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Abstract. In this paper, we propose a fault model and ehatefor deriving
complete test suites for nondeterministic FSMs witbpect to the separability
relation. Two FSMs are separable if there existspnt sequence such that the
sets of output responses of these FSMs to the seguao not intersect. In
contrast to the well-known reduction and equivaderalations, the separability
relation can be checked when the «all weather tiomdi» assumption does not
hold for a nondeterministic Implementation UndeistT@UT). A (complete)
test suite derived from the given (nondeterminjgti8M specification using the
separability relation can detect every IUT thatseparable from the given
specification after applying each test case onlgeonTwo algorithms are
proposed for complete test derivation without tiplieit enumeration of all
possible implementations. The first algorithm candpplied when the set of
possible implementations is the set of all completendeterministic
submachines of a given mutation machine. The seeadgarithm is applied
when the upper bound on the number of states tifans known.
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1. Introduction

A number of conformance testing methods have besmldped for deriving tests
when the system specification and implementatione arepresented by
nondeterministic FSMs [1-16]. Non-determinism oscdue to various reasons such
as performance, flexibility, limited controllabilitand abstraction [8] [11] [13] [17].

A number of methods have been proposed for testergdan against
nondeterministic FSM specifications with the guaéead fault coverage with respect
to appropriate fault models. The methods given3inajnd [4] derive test suites with
respect to the equivalence relation for a nondetestic implementation against a
nondeterministic specification while the methodgegiin [6], [8], [9], and [10] derive
test suites for a complete deterministic implem@oaagainst a nondeterministic
specification with respect to the reduction relatidwo FSMs arequivalent if they



have the same input/output behavior and an ASN4 areduction of FSM S if the
input/output behavior ofl is a subset of that d8. Hierons [11] presented a test
derivation method with respect to the reductionatieh when a system
implementation can be nondeterministic. Petrenkib davtushenko [15] generalize
the work given in [18] and proposed a method tleaiveés a test suite with respect to
the reduction and equivalence relations for a ntardenistic implementation against
possibly a partial specification.

When deriving test suites with respect to the rédocand equivalence relations
with the guaranteed fault coverage the so-catiguplete testing assumption [3—4]
(called @ll weather conditions» by Milner in [19]) is assumed to be satisfied whe
testing a nondeterministic implementation. Accogdin this assumption, if an input
sequence (a test case) is applied a number of titnes nondeterministic
implementation, then all possible output sequendédbe implementation to this test
case can be observed. However, when an Implemamtltnder Test (IUT) has a
limited controllability, as happens, for instanzeremote testing, the complete testing
assumption cannot be satisfied. In this case, tie relation that can be used for the
preset test derivation with the guaranteed fawecage [20] [21] is the separability
relation defined by Starke in [22]. Two FSMs aparable if there is an input
sequence, calledsgparating sequence, such that the sets of output responses of these
FSMs to the sequence do not intersect, i.e., ttsease disjoint. It is known [15] [21]
that test suites derived with respect to the edemee and reduction relations cannot
be used for testing the separability relation. Tde that an FSM witm states is not
equivalent (or not a reduction) of an FSM witlstates can always be established by
an input sequence of length upnn [15], while there exist two FSMs which can be
separated only with an input sequence of expordatigth [5].

The separability relation was further studied byrAkt al. in [5] where an
algorithm for deriving a separating sequence far $@parable states of an FSM with
n states is proposed and is shown that the uppendobon the length of a shortest
separating sequence is exponential. In [23], shewn that given FSMS with n
states and with m states, the length of a shortest separating sequsmat most 2"
and this upper bound is reachable. An algorithmrégposed for deriving a shortest
separating sequence of the given FSMs. Howevererarpnts with the proposed
algorithm show that on average, the length of atebbseparating sequence is less
than mn and the existence of a separating sequence sigmify depends on the
number of nondeterministic transitions in the givESMs. For all conducted
experiments the upper bount"2 on the length of a separating sequence was never
reached.

In this paper, we consider the test derivationtwtihe reduction relation when «all
weather conditions» assumption may not be heldafolUT. A test suite is called
complete up to the separability relation if it dae every non-reduction of the
specification FSM from a given fault domain thatseparable from the given FSM
specification. If each test case of the test saitgplied to an IUT of the fault domain
once and an IUT is separable from the specificaB@M, then the IUT will be
detected with such a test suite. However, this dae can also detect some other
implementations which are non-reductions of thecjpation FSM but are not
separable with the specification FSM. Corresponginge refine the notions of a
fault model and of a complete test suite. We prepasmethod for deriving a



complete test suite without the explicit enumerataf FSMs of the fault domain
when the fault domain is the set of all submachioEs given mutation machine
(including those which are non-deterministic) andew the fault domain has each
implementation FSM up to states. We also demonstrate that not every tdstthat

is complete w.r.t. the reduction relation under ¢bhenplete testing assumption can be
used for testing up to the separability relatioremwleach test case is applied to an IUT
at most once.

This paper is organized as follows. Section 2 idefiall necessary definitions. In
Section 3 we refine the notion of a fault model dedfine a complete test suite w.r.t.
the refined fault model. Sections 4 and 5 contégorghms for building a complete
test suite w.r.t. the refined model where the fdolnain is the set of all complete (not
only deterministic) submachines of a given nondeil@istic FSM (a mutation
machine) and where the fault domain is the seflofandeterminisitic FSMs with at
mostm states. Section 6 concludes this paper.

2. Preliminaries

A finite state machine (FSM) S is a 5-tuple(S 1, O, hs, 5;), where S is a finite
nonempty set wittg; as the initial statel; andO are input and output alphabets; and
hs 0 SxIxOxS is a behavior relation. The behavior relation wedi all possible
transitions of the machine. Given a current sttand input symbol, a 4-tuple
(s,,0,5)0 hs represents a possible transition from ssatender the inpui to the next

states, with the output, usually written as oY S If for each pair §,i) 0SxI
there exists@,s') 1OxS such that §,i,0,s") Ohs then FSMS is said to beomplete;
otherwise, FSMS is partial. If for each §,i,0)00SxIx0O there is at most one
transition 6,i,0,s')0hs then FSM S is said to beobservable. Given FSM
S=(S5 1,0, hs, s, states and an input, states' is asuccessor of states under the
inputi or simply ani-successor of states if there existo 0 O such that the 4-tuple
(s,i,0,8")0hs. Given a set of statdslJ S and an inpui, the set of stateld is a
successor of the seb under the input or simply ani-successor of b if b’ is the set of
all i-successors of states of the lset

In the usual way, the behavior relatid is extended to input and output
sequences. Given stags' (1S, input sequence=ii,...i 01* and output sequence
[=0,0,...0,000*. Transition (s, a, B, s')0hs if there exist states=s;, s,, ...
, Sk» Sk+1=S such that g,i;,0;,5+1)0hs, i=1, ... , k. As usual, given a defined input
sequencer at states, ha>(s, @) denotes the set of all output sequenshich FSMS
produces at states under the input sequencen, i.e. h (s a)={f
Os'0S[(s,a,6,s')0hg]}.

Given an FSMM= (M,1,0,hy,,my), an FSMS = (S,1,0,hg,s;), SOM, s; =m;, is
a submachine of FSMMif hs O hy, i.e., if each transition of FSI@ is obtained by
fixing an appropriate transition of the FSM The set of all complete submachines,



including those which are non-deterministic, of amplete FSMS is denoted
Sand(s)-

Given FSMsS = (S,1,0,hg,s;) andT = (T,1,0,h+,t,), theintersectionSn T is
defined asthe largest connected submachine of the FSMT,I,0,h,s;t;) where
(st,i,o,s't")0h = (s,i,0,s')0hs & (t,i,0,t")0h.

Complete FSM$ andT areequivalent, writtenS O T, if for each sequencg 0 I*
[hO(ty, @) =hs2(s,, a)], i.e., the sets of output sequences of FSMand T under
each input sequence coincide. If there exist serpie O 1* [hrO(ty, @) # hs2(s1, 0)]

then FSMsS andT aredistinguishable, writtenS # T.

A statet of a complete FSM is areduction of a states of a complete FSM,
writtent < s, if for each sequence O I* [h:°(t, ) O hs"(s, a)], i.e., the set of output
sequences of FSI® at states contains the set of output sequences of HSM statet
under each input sequence. If there exists sequentl [hr°(t, @) O hs(s, a)] then

statet is not a reduction of stat writtent £ s. FSMT is areduction of a FSMS,
written T < S, if the reduction relation holds between the atistates, i.e., for each
sequence a0 1* [hOty, @) Ohs (s, @)]. If there exists sequencea [ I*

[hr°(ty, @) 0 hs®(sy, @)] then FSMT is not a reduction of FSIg, writtenT & S.
A statet of a complete FSM is r-compatible with a states of a complete FSN&

[21], writtent =~ s, if there exists a complete FSBI=(B,l,0O,hg,b;) and statéd [1 B
such that is a reduction of both statésinds. If statest ands are notr-compatible

then they arer-distinguishable, written t# s. In this case, there exists an
distinguishability finite seW of input sequences such that for each complete FSM
B=(B,,0,hg,b;) and each statebOB there exists aO0W such that
[he°(b, @) O hs(s, a)] or [hs®(b, @) O h:°(t, @)]. FSMs T and S are r-compatible,
written T =~ S (or r-distinguishable, writtenl = S) if the corresponding relation
holds between their initial states.

Complete FSMST and S are non-separable, written T O S, if for each sequence
aO1* [he(ty, @) n hs®(s, @) # O], i.e., the sets of output sequences of FIMsd
S under each input sequence intersect. If there teexisequence a0 I*

[h:9(ty, @) n (s, @) = O] then FSMST andS areseparable, written T + S. In the
latter case, the sequengés called aseparating sequence of FSMB andS.

3. Fault modd and atest suite

When testing w.r.t. the reduction relation the itiadal fault model is a triple

<S, <, [/>, whereS is a specification FSMk is the reduction relation, fault domain
[7 is the set of all possible (faulty and non-fauliy)plementation FSMs with the
same input and output alphabets as the specific&®M S. As usual, FSMs of the
set /7 represent all possible faults which can happen nwheplementing the

specification. An implementation FSM [0 /7 is called conforming if T< S;



otherwise,T is anon-conforming implementation. Given the specification FS/a
test case is a finite input sequence & As usual, dest suite is a finite set of test
cases. Given an implementation FIMI /7 and an output responggof T to a test
caseq, the FSMT passes the test case iB is in the set of output responses of the
specification FSMS to a. Otherwise, the FSM fails the test case. Given a test suite,
an Implementation Under Test (IUPasses the test suite if the IUT passeach test
case.

In this paper, we generalize the traditional fanttdel <S, <, /7> by adding the

relation + into the fault model. Formally a fault model be@sma 4-tuple
<S, (£, ~+), [7>. This model indicates that a test suite is coteplp to the subset af
that contains all implementatiods+~ S. That is a test suite momplete w.r.t. to the

fault model §, (<,+), /7> if each non-reductiom of S such thatT - S can be
detected with this test suite.

Here we note that in FSM-based testing when usitrgditional fault model it is
usually assumed that each non-conforming implentientacan be detected with a
complete test suite. However, if the assumptioradf weather conditions» fails when
testing a non-deterministic implementation, as leagp for example, in the remote
testing, then a non-deterministic implementationncd be tested up to the reduction
or up to the equivalence relation. In this papee show that in this case, an
implementation can be tested up to the separabigtion without relying on «all
weather conditions» assumption. As usual, we asdinaie both specification and
implementation FSMs are complete. However, we dd reguire either the
specification FSM or an implementation FSM to bsevkable.

The relation «not a reduction» contains the sep#yalrelation, i.e. for

nondeterministic FSMs+» [0 £« . However, as the following example shows a
complete test suite w.r.t. the fault mode8 <, /7> is not always complete w.r.t. the

fault model §, (g,+), [7>.

Consider the specification FSBlin Figure 1 with statesa{b}, inputs {x, y} and
outputs {1,2,3,4}. States of are separated by the inpuytand both states are
deterministically reachable from the initial stade We use the method for test
derivation [21] and obtain a test suilé&s= {xy, yxy, yyy} w.r.t. the fault model
<S, g, [7,> where [/, contains each complete FSM with up to 2 states thesinput
alphabet &, y}. The test suiteTS is complete when the assumption of «all weather
conditions» holds. However, if the assumption df weather conditions» fails then
the implementation FSM in Figure 1 that is separable wihi.e., is not a reduction
of S, can remain undetected with the test silifflewhen each test case is applied at

most once, i.e.TS is not complete w.r.t. the fault modeS<<,+), [/>. By direct
inspection, one can assure that a shortest sequleaicseparates the initial states
and 1 ofS andT has length four while to each input sequencergjtle up to three the
sets of output responses®andT intersect.



S a b T 1 2
X al0,1,2,3 | a/1.2 X 1/0 1/0,1
2/1
y b/1,2 a/0 y 1/1 1/3
b/3 2/0.z 2/C

Fig. 1. FSMsS andT

The reason is that the-distinguishability relation between states of the
specification FSM cannot be used when derivingstest.t. the separability relation.
Given two r-distinguishable states, and s, of the specification FSM with an
distinguishability setW and a statd of an implementation FSM, there exists a

sequencea OW such thatt£,s, or t«£,s. Therefore, if a test suite has two
sequences; anda, that take the specification FSM to stasesnds, appended with
the r-distinguishability setW then each implementation FSM that is taken with
sequencesy; and a, to the same state will be detected with such a test suite.
Unfortunately, the above property does not holdtfe separability relation. Given
two separable statssands, in the specification FSM with a separating seqeena
statet of an implementation FSM can be non-separable hiith statess; ands,
w.r.t. the sequence.

Given the specification FSN and the fault domaifi, a complete test suite w.r.t.

the fault model §, (<,+), /7 > can be derived by the explicit enumeration o¢f al
machines of the séf. For eachl O /7 that is separable wit, a separating sequence
is derived that is used as a test case to detenbrag implementation FSM. The set

of all test cases is a complete test suite whret.fault model §, (<,+), 7 >). Below
we include the algorithm given in [23] for derivirey separating sequence for two
complete FSMs.

Algorithm 1. Deriving a separating sequence of two complete $SM

Input: Complete FSM$& =(S |, O, hg, ;) andT =(T, I, O, hr, t;)

Output: A shortest separating sequence of F&M&dT (if it exists)

Step 1. Derive the intersectio® n T. If the intersection is a complete FSM then the
FSMsS andT are non-separable. END Algorithm 1.

Step 2. If the intersectiorS n T is a partial FSM, then derive a truncated suceesso
tree of the intersectioB n T. The root of this tree, which is at th& @vel, is the
initial state §;, t;) of the intersection; the nodes of the tree dpeltsd with subsets of
states of the intersection. Given already deriyettee levels,j =0, a non-leaf
(intermediate) node of tH& level labeled with a subsBtof states of the intersection,
and an input, there is an outgoing edge from this non-leaf niatteled withi to the
node labeled with the subset of theuccessors of states of the suli3eA current
nodeCurrent, at thek” level,k > 0, labeled with the subsBtof states, is claimed as a
leaf node if one of the following conditions holds:



Rule 1: There exists an inputsuch that each state of the Bdtas na-successors

in the intersectio® n T.

Rule 2: There exists a node af‘alevel,j <k, labeled with subseR of states with

the property: for each stats,t) of R there exists a states, ) of P such that

(s.t)<(s 1)

Step 3. If none of the paths of the truncated tree derae8tep 2 is terminated using
Rule 1 then FSMS andT are non-separable. END Algorithm 1. Otherwisehére

is a leaf nodeleaf, labeled with the subsét of pairs of states such that for some
inputi, each pair of the s has nad-successors, then a shortest sequemeenerea
labels the path from the root of the treeLtmaf, is a shortest separating sequence of
FSMsS andT.

Theorem 1. Given FSMsS and T over input alphabelt and output alphabed,
Algorithm 1 returns a shortest separating sequend¢sMsS andT (if a separating
sequence exists).

Proof. In order to separate FSM& and T we need an input sequenceunder
which the intersectiors n T enters the seP of states such that there exists some
input i that separates each pair of theRete., in the intersection, each state of the
setP has no successors under input none of the paths of the truncated tree defrive
at Step 2 of Algorithm 1 is terminated accordingri@ation Rule 1, then there is no
such an input sequenee and thus, FSMS andT are non-separable. If there exists a
path of the truncated tree derived at Step 2 ofoddlgm 1 that is terminated
according termination Rule 1 then the sequeacashich labels this path takes the
intersectionS n T to the seP such that there exists an inpuhat separates each pair
of the setP, and thusgi is a separating sequence of FS®andT. Given a current
nodeCurrent labeled with a subsét atk" level, let there exist a node af'alevel,

i <k, labeled with subseR of states with the property: for each staet] of R there
exists a states(t) of P such thatg, t') < (s, t). In this case, each input sequence that
separates each pair of states of thd>sgso separates each pair of states of thR.set
Therefore, each path of the truncated tree trawgréhe nodeCurrent can be
terminated, since a shorter separating sequencédeaterived when traversing the
node labeled with the sBt

a

As usual, the explicit enumeration of all machimegshe fault domain/7 can be
applied only to small fault domains. Accordingly) the following section, we
propose a method for deriving a complete test switet. the fault model

<S, (g,+), [7> without the explicit enumeration of the machineg/. This is done by
using a nondeterministic FSM calledratation machine MMin [9], to represent, in a
compact way, all possible implementationsSfIn this case, the fault domaify
equals the seub.4(MM of all complete submachines M In Section 5, we extend
the method to the case when the upper bound onuimber of states of an IUT is
given.



4. Deriving a complete test suite w.r.t. fault modd <S, (<,+),

Subpg(MV)>

According to Algorithm 1, in order to derive a cdete test suite w.r.t. the fault

model <5, (£,+), Sub,g(MM> a truncated successor tree of the intersecBonT
should be derived for each complete submachinéthe FSMMM Therefore, given a
current nodeCurrent labeled with a subsd® and inputi, we should have an edge
labeled byi not only to thei-successor oP but to all non-empty subsets of the
successor. Moreover, we cannot terminate a pathpaong the label of its node with
labels of another path, since now these paths elmd to different submachines of
MM The above two observations lead us to a methtmvbghen deriving a complete

test suite w.r.t. the fault modeBg(<,+), Subg(MV)>.

Algorithm 2. Deriving a complete test suite w.rt. the fault rmbd

<Sa (Sa*)v Sand(MW>
Input: Complete FSM$ andivM

Output: A complete test suit€Sw.r.t. the fault model 8, (<,+), Sub,(MV)>
Step 1. Derive the intersectioB n MM
Step 2. Derive a truncated successor tree of the interme&tin MM The root of this
tree, which is at the'Dlevel, is the initial states(, m;) of the intersection; the nodes
of the tree are labeled with subsets of statebhefrtersection. Given already derived
j tree levelsj = 0, a non-leaf (intermediate) node of {fidevel labeled with a subset
P of states of the intersection, and an inptlhere is an outgoing edge from this non-
leaf node labeled withto the node labeled with each subset ofitheccessor of the
subsetP. A current nodeCurrent, at thek™ level, k= 0, labeled with the subsBtof
states, is claimed as a leaf node if one of tHevimhg conditions holds:
Rule 1: There exists an inputsuch that each state of the Betas na-successors
in the intersectio® n MM
Rule 2: There exists a node at the path from the roohitortode aj" level,j <k,
labeled with subseR of states with the property: for each stafen{) of R there
exists a states(m) of P such thatg, m) < (s, m).
Step 3. For each path of the tree terminated using Ruledude intoTS an input
sequence that labels the path appended with aniiigpgh that each state of the Bet
corresponded to the final node of the path had-swccessors in the intersection
SnwW
For each path of the tree terminated using Rulén@ude into TS an input
sequence that labels the path.

Theorem 2. Given FSMsS and MM over the input alphabétand output alphabet
O, Algorithm 2 returns a complete test suite w.rthe fault model
<S! (Sa*)y Sand(MW>'

Proof. According to Algorithm 1, when deriving a separgtsequence for two
FSMsS and T we use the truncated tree fn T. In our case, each FSM that



should be separated with (if S andT are separable) is a submachineMM i.e.,

S n T is a submachine & n MM In order to get an appropriate truncated sulftree
each submachine of FSMM at Step 2 of Algorithm 1, for each non-leaf node
Current labeled with a subsd® and each input, we add an outgoing edge to each
non-empty subset of thesuccessor oP. Thus, for each complete submachinef
MM a truncated tree for separatifigand S is a subtree of the tree derived by

Algorithm 2.
a

Example. As an application example, consider FSEsin Figure 1 andvM in
Figure 2. We apply Algorithm 2 we obtain the intsatson (Figure 3) and the
truncated successor tree in Figure 4. Therefoeeséh X, XyX, XyyX, Xyyy, YXX, YXyX,
VXYY, YYXX, YYXYX, YYXyY, Yyy} is a complete test suite w.r.t. the fault model
<S! (Sa*)y Sand(MW>'

MM |1 2 SnwM |al a2 bl b2

x ]1/0,1 1/2,3 X al/0,1,2,3 |al/2,3 |al/1,2 |al/2
1/2,3 2/2,3 a2/2,3 a2/2,3 [a2/2 a2/2
2/2,3

y |1/1,2,3 1/0,2 y b1/1,2 b1/2 |bl/3 al/0
2/1,2 2/2,3 b2/1,2 b2/2 b2/3

Fig. 2. FSMsMMandSn MM

SN 7
@w a0 Ghas B 0b
*

J Y xy xxx -Vxxx'v y
of oG ol el et ot

Xy y X y
,V X NX
@0 @oeles oIl

x

Fig. 3. The truncated successor tree



Sometimes a test suite derived using Algorithm 12 lsa shortened by relaxing the

conditions of Step 3. For example, given a tail eedign} {sm} of some path

terminated using Rule 1 and labeled with an inpguenceni, it can happen that the
set of output responses of the intersecom MM toi at statesm coincides with that

of theMMat statem. In this casej is unnecessary for separating new submachines of
MM from S and it is enough to include into a test suite dbguencer instead ofai.
More analysis is needed for reducing a test stiltés is a part of our future work.

We implemented the above algorithm and performedesexperiments with FSMs
with small number of states. As our experimentsaghtbe total length of a complete

test suite w.r.t. the fault modelSg(<,+), Sub,(MM> significantly depends on the
number of nondeterministic transitions in the sfieaion and mutation machines.
Table 1 contains a selected part of conducted axpats for FSMs with 5 states.
Each row in the table represents an average tetwt Ength of 100 randomly

generated specification FSMs. Each FSM a complete nondeterministic FSM with
|[§ states,|| inputs, Q| outputs, where for 20 percent of passi) there is more than

one outgoing transition from stageinder inpui. Each FSMWIis derived by adding

(up to 25 percent) additional transitions to FSM

Tablel. A selected part of conducted experiments

(] O] Average test suite length
2 2 2432

3 3 15407

3 4 6826

5. Deriving a completetest suitew.r.t. fault mode <S, (,+), >

Let /7, be the fault domain of a given specificatiBnthat contains each complete
implementation FSM o8, over the same input and output alphabef, afith up to a
given numbem of states. The following theorem can be used &vivihg a complete

test suite w.r.t. the fault modelSg(<,+), [,>. This theorem is a corollary of
Theorem 2 given in our previous work [23].

Theorem 3. Given the specification FSNG with n states, a test suil] 2" is

complete w.r.t. the fault modes (<, +), [>.

In the following, based on the idea of countingtestaof the specification FSM
when deriving a complete test suite w.r.t. thetfauwbdel <, <, /7,»>) (a SC-method

[15]), we propose a test derivation method for céaly the test suit | 2™ I this
case, unlike the above method given in Algorithmvé,derive a truncated tree using



only the specification FSMNB. Before terminating a path at a node labeled \aith
subsek of states of the specification FSM, we make sba for each complete FSM
T with up tom states the path traverses all possible subsdtsedtartesian product
K x T in the intersectiol® n T, i.e., the path should traverse not less tHdf Qubsets
of K. If K contains the initial state, then the initial stafethe intersection can be
excluded from any subset that labels a non-rooeraidhe tree, i.e., the path should
traverse not less than{®'~*+ 1)subsets oK.

Algorithm 3. Derivinga complete test suite w.r.t. the fault mod8§| &,~+), >
Input: Complete FSMS and an upper bourn on the number of states of any FSM
implementation o5

Output: A complete test suit€Sw.r.t. the fault model 8, (<,+), />
Step 1. Derive a truncated successor tree of the speddit&SMS. The root of this
tree, which is at the'Dlevel, is the initial stats, of the FSMS; the nodes of the tree
are labeled with subsets of states of the FSNGiven already derivefllevels of the
tree,j = 0, a non-leaf (intermediate) node of fffelevel labeled with a subsét of
states of the FSN®, and an input, there is an outgoing edge from this non-leaf node
labeled withi to the node labeled with thesuccessor of the subg€t A current node
Current, at thek™ level, k > 0, labeled with the subsktof states oS is claimed as a
leaf node if the path from the root to this node B4™ nodes labeled with subsets of
K and the initial statg, is not inK. If the initial state is ifK then the nod€urrent is
claimed as a leaf node if the path from the roothis node traverses 't~ 1+ 1)
nodes labeled with subsetskaf

Step 2. Include intoTS each input sequence which labels the path fromabeto a
leaf node in the above truncated tree.

Theorem 4. Given the specification FSI8 over the input alphabétand an integer

m, Algorithm 3 returns a complete test suite wthe fault model §, (<,+), Jr>.

Proof. Given an implementation FSW, consider the truncated trdeees of the
specification FSMS and the truncated treErees,t of Sn T. Given a path in the
Trees to a node labeled with a subsef states ofS, the corresponding path in the
treeTrees, 1 leads to a node that is labeled with a suBset states of the intersection
S n T such that the first item of each pair@fis in the seK. The number of such
non-empty subsets id¥"- 1. Thus, when a path of tA@ees traverses 9™ nodes
labeled with subsets df the corresponding path in the tréeees,t traverses two
nodes labeled with the same subset and can bensgtedi according to Algorithm 1.
When the initial state of the specification FS/is in the setK then each subset
traversed by the corresponding path in the fess.,t does not contain the initial
state, i.e., the number of such subsets!§¥"- 1. Respectively, wheK contains
the initial state a path can be terminated ifaverses (¥™™+ 1) nodes labeled with
subsets oK (counting the initial state of the specificatidrat labels the root of the
Trees), since the corresponding path in the tfeees,t traverses two nodes labeled

with the same subset or with a subset that conthaitial state of the intersection.
a



As an example, we consider the specification FSkh Figure 1 (left hand) and

derive a complete test suite w.r.t. the fault modgl(<,+), [7,>. At Step 2 a current
node labeled with the stateis claimed as a leaf node if the path from the todhis
node traverses {2'+ 1) = 3 nodes labeled wita A current node labeled with the
stateb is claimed as a leaf node if the path from the todhis node traverse$'2 4
nodes labeled with. Finally, a current node labeled with the subsebj is claimed
as a leaf node if the path from the root to thislentraverses 2+ 1) = 9 nodes
labeled witha, b and {a, b}. A complete test suite has the total length 2Fig\re 4).
Here we notice that Algorithm 3 does not returrhartest test suite. Consider, for
example, a test casgyyyyyy of the above test suite and the corresponding qfettie
truncated successor tréeees: a.a,b{ab}{ab}{ab}{ab}{ab}{ab}. By direct
inspection, one can assure that if an implememtei®M has states 1 and 2 then the
corresponding path in the truncated trEees,r will be already terminated after
{al}{a2}{ bl b2} {bl}{b2},{ab}, By using such analyzing, a complete test suite

with total length 89 can be derived for the faubbdual <S, (<,+), [»>. Thus, more
analysis of termination rules is needed for redydhe length of obtained test suites.
Here we recall (Section 3) that a complete tesesnfi length 11 is derived using the
SC-method w.r.t. the fault modelS<<, /%> under the assumption of «all weather
conditions». According to this condition, each smtpe of the test suite should be
applied at least eight times to a given IUT sirmeaverage, there are eight different
output responses to a test case. Thus, the togthi®f a test suite complete w.r.t. the
fault model §, <, /7> is around 100 and this test suite still doesquarantee the
detection of all implementations with up to 2 statiat are separable from the given
specification FSM if we lack the necessary conataility and/or observability over an
IUT.

However, more rigorous analysis is necessary irrotad refine termination rules,
since in general, the exponential bound on thetleafja test case cannot be reduced
[23].




6. Conclusion and Future Research Work

In this paper, we have proposed a method for the tkerivation against
nondeterministic FSMs with respect to the sepaitgbitlation. This relation can be
used without assuming that an implementation urtdet should satisfy the «all
weather conditions» assumption. Refined notions fafult model and a complete test
suite are given. A test suite is called completetaghe separability relation if it
detects every implementation that is separable ffioen, is not a reduction of) the
given FSM specification. This complete fault cogras guaranteed if each test case
of the test suite is applied to an IUT only oncleTest suite can also detect some
implementations that are not reductions of the ifppaton FSM but are non-
separable from the specification FSM.

Two algorithms are presented for complete tesesidrivation with respect to the
separability relation. The first algorithm can begpked when the set of possible
implementations is the set of all complete nondeigistic submachines of a given
mutation machine. The second algorithm is appliderwthe upper bound on the
number of states of an IUT is known. The propodgdriahms do not return shortest
test suites and more work is needed for reduciegléhgth of obtained test suites.
Unfortunately, the exponential upper bound on #wmgth of a test case cannot be
reduced [23], except of the case when the spetidités deterministic or we consider
only deterministic implementations. For simplictf presentation, in this paper, we
assume that the specification FSM is complete betpgroposed algorithms do not
rely on this assumption and thus, can be extermedrtial specification FSMs.
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