamodel traversal - code snippet

9 Conclusions and outlook

In this paper we investigate test data variance as a way to assess the test coverage
for the system interface quantitatively. We and others consider test data variance
as an import factor of test effectiveness. This paper defines a principal method
for deriving test data variance based on notions of qualitative or quantitative
data similarity. This method is then exemplified for TTCN-3 and for quantitative
data similarity.

We define distance metrics for basic and structured types. A threshold based
weighting process of distance evaluation leads to an empirical assessment of data
similarity: it is false when the values are different "enough". Different values
are counted into separate similarity classes representing partitions of a given
type where similar values belong to the same partition. The number of present
similarity classes of a type in a test suite defines finally the coverage for that
type. With the aggregation of the coverage of all stimuli types, we obtain the
overall test suite coverage.

Although the approach is in its beginning, it demonstrated already the value
of coverage analysis for system interfaces. In future work, the empirical analysis
will become more precise with the addition of a dedicated call flow analysis and
symbolic execution. In addition, the simplifying assumptions given in Section 3
for defining the data variance computation method are easy to leverage and are
being leveraged already in our tool

— by slicing a test suite into sets of test cases with the same test system inter-
face (TSI) and considering the TSIs individually,

— by considering every port of a TSI individually, and

— by expanding the notion of distance, similarity and coverage to signatures
and their parameters,

Finally we plan to detail the system interface analysis by extending toward
semantical aspects like condition, assertions and behaviours of the interface us-
age. By all that, we foresee an application of the test data variance analysis in
test generation approaches as a control and stopping criteria.

References

1. Sneed, H.M.: Measuring the Effectiveness of Software Testing. In Beydeda, S.,
Gruhn, V., Mayer, J., Reussner, R., Schweiggert, F., eds.: Proceedings of SO-
QUA 2004 and TECOS 2004. Volume 58 of Lecture Notes in Informatics (LNI).,
Gesellschaft fiir Informatik (2004)

2. Vega, D.E., Schieferdecker, I.: Towards quality of TTCN-3 tests. In: Proceed-
ings of SAM’06 — Fifth Workshop on System Analysis and Modelling (formerly
SDL and MSC Workshop), May 31st-June 2nd 2006, University of Kaiserslautern,
Kaiserslautern, Germany, 2006. (2006)

3. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and
Metrics for TTCN-3 Test Suites. In Gotzhein, R., Reed, R., eds.: System Analysis
and Modeling: Language Profiles. Volume 4320 of Lecture Notes in Computer
Science., Springer (2006)

10.

11.

12.

13.

14.

15.

16.

Zeils, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the
ISO 9126 Quality Model to Test Specifications Exemplified for TTCN-3 Test Spec-
ifications. In: Software Engineering 2007 (SE 2007). Lecture Notes in Informatics
(LNTI). Copyright Gesellschaft fiir Informatik, Kéllen Verlag, Bonn (2007)
ISO/IEC: ISO/IEC Standard No. 9126: Software engineering — Product quality;
Parts 14. International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC), Geneva, Switzerland (2001-2004)

ETSI: ETSI Standard ES 201 873-1 V3.2.1 (2007-03): The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language. European Telecommunica-
tions Standards Institute (ETSI), Sophia-Antipolis, France (2007)

Weyuker, E.J.: The evaluation of program-based software test data adequacy
criteria. Commun. ACM 31 (1988) 668-675

Davis, M., Weyuker, E.: Metric space-based test-base adequacy criteria. Comput.
J. 31 (1988) 1724

Weiss, S.N.: Comparing test data adequacy criteria. SIGSOFT Softw. Eng. Notes
14 (1989) 42-49

Vilkomir, S.A., Bowen, J.P.: Reinforced condition/decision coverage (RC/DC): A
new criterion for software testing. In: ZB. (2002) 291-308

Ciupa, L., Leitner, A., Oriol, M., Meyer, B.: Object distance and its application
to adaptive random testing of object-oriented programs. In: RT ’'06: Proceedings
of the 1st international workshop on Random testing, New York, NY, USA, ACM
Press (2006) 55-63

Howden, W.E.: Systems testing and statistical test data coverage. In: COMPSAC
'97: Proceedings of the 21st International Computer Software and Applications
Conference, Washington, DC, USA, IEEE Computer Society (1997) 500-504
Grochtmann, M., Grimm, K.: Classification trees for partition testing. Software
Testing, Verification and Reliability 3 (1993) 63-82

Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring for
TTCN-3 Test Suites. In: Proceedings of SAM’06: Fifth Workshop on System Anal-
ysis and Modelling, May 31-June 2, 2006, University of Kaiserslautern, Germany.
(2006)

Vouffo-Feudjio, A., Schieferdecker, I.: Test patterns with TTCN-3. In Grabowski,
J., Nielsen, B., eds.: FATES. Volume 3395 of Lecture Notes in Computer Science.,
Springer (2004) 170-179

TestingTechnologies: TTworkbench: an Eclipse based TTCN-3 IDE.
www.testingtech.de/products/ttwb_intro.php (2007)

