
Testing Nondeterministic Finite State Machines With
Respect to the Separability Relation

Natalia Shabaldina1, Khaled El-Fakih2, Nina Yevtushenko1

1Tomsk State University, 36 Lenin Str.. Tomsk, 634050, Russia
snv@kitidis.tsu.ru, yevtushenko@elefot.tsu.ru

2American University of Sharjah, PO Box 26666, UAE
kelfakih@aus.edu

Abstract. In this paper, we propose a fault model and a method for deriving
complete test suites for nondeterministic FSMs with respect to the separability
relation. Two FSMs are separable if there exists an input sequence such that the
sets of output responses of these FSMs to the sequence do not intersect. In
contrast to the well-known reduction and equivalence relations, the separability
relation can be checked when the «all weather conditions» assumption does not
hold for a nondeterministic Implementation Under Test (IUT). A (complete)
test suite derived from the given (nondeterministic) FSM specification using the
separability relation can detect every IUT that is separable from the given
specification after applying each test case only once. Two algorithms are
proposed for complete test derivation without the explicit enumeration of all
possible implementations. The first algorithm can be applied when the set of
possible implementations is the set of all complete nondeterministic
submachines of a given mutation machine. The second algorithm is applied
when the upper bound on the number of states of an IUT is known.

Keywords: separability relation, testing nondeterministic FSMs.

1. Introduction

A number of conformance testing methods have been developed for deriving tests
when the system specification and implementation are represented by
nondeterministic FSMs [1–16]. Non-determinism occurs due to various reasons such
as performance, flexibility, limited controllability, and abstraction [8] [11] [13] [17].

A number of methods have been proposed for test generation against
nondeterministic FSM specifications with the guaranteed fault coverage with respect
to appropriate fault models. The methods given in [3] and [4] derive test suites with
respect to the equivalence relation for a nondeterministic implementation against a
nondeterministic specification while the methods given in [6], [8], [9], and [10] derive
test suites for a complete deterministic implementation against a nondeterministic
specification with respect to the reduction relation. Two FSMs are equivalent if they

have the same input/output behavior and an FSM T is a reduction of FSM S if the
input/output behavior of T is a subset of that of S. Hierons [11] presented a test
derivation method with respect to the reduction relation when a system
implementation can be nondeterministic. Petrenko and Yevtushenko [15] generalize
the work given in [18] and proposed a method that derives a test suite with respect to
the reduction and equivalence relations for a nondeterministic implementation against
possibly a partial specification.

When deriving test suites with respect to the reduction and equivalence relations
with the guaranteed fault coverage the so-called complete testing assumption [3–4]
(called «all weather conditions» by Milner in [19]) is assumed to be satisfied when
testing a nondeterministic implementation. According to this assumption, if an input
sequence (a test case) is applied a number of times to a nondeterministic
implementation, then all possible output sequences of the implementation to this test
case can be observed. However, when an Implementation Under Test (IUT) has a
limited controllability, as happens, for instance, in remote testing, the complete testing
assumption cannot be satisfied. In this case, the only relation that can be used for the
preset test derivation with the guaranteed fault coverage [20] [21] is the separability
relation defined by Starke in [22]. Two FSMs are separable if there is an input
sequence, called a separating sequence, such that the sets of output responses of these
FSMs to the sequence do not intersect, i.e., the sets are disjoint. It is known [15] [21]
that test suites derived with respect to the equivalence and reduction relations cannot
be used for testing the separability relation. The fact that an FSM with m states is not
equivalent (or not a reduction) of an FSM with n states can always be established by
an input sequence of length up to mn [15], while there exist two FSMs which can be
separated only with an input sequence of exponential length [5].

The separability relation was further studied by Alur et al. in [5] where an
algorithm for deriving a separating sequence for two separable states of an FSM with
n states is proposed and is shown that the upper bound on the length of a shortest
separating sequence is exponential. In [23], it is shown that given FSMs S with n
states and T with m states, the length of a shortest separating sequence is at most 2mn−1
and this upper bound is reachable. An algorithm is proposed for deriving a shortest
separating sequence of the given FSMs. However, experiments with the proposed
algorithm show that on average, the length of a shortest separating sequence is less
than mn and the existence of a separating sequence significantly depends on the
number of nondeterministic transitions in the given FSMs. For all conducted
experiments the upper bound 2mn−1 on the length of a separating sequence was never
reached.

In this paper, we consider the test derivation w.r.t. the reduction relation when «all
weather conditions» assumption may not be held for an IUT. A test suite is called
complete up to the separability relation if it detects every non-reduction of the
specification FSM from a given fault domain that is separable from the given FSM
specification. If each test case of the test suite is applied to an IUT of the fault domain
once and an IUT is separable from the specification FSM, then the IUT will be
detected with such a test suite. However, this test suite can also detect some other
implementations which are non-reductions of the specification FSM but are not
separable with the specification FSM. Correspondingly, we refine the notions of a
fault model and of a complete test suite. We propose a method for deriving a

complete test suite without the explicit enumeration of FSMs of the fault domain
when the fault domain is the set of all submachines of a given mutation machine
(including those which are non-deterministic) and when the fault domain has each
implementation FSM up to m states. We also demonstrate that not every test suite that
is complete w.r.t. the reduction relation under the complete testing assumption can be
used for testing up to the separability relation when each test case is applied to an IUT
at most once.

This paper is organized as follows. Section 2 includes all necessary definitions. In
Section 3 we refine the notion of a fault model and define a complete test suite w.r.t.
the refined fault model. Sections 4 and 5 contain algorithms for building a complete
test suite w.r.t. the refined model where the fault domain is the set of all complete (not
only deterministic) submachines of a given nondeterministic FSM (a mutation
machine) and where the fault domain is the set of all nondeterminisitic FSMs with at
most m states. Section 6 concludes this paper.

2. Preliminaries

A finite state machine (FSM) S is a 5-tuple 〈S, I, O, hS, s1〉, where S is a finite
nonempty set with s1 as the initial state; I and O are input and output alphabets; and
hS ⊆ S×I×O×S is a behavior relation. The behavior relation defines all possible
transitions of the machine. Given a current state sj and input symbol i, a 4-tuple
(sj,i,o,sk)∈ hS represents a possible transition from state sj under the input i to the next

state sk with the output o, usually written as sj
→ oi /

sk. If for each pair (s ,i)∈S× I
there exists (o ,s ′)∈O×S such that (s ,i ,o ,s ′)∈hS then FSM S is said to be complete;
otherwise, FSM S is partial. If for each (s ,i ,o)∈S× I×O there is at most one
transition (s ,i ,o ,s ′)∈hS then FSM S is said to be observable. Given FSM
S = 〈S, I, O, hS , s1〉, state s and an input i, state s ′ is a successor of state s under the
input i or simply an i-successor of state s if there exist o ∈ O such that the 4-tuple
(s ,i ,o ,s ′)∈h S . Given a set of states b ⊆ S and an input i, the set of states b′ is a
successor of the set b under the input i or simply an i-successor of b if b′ is the set of
all i-successors of states of the set b.

In the usual way, the behavior relation hS is extended to input and output
sequences. Given states s ,s ′∈S , input sequence α=i1i2… i k∈I* and output sequence
β=o1o2…o k∈O*. Transition (s , α, β , s ′)∈h S if there exist states s=s1, s2, …
, s k , s k + 1=s′ such that (si,ii,oi,si+1)∈hS, i=1, … , k. As usual, given a defined input
sequence α at state s, hS

O(s, α) denotes the set of all output sequences which FSM S
produces at state s under the input sequence α, i.e. hs

O(s, α) = {β:
∃ s ′∈S [(s ,α,β ,s ′)∈h S] } .

Given an FSM M = 〈M,I,O,hM ,m1〉, an FSM S = 〈S ,I ,O ,h S ,s1〉 , S⊆M , s1 = m1, is
a submachine of FSM M if h S ⊆ hM , i.e., if each transition of FSM S is obtained by
fixing an appropriate transition of the FSM M. The set of all complete submachines,

including those which are non-deterministic, of a complete FSM S is denoted
Subnd(S).

Given FSMs S = 〈S ,I ,O ,h S ,s1〉 and T = 〈T ,I ,O ,hT ,t1〉 , the intersection S ∩ T is
defined as the largest connected submachine of the FSM 〈S×T ,I,O,h,s1t1〉 where
(st ,i ,o ,s ′ t ′)∈h ⇔ (s ,i ,o ,s ′)∈h S & (t ,i ,o ,t ′)∈hT .

Complete FSMs S and T are equivalent, written S ≅ T, if for each sequence α ∈ I*
[hT

O(t1, α) = hS
O(s1, α)], i.e., the sets of output sequences of FSMs S and T under

each input sequence coincide. If there exist sequence α ∈ I* [hT
O(t1, α) ≠ hS

O(s1, α)]

then FSMs S and T are distinguishable, written S ≇ T.
A state t of a complete FSM T is a reduction of a state s of a complete FSM S,

written t ≤ s, if for each sequence α ∈ I* [hT
O(t, α) ⊆ hS

O(s, α)], i.e., the set of output
sequences of FSM S at state s contains the set of output sequences of FSM T at state t
under each input sequence. If there exists sequence α ∈ I* [hT

O(t, α) ⊄ hS
O(s, α)] then

state t is not a reduction of state s, written t ≰ s . FSM T is a reduction of a FSM S,
written T ≤ S, if the reduction relation holds between the initial states, i.e., for each
sequence α ∈ I* [hT

O(t1, α) ⊆ hS
O(s1, α)]. If there exists sequence α ∈ I*

[hT
O(t1, α) ⊄ hS

O(s1, α)] then FSM T is not a reduction of FSM S, written T ≰ S.
A state t of a complete FSM T is r-compatible with a state s of a complete FSM S

[21], written t ≃ s, if there exists a complete FSM B = 〈B,I,O,hB ,b1〉 and state b ∈ B
such that b is a reduction of both states t and s. If states t and s are not r-compatible

then they are r-distinguishable, written t ≄ s. In this case, there exists an r-
distinguishability finite set W of input sequences such that for each complete FSM
B = 〈B,I,O,hB ,b1〉 and each state b ∈ B there exists α ∈ W such that
[hB

O(b, α) ⊄ hS
O(s, α)] or [hB

O(b, α) ⊄ hT
O(t, α)]. FSMs T and S are r-compatible,

written T ≃ S (or r-distinguishable, written T ≄ S) if the corresponding relation
holds between their initial states.

Complete FSMs T and S are non-separable, written T ∼ S, if for each sequence
α ∈ I* [hT

O(t1, α) ∩ hS
O(s1, α) ≠ ∅], i.e., the sets of output sequences of FSMs T and

S under each input sequence intersect. If there exists sequence α ∈ I*

[hT
O(t1, α) ∩ hS

O(s1, α) = ∅] then FSMs T and S are separable, written T ≁ S. In the
latter case, the sequence α is called a separating sequence of FSMs T and S.

3. Fault model and a test suite

When testing w.r.t. the reduction relation the traditional fault model is a triple
<S, ≤ , ℜ>, where S is a specification FSM, ≤ is the reduction relation, fault domain
ℜ is the set of all possible (faulty and non-faulty) implementation FSMs with the
same input and output alphabets as the specification FSM S. As usual, FSMs of the
set ℜ represent all possible faults which can happen when implementing the
specification. An implementation FSM T ∈ ℜ is called conforming if T ≤ S;

otherwise, T is a non-conforming implementation. Given the specification FSM S, a
test case is a finite input sequence of S. As usual, a test suite is a finite set of test
cases. Given an implementation FSM T ∈ ℜ and an output response β of T to a test
case α, the FSM T passes the test case if β is in the set of output responses of the
specification FSM S to α. Otherwise, the FSM T fails the test case. Given a test suite,
an Implementation Under Test (IUT) passes the test suite if the IUT passes each test
case.

In this paper, we generalize the traditional fault model <S, ≤ , ℜ> by adding the

relation ≁ into the fault model. Formally a fault model becomes a 4-tuple

<S, (≤,≁), ℜ>. This model indicates that a test suite is complete up to the subset of ℜ

that contains all implementations T ≁ S. That is a test suite is complete w.r.t. to the

fault model <S, (≤ ,≁), ℜ> if each non-reduction T of S such that T ≁ S can be
detected with this test suite.

Here we note that in FSM-based testing when using a traditional fault model it is
usually assumed that each non-conforming implementation can be detected with a
complete test suite. However, if the assumption of «all weather conditions» fails when
testing a non-deterministic implementation, as happens, for example, in the remote
testing, then a non-deterministic implementation cannot be tested up to the reduction
or up to the equivalence relation. In this paper, we show that in this case, an
implementation can be tested up to the separability relation without relying on «all
weather conditions» assumption. As usual, we assume that both specification and
implementation FSMs are complete. However, we do not require either the
specification FSM or an implementation FSM to be observable.

The relation «not a reduction» contains the separability relation, i.e. for

nondeterministic FSMs ≁ ⊆ ≰ . However, as the following example shows a
complete test suite w.r.t. the fault models <S, ≤, ℜ> is not always complete w.r.t. the

fault model <S, (≤,≁), ℜ>.
Consider the specification FSM S in Figure 1 with states {a,b}, inputs {x, y} and

outputs {1,2,3,4}. States of S are separated by the input y and both states are
deterministically reachable from the initial state a. We use the method for test
derivation [21] and obtain a test suite TS = {xy, yxy, yyy} w.r.t. the fault model
<S, ≤, ℜ2> where ℜ2 contains each complete FSM with up to 2 states over the input
alphabet {x, y}. The test suite TS is complete when the assumption of «all weather
conditions» holds. However, if the assumption of «all weather conditions» fails then
the implementation FSM T in Figure 1 that is separable with S, i.e., is not a reduction
of S, can remain undetected with the test suite TS when each test case is applied at

most once, i.e., TS is not complete w.r.t. the fault model <S, (≤,≁), ℜ2>. By direct
inspection, one can assure that a shortest sequence that separates the initial states a
and 1 of S and T has length four while to each input sequence of length up to three the
sets of output responses of S and T intersect.

Fig. 1. FSMs S and T

The reason is that the r-distinguishability relation between states of the
specification FSM cannot be used when deriving tests w.r.t. the separability relation.
Given two r-distinguishable states s1 and s2 of the specification FSM with an r-
distinguishability set W and a state t of an implementation FSM, there exists a

sequence α ∈ W such that t≰αs1 or t≰αs2. Therefore, if a test suite has two
sequences α1 and α2 that take the specification FSM to states s1 and s2 appended with
the r-distinguishability set W then each implementation FSM that is taken with
sequences α1 and α2 to the same state t will be detected with such a test suite.
Unfortunately, the above property does not hold for the separability relation. Given
two separable states s1 and s2 in the specification FSM with a separating sequence α, a
state t of an implementation FSM can be non-separable with both states s1 and s2
w.r.t. the sequence α.

Given the specification FSM S and the fault domainℜ, a complete test suite w.r.t.

the fault model <S, (≤,≁), ℜ > can be derived by the explicit enumeration of all
machines of the set ℜ. For each T ∈ ℜ that is separable with S, a separating sequence
is derived that is used as a test case to detect a wrong implementation FSM T. The set

of all test cases is a complete test suite w.r.t. the fault model <S, (≤,≁), ℜ >). Below
we include the algorithm given in [23] for deriving a separating sequence for two
complete FSMs.
Algorithm 1. Deriving a separating sequence of two complete FSMs
Input: Complete FSMs S = 〈S, I, O, hS, s1〉 and T = 〈T, I, O, hT, t1〉
Output: A shortest separating sequence of FSMs S and T (if it exists)
Step 1. Derive the intersection S ∩ T. If the intersection is a complete FSM then the
FSMs S and T are non-separable. END Algorithm 1.
Step 2. If the intersection S ∩ T is a partial FSM, then derive a truncated successor
tree of the intersection S ∩ T. The root of this tree, which is at the 0th level, is the
initial state (s1, t1) of the intersection; the nodes of the tree are labeled with subsets of
states of the intersection. Given already derived j tree levels, j ≥ 0, a non-leaf
(intermediate) node of the jth level labeled with a subset P of states of the intersection,
and an input i, there is an outgoing edge from this non-leaf node labeled with i to the
node labeled with the subset of the i-successors of states of the subset P. A current
node Current, at the kth level, k ≥ 0, labeled with the subset P of states, is claimed as a
leaf node if one of the following conditions holds:

S a b T 1 2

x a/0,1,2,3 a/1,2 x 1/0
2/1

1/0,1

y b/1,2 a/0
b/3

 y 1/1
2/0,2

1/3
 2/0

Rule 1: There exists an input i such that each state of the set P has no i-successors
in the intersection S ∩ T.
Rule 2: There exists a node at a jth level, j < k, labeled with subset R of states with
the property: for each state (s', t') of R there exists a state (s, t) of P such that
(s', t') ≤ (s, t).

Step 3. If none of the paths of the truncated tree derived at Step 2 is terminated using
Rule 1 then FSMs S and T are non-separable. END Algorithm 1. Otherwise, if there
is a leaf node, Leaf, labeled with the subset P of pairs of states such that for some
input i, each pair of the set P has no i-successors, then a shortest sequence αi where α
labels the path from the root of the tree to Leaf, is a shortest separating sequence of
FSMs S and T.

Theorem 1. Given FSMs S and T over input alphabet I and output alphabet O,
Algorithm 1 returns a shortest separating sequence of FSMs S and T (if a separating
sequence exists).

Proof. In order to separate FSMs S and T we need an input sequence α under
which the intersection S ∩ T enters the set P of states such that there exists some
input i that separates each pair of the set P, i.e., in the intersection, each state of the
set P has no successors under input i. If none of the paths of the truncated tree derived
at Step 2 of Algorithm 1 is terminated according termination Rule 1, then there is no
such an input sequence α, and thus, FSMs S and T are non-separable. If there exists a
path of the truncated tree derived at Step 2 of Algorithm 1 that is terminated
according termination Rule 1 then the sequence α which labels this path takes the
intersection S ∩ T to the set P such that there exists an input i that separates each pair
of the set P, and thus, αi is a separating sequence of FSMs S and T. Given a current
node Current labeled with a subset P at kth level, let there exist a node at a jth level,
j < k, labeled with subset R of states with the property: for each state (s', t') of R there
exists a state (s, t) of P such that (s', t') ≤ (s, t). In this case, each input sequence that
separates each pair of states of the set P also separates each pair of states of the set R.
Therefore, each path of the truncated tree traversing the node Current can be
terminated, since a shorter separating sequence can be derived when traversing the
node labeled with the set R.

�
As usual, the explicit enumeration of all machines in the fault domain ℜ can be

applied only to small fault domains. Accordingly, in the following section, we
propose a method for deriving a complete test suite w.r.t. the fault model

<S, (≤,≁), ℜ> without the explicit enumeration of the machines in ℜ. This is done by
using a nondeterministic FSM called a mutation machine MM in [9], to represent, in a
compact way, all possible implementations of S. In this case, the fault domain ℜ
equals the set Subnd(MM) of all complete submachines of MM. In Section 5, we extend
the method to the case when the upper bound on the number of states of an IUT is
given.

4. Deriving a complete test suite w.r.t. fault model <S, (≤≤≤≤,≁≁≁≁),
Subnd(MM)>

According to Algorithm 1, in order to derive a complete test suite w.r.t. the fault

model <S, (≤,≁), Subnd(MM)> a truncated successor tree of the intersection S ∩ T
should be derived for each complete submachine T of the FSM MM. Therefore, given a
current node Current labeled with a subset P and input i, we should have an edge
labeled by i not only to the i-successor of P but to all non-empty subsets of the i-
successor. Moreover, we cannot terminate a path comparing the label of its node with
labels of another path, since now these paths can belong to different submachines of
MM. The above two observations lead us to a method below when deriving a complete

test suite w.r.t. the fault model <S, (≤,≁), Subnd(MM)>.

Algorithm 2. Deriving a complete test suite w.r.t. the fault model

<S, (≤,≁), Subnd(MM)>
Input: Complete FSMs S and MM

Output: A complete test suite TS w.r.t. the fault model <S, (≤,≁), Subnd(MM)>
Step 1. Derive the intersection S ∩ MM.
Step 2. Derive a truncated successor tree of the intersection S ∩ MM. The root of this
tree, which is at the 0th level, is the initial state (s1, m1) of the intersection; the nodes
of the tree are labeled with subsets of states of the intersection. Given already derived
j tree levels, j ≥ 0, a non-leaf (intermediate) node of the jth level labeled with a subset
P of states of the intersection, and an input i, there is an outgoing edge from this non-
leaf node labeled with i to the node labeled with each subset of the i-successor of the
subset P. A current node Current, at the kth level, k ≥ 0, labeled with the subset P of
states, is claimed as a leaf node if one of the following conditions holds:

Rule 1: There exists an input i such that each state of the set P has no i-successors
in the intersection S ∩ MM.
Rule 2: There exists a node at the path from the root to this node at jth level, j < k,
labeled with subset R of states with the property: for each state (s', m') of R there
exists a state (s, m) of P such that (s', m') ≤ (s, m).

Step 3. For each path of the tree terminated using Rule 1, include into TS an input
sequence that labels the path appended with an input i such that each state of the set P
corresponded to the final node of the path has no i-successors in the intersection
S ∩ MM.

For each path of the tree terminated using Rule 2, include into TS an input
sequence that labels the path.

Theorem 2. Given FSMs S and MM over the input alphabet I and output alphabet
O, Algorithm 2 returns a complete test suite w.r.t. the fault model

<S, (≤,≁), Subnd(MM)>.
Proof. According to Algorithm 1, when deriving a separating sequence for two

FSMs S and T we use the truncated tree of S ∩ T. In our case, each FSM T that

should be separated with S (if S and T are separable) is a submachine of MM, i.e.,
S ∩ T is a submachine of S ∩ MM. In order to get an appropriate truncated subtree for
each submachine of FSM MM at Step 2 of Algorithm 1, for each non-leaf node
Current labeled with a subset P and each input i, we add an outgoing edge to each
non-empty subset of the i-successor of P. Thus, for each complete submachine T of
MM a truncated tree for separating T and S is a subtree of the tree derived by
Algorithm 2.

�

Example. As an application example, consider FSMs S in Figure 1 and MM in
Figure 2. We apply Algorithm 2 we obtain the intersection (Figure 3) and the
truncated successor tree in Figure 4. Therefore, the set {xx, xyx, xyyx, xyyy, yxx, yxyx,
yxyy, yyxx, yyxyx, yyxyy, yyy} is a complete test suite w.r.t. the fault model

<S, (≤,≁), Subnd(MM)>.

MM 1 2 S∩MM a1 a2 b1 b2

x 1/0,1
1/2,3
2/2,3

1/2,3
2/2,3

 x a1/0,1,2,3
a2/2,3

a1/2,3
a2/2,3

a1/1,2
a2/2

a1/2
a2/2

y 1/1,2,3
2/1,2

1/0,2
2/2,3

 y b1/1,2
b2/1,2

b1/2
b2/2

b1/3

a1/0
b2/3

Fig. 2. FSMs MM and S∩MM

Fig. 3. The truncated successor tree

Sometimes a test suite derived using Algorithm 2 can be shortened by relaxing the

conditions of Step 3. For example, given a tail edge {sm} { s′m′} of some path

terminated using Rule 1 and labeled with an input sequence αi, it can happen that the
set of output responses of the intersection S ∩ MM to i at state sm coincides with that
of the MM at state m. In this case, i is unnecessary for separating new submachines of
MM from S and it is enough to include into a test suite the sequence α instead of αi.
More analysis is needed for reducing a test suite. This is a part of our future work.

We implemented the above algorithm and performed some experiments with FSMs

with small number of states. As our experiments show, the total length of a complete

test suite w.r.t. the fault model <S, (≤,≁), Subnd(MM)> significantly depends on the
number of nondeterministic transitions in the specification and mutation machines.
Table 1 contains a selected part of conducted experiments for FSMs with 5 states.
Each row in the table represents an average test suite length of 100 randomly
generated specification FSMs. Each FSM S is a complete nondeterministic FSM with
|S| states, |I| inputs, |O| outputs, where for 20 percent of pairs (s, i) there is more than
one outgoing transition from state s under input i. Each FSM MM is derived by adding
(up to 25 percent) additional transitions to FSM S.

Table 1. A selected part of conducted experiments

|I| |O| Average test suite length
2 2 2432
3 3 15407
3 4 6826

5. Deriving a complete test suite w.r.t. fault model <S, (≤≤≤≤,≁≁≁≁), ℜℜℜℜm>

Let ℜm be the fault domain of a given specification S that contains each complete
implementation FSM of S, over the same input and output alphabets of S, with up to a
given number m of states. The following theorem can be used for deriving a complete

test suite w.r.t. the fault model <S, (≤,≁), ℜm>. This theorem is a corollary of
Theorem 2 given in our previous work [23].

Theorem 3. Given the specification FSM S with n states, a test suite
12 −mn

I is

complete w.r.t. the fault model <S, (≤,≁), ℜm>.

In the following, based on the idea of counting states of the specification FSM
when deriving a complete test suite w.r.t. the fault model <S, ≤, ℜm>) (a SC-method

[15]), we propose a test derivation method for reducing the test suite
12 −mn

I . In this
case, unlike the above method given in Algorithm 1, we derive a truncated tree using

only the specification FSM S. Before terminating a path at a node labeled with a
subset K of states of the specification FSM, we make sure that for each complete FSM
T with up to m states the path traverses all possible subsets of the Cartesian product
K × T in the intersection S ∩ T, i.e., the path should traverse not less than 2|K|⋅m subsets
of K. If K contains the initial state, then the initial state of the intersection can be
excluded from any subset that labels a non-root node of the tree, i.e., the path should
traverse not less than (2|K|⋅m − 1 + 1) subsets of K.

Algorithm 3. Deriving a complete test suite w.r.t. the fault model <S, (≤,≁), ℜm>
Input: Complete FSM S and an upper bound m on the number of states of any FSM
implementation of S

Output: A complete test suite TS w.r.t. the fault model <S, (≤,≁), ℜm>
Step 1. Derive a truncated successor tree of the specification FSM S. The root of this
tree, which is at the 0th level, is the initial state s0 of the FSM S; the nodes of the tree
are labeled with subsets of states of the FSM S. Given already derived j levels of the
tree, j ≥ 0, a non-leaf (intermediate) node of the jth level labeled with a subset K of
states of the FSM S, and an input i, there is an outgoing edge from this non-leaf node
labeled with i to the node labeled with the i-successor of the subset K. A current node
Current, at the kth level, k ≥ 0, labeled with the subset K of states of S is claimed as a
leaf node if the path from the root to this node has 2|K|⋅m nodes labeled with subsets of
K and the initial state s0 is not in K. If the initial state is in K then the node Current is
claimed as a leaf node if the path from the root to this node traverses (2|K|m − 1 + 1)
nodes labeled with subsets of K.

Step 2. Include into TS each input sequence which labels the path from the root to a
leaf node in the above truncated tree.

Theorem 4. Given the specification FSM S over the input alphabet I and an integer

m, Algorithm 3 returns a complete test suite w.r.t. the fault model <S, (≤,≁), ℜm>.
Proof. Given an implementation FSM T, consider the truncated tree TreeS of the

specification FSM S and the truncated tree TreeS∩T of S ∩ T. Given a path in the
TreeS to a node labeled with a subset K of states of S, the corresponding path in the
tree TreeS∩T leads to a node that is labeled with a subset P of states of the intersection
S ∩ T such that the first item of each pair of P is in the set K. The number of such
non-empty subsets is 2|K|⋅m − 1. Thus, when a path of the TreeS traverses 2|K|⋅m nodes
labeled with subsets of K the corresponding path in the tree TreeS∩T traverses two
nodes labeled with the same subset and can be terminated, according to Algorithm 1.
When the initial state of the specification FSM S is in the set K then each subset
traversed by the corresponding path in the tree TreeS∩T does not contain the initial
state, i.e., the number of such subsets is 2(|K|−1)⋅m − 1. Respectively, when K contains
the initial state a path can be terminated if it traverses (2(|K|−1)⋅m + 1) nodes labeled with
subsets of K (counting the initial state of the specification that labels the root of the
TreeS), since the corresponding path in the tree TreeS∩T traverses two nodes labeled
with the same subset or with a subset that contains the initial state of the intersection.

�

As an example, we consider the specification FSM S in Figure 1 (left hand) and

derive a complete test suite w.r.t. the fault model <S, (≤,≁), ℜ2>. At Step 2 a current
node labeled with the state a is claimed as a leaf node if the path from the root to this
node traverses (2m−1 + 1) = 3 nodes labeled with a. A current node labeled with the
state b is claimed as a leaf node if the path from the root to this node traverses 2m = 4
nodes labeled with b. Finally, a current node labeled with the subset {a, b} is claimed
as a leaf node if the path from the root to this node traverses (22m−1 + 1) = 9 nodes
labeled with a, b and {a, b}. A complete test suite has the total length 277 (Figure 4).

Here we notice that Algorithm 3 does not return a shortest test suite. Consider, for
example, a test case xyyyyyyy of the above test suite and the corresponding path of the
truncated successor tree TreeS: axayby{ a,b} y{ a,b} y{ a,b} y{ a,b} y{ a,b} y{ a,b}. By direct
inspection, one can assure that if an implementation FSM has states 1 and 2 then the
corresponding path in the truncated tree TreeS∩T will be already terminated after
{ a1} x{ a2} y{ b1,b2} y{ b1} y{ b2} y{ a,b} y. By using such analyzing, a complete test suite

with total length 89 can be derived for the fault model <S, (≤,≁), ℜ2>. Thus, more
analysis of termination rules is needed for reducing the length of obtained test suites.
Here we recall (Section 3) that a complete test suite of length 11 is derived using the
SC-method w.r.t. the fault model <S, ≤, ℜ2> under the assumption of «all weather
conditions». According to this condition, each sequence of the test suite should be
applied at least eight times to a given IUT since, on average, there are eight different
output responses to a test case. Thus, the total length of a test suite complete w.r.t. the
fault model <S, ≤, ℜ2> is around 100 and this test suite still does not guarantee the
detection of all implementations with up to 2 states, that are separable from the given
specification FSM if we lack the necessary controllability and/or observability over an
IUT.

However, more rigorous analysis is necessary in order to refine termination rules,
since in general, the exponential bound on the length of a test case cannot be reduced
[23].

Fig. 4. The truncated successor tree TreeS

6. Conclusion and Future Research Work

In this paper, we have proposed a method for the test derivation against
nondeterministic FSMs with respect to the separability relation. This relation can be
used without assuming that an implementation under test should satisfy the «all
weather conditions» assumption. Refined notions of a fault model and a complete test
suite are given. A test suite is called complete up to the separability relation if it
detects every implementation that is separable from (i.e., is not a reduction of) the
given FSM specification. This complete fault coverage is guaranteed if each test case
of the test suite is applied to an IUT only once. The test suite can also detect some
implementations that are not reductions of the specification FSM but are non-
separable from the specification FSM.

Two algorithms are presented for complete test suite derivation with respect to the
separability relation. The first algorithm can be applied when the set of possible
implementations is the set of all complete nondeterministic submachines of a given
mutation machine. The second algorithm is applied when the upper bound on the
number of states of an IUT is known. The proposed algorithms do not return shortest
test suites and more work is needed for reducing the length of obtained test suites.
Unfortunately, the exponential upper bound on the length of a test case cannot be
reduced [23], except of the case when the specification is deterministic or we consider
only deterministic implementations. For simplicity of presentation, in this paper, we
assume that the specification FSM is complete but the proposed algorithms do not
rely on this assumption and thus, can be extended to partial specification FSMs.

References

1. Kloosterman, H.: Test derivation from non-deterministic finite state machines.
Proceedings of the IFIP Fifth International Workshop on Protocol Test Systems,
Canada, (1992) 297–308.

2. Tripathy, P., Naik, K.: Generation of adaptive test cases from nondeterministic
Finite State models. IFIP Trans. C: Commun. System C-11, (1993) 309–320.

3. Luo, G., Petrenko, A., Bochmann, G. v.: Selecting test sequences for partially
specified nondeterministic finite state machines. Proc. 7th International Workshop
on Protocol Test Systems, 1994.

4. Luo, G., Bochmann, G. v., Petrenko, A.: Test selection based on communicating
non-deterministic finite-state machines using a generalized Wp-method. IEEE
Transactions on Software Engineering, 20(2), (1994) 149–161.

5. Alur, R. Courcoubetis, C., Yannakakis, M.: Distinguishing tests for
nondeterministic and probabilistic machines. Proc. the 27th ACM Symposium on
Theory of Computing (1995) 363–372.

6. Petrenko, A., Yevtushenko, N., Bochmann, G. v.: Testing deterministic
implementations from their nondeterministic specifications. Proc. 9th International
Workshop on Protocol Test Systems, (1996) 125–140.

7. Boroday, S. Yu.: Distinguishing Tests for Non-Deterministic Finite State
Machines. Proc. IFIP TC6 11th International Workshop on Testing of
Communicating Systems (1998) 101–107.

8. Hierons, R. M.: Adaptive testing of a deterministic implementation against a
nondeterministic finite state machine. The Computer Journal, 41(5), (1998) 349–
355.

9. Koufareva, I. Evtushenko, N., Petrenko, A.: Design of tests for nondeterministic
machines with respect to reduction. Automatic Control and Computer Sciences,
USA, 3 (1998).

10. Hierons, R. M.: Using candidates to test a deterministic implementation against a
non-deterministic finite state machine, The Computer Journal, 46(3), (2003) 307–
318.

11. Hierons, R. M.: Testing from a non-deterministic finite state machine using
adaptive state counting. IEEE Transactions on Computers, 53(10), (2004) 1330–
1342.

12. Hierons R. M., Ural, H.: Concerning the ordering of adaptive test sequences, Proc.
23rd IFIP International Conference on Formal Techniques for Networked and
Distributed Systems (Lecture Notes in Computer Science, vol. 2767), Springer,
(2003) 289-302.

13. Hwang, I., Kim, T., Hong, S., Lee, J.: Test selection for a nondeterministic FSM.
Computer Communications, 24 (2001) 1213–1223.

14. Zhang, F., Cheung, T.: Optimal transfer trees and distinguishing trees for testing
observable nondeterministic finite-state machines. IEEE Transactions on Software
Engineering, 29(1), (2003) 1–14.

15. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for
partial nondeterministic FSM. Proc. 5th International Workshop on Formal
Approaches to Testing of Software (2005).

16. Miller, R., Chen, D., Lee, D., Hao, R.: Coping with nondeterminism in network
protocol testing. In Proceedings of the 17th IFIP International Conference on
Testing of Communicating Systems, USA (2005).

17. Tanenbaum, A. S. Computer Networks. Prentice-Hall, NJ (1996).
18. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM

specifications. IEEE Trans. on Computers, 54(9), (2005) 1154–1165.
19. Milner. R.: A Calculus of Communicating Systems. Lecture Notes in Computer

Science, vol 92 (1980).
20. Spitsyna, N., Trenkaev, V., El-Fakih, K., Yevtushenko, N.: FSM interoperability

testing, Work In Progress: 23rd International Conference on Formal Techniques for
Networked and Distributed Systems (2003).

21. Spitsyna, N.: FSM-based test suite derivation strategies for discrete event systems.
Ph.D. Thesis, Tomsk State University, 1–158 (2005).

22. Starke, P.: Abstract automata, American Elsevier, 3–419 (1972).
23. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the Separability Relation

between Finite State Machines. Submitted to Software Testing, Verification and
Reliability (2006).

