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Abstract: The success and the acceptance of intrusion detection systems 
essentially depend on the accuracy of their analysis. Inaccurate signatures strongly 
trigger false alarms. In practice several thousand false alarms per month are 
reported which limit the successful deployment of intrusion detection systems. 
Most today deployed intrusion detection systems apply misuse detection as 
detection procedure. Misuse detection compares the recorded audit data with 
predefined patterns, the signatures. These are mostly empirically developed based 
on experience and knowledge of experts. Methods for a systematic development 
have been scarcely reported yet. A testing and correcting phase is required to 
improve the quality of the signatures. Signature testing is still a rather empirical 
process like signature development itself. There exists no test methodology so far. 
In this paper we present first approaches for a systematic test of signatures. We 
characterize the test objectives and present different test methods. 

 
 

1 Motivation 

 
The increasing dependence of human society on information technology (IT) systems 

requires appropriate measures to cope with their misuse. The enlarging technological 
complexity of IT systems increases the range of threats to endanger them. Besides pre-
ventive security measures reactive approaches are more and more applied to counter 
these threats. Reactive approaches allow responses and counter measures when security 
violations happened to prevent further damage. Complementary to preventive measures 
intrusion detection and prevention systems have proved as important means to protect IT 
resources. Meanwhile a wide range of commercial intrusion detection products is 
offered, especially for misuse detection. Nevertheless intrusion detection systems (IDSs) 
are not still deployed in a large scale. The reason is that the technology is considered not 
matured enough. Lacking reliability often resulting in high false alarm rates questions 
the practicability of intrusion detection systems [9]. 

The security function intrusion detection deals with the monitoring of IT systems to 
detect security violations. The decision which activities have to be considered as security 
violations in a given context is defined by the applied security policy. Two main com-
plementary approaches are applied: anomaly and misuse detection. Anomaly detection 
aims at the exposure of abnormal user behavior. It requires a comprehensive set of data 
describing the normal user behavior. Although much research is done in this area it is 



difficult to achieve so that anomaly detection has currently still a limited practical 
importance. Misuse detection focuses on the (automated) detection of known attacks des-
cribed by patterns, called signatures. These patterns are used to identify an attack in an 
audit data stream. This approach is applied by the majority of the systems used in 
practice. Their effectiveness, however, is also still limited. There are several reasons for 
this. On the one hand, many systems mainly confine themselves to detecting simply 
structured network based attacks, often still in a post-mortem mode. Multi-step or distri-
buted attacks which are getting an increasing importance are not covered. On the other 
hand, the success and the acceptance of misuse detection systems essentially strongly 
depend on the conciseness and the topicality of the applied signatures. Imprecise sig-
natures heavily confine the detection capability of the intrusion detection systems and 
lead to false alarms. The reasons of this detection inaccuracy can only in part imputed to 
qualitative restrictions of the audit functions of the monitored system or network. They 
must be rather sought in the signature derivation process itself. In particular, the de-
rivation of signatures starting from given exploits often appears as weak point. An attack 
represents a sequence of actions that exploits a vulnerability in a program, operating 
system, or network. The derivation of a signature to detect the attack is mostly based on 
experience and expert knowledge. Methods for a systematic derivation have scarcely re-
ported yet. Automated approaches to reusing design and modeling decisions of available 
signatures also do not exist. This results in relative long development times for signa-
tures causing inappropriate vulnerability intervals [9]. 

In order to improve the accuracy of the derived signatures the signatures must be 
tested and corrected. The objective of a signature test is to prove, whether the derived 
signature is capable to exactly detect an attack in an audit trail. As the derivation process 
itself the testing of signatures is still rather empirical. There exist no test approaches and 
methods yet. This paper focuses on the testing of signatures. It present first approaches 
for a systematic test of signatures. The paper is structured as follows. In Section 2 we 
consider the signature derivation process and outline the reasons for the detection 
shakiness of current signatures. Section 3 backs up the need for a signature tests and 
outlines the two main issues signature tests have to cope with. In Section 4 we present 
four test strategies to testing signatures and describe their procedures. Section 5 sketches 
the application of one test strategy to a concrete signature. Some final remarks conclude 
the paper. 

2 On the derivation of signatures 

An Attack consists of a set of related security relevant actions or events in a system, 
e.g. a sequence of system calls or network packets. The task of an audit function is to 
capture information about the execution of each of these actions by generating audit data 
records that can be used for analysis. Misuse detection systems try to detect sequences 
that correspond to known signatures. Thereby it is assumed that security violations do 
manifest themselves in distinct audit data records, i.e. they are observable, and that they 
can be detected on the basis of these audit data, i.e. they are detectable.  

Fig. 1 depicts these relations. To run an attack the attacker uses exploits which are 
usually known shortly after their appearance. These are programs or pieces of codes to 
execute an attack which exploit vulnerabilities (e.g. coding faults, configuration errors 
etc) of the target system. Exploits have various appearances, e.g. program code, protocol 



packets or scripts. They contain of a sequence of operations or actions (at least one) 
which cause an abnormal behavior of the attacked host or network.  

 
Fig. 1: Exploits, attack manifestations, and signatures 

An attack represents a sequence of security relevant actions. They can be usually divided 
in three steps: 

(1) to transfer the attacked system in a vulnerable state, 
(2) to exploit the vulnerability to intrude the system, and 
(3) to access to the compromised system and/or to change its system data. (This is 

the proper objective of the attack.) 
A signature can only detect step (1) and (2) of the attack. They are predictable and 

describable based on the knowledge about the vulnerability. The proper concern of the 
attacker cannot be described because it is not predictable. Thus signatures comprise only 
the first two steps of an attack. 

The execution of attacks leaves traces which can be audited by IDS sensors. These 
traces are called manifestations of the attacks. Fig. 1 shows the traces for the example 
exploits. The traces are not stated separately. They are hidden in the audit trail. The latter 
consists of a sequence of records which contain the traces of all actions executed by the 
system. In order to separate the attack manifestations the audit trail is searched for attack 
patterns. These patterns are defined by signatures. A signature of an attack describes the 
criteria (patterns) required to identify the manifestation of an attack in an audit trail. It is 
possible that several attacks of the same type are executed simultaneously and proceed 
independently. Therefore it is necessary to be able to distinguish different instances of an 
attack. A signature instance identifies the manifestation of an attack instance in the audit 
data stream. Signatures are usually described by means of finite state automata, Petri 
nets, or special attack description languages [7]. Typically each intrusion detection sys-
tem uses its own language which is customized to the applied analysis method. Fig. 2 
shows an example of a signature modeling in a Petri net like languages described in [8]. 

Audit trail and signature Exploit and associated events

attack 1: 
vi script 
chmod a+s script 
ln –s link script 
rn link –link 
-link 
 
program 1: 
fopen(...); 
fprintf(...); 
fread(); 
fork(); 
exec(); 
 
program 2: 
file << “...”; 
fuf = file.getline(); 
fork(); 

 
 
open, script,10,141,… 
write, 4, 10, 400, ...; 
open ..., 12, 200, ...; 
read, 4, 10, 400, ...; 
chmod, s, script,11,129,… 
write, 2, 12, 200, ...; 
clink, link, script,18,13,… 
read, 2, 12, 200, ...; 
rename, link,–link,10,11,…
fork, 12, 200, 201, ...; 
exec, –link,11,51,… 
fork, 10, 400, 401, ...; 
exec, 3, 12, 201, ...; 
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attack 1: 
open, script,10,141,… 
chmod, s, script,11,129,… 
clink, link, script,18,13,… 
rename, link,–link,10,11,…
exec, –link,11,51,… 
 
program 1: 
open ..., 12, 200, ...; 
write, 2, 12, 200, ...; 
read, 2, 12, 200, ...; 
fork, 12, 200, 201, ...; 
exec, 3, 12, 201, ...; 
 
program 2: 
write, 4, 10, 400, ...; 
read, 4, 10, 400, ...; 
fork, 10, 400, 401, ...; 

signature 

 



 
Fig. 2: Modeling of a signature in a Petri net like language [8] 

The detection power of signature analysis depends on the accuracy of the signatures 
applied. To estimate the detection quality of intrusion detection systems usually two 
measures are applied: the number of security violations not detected (false negatives) 
and the frequency of false alarms (false positives). Not detected security violations are 
caused by over specification of the signatures, whilst false alarms are triggered by 
inaccurate specifications. The experience shows that not detected security violations 
have a more grave impact on the systems behaviour than false alarms. Nevertheless, a 
high false positives rate reveals as a severe problem for running intrusion detection 
systems in practice. Since misuse detection systems apply deterministic methods, the 
search for signature patterns, strictly speaking, excludes false positives per definition 
(assuming an effective audit function). The reality, however, is different, e.g. [3] reports 
about 10.000 false alarms per month for the use of commercial intrusion detection 
systems. Other evaluations [2], [5], confirm this experience. Small false positive rates 
are an important presumption for the acceptance of misuse detection systems in practice. 
Inaccurate signatures, therefore, strongly confine the detection power and acceptance of 
misuse detection systems.  

The reasons for the detection shakiness of signatures are only in part caused by quali-
tative shortages of the used audit functions. They lie in the signature derivation process 
itself. The derivation of signatures from exploits is the actual weak point. Signatures are 
mostly empirically derived based on long-term experience of the security administrators. 
There are scarcely heuristics and methods for a systematic derivation. This often results 
in inaccurate signatures which have to be step-by-step refined during practical deploy-
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ment. Therefore, relative long periods for the derivation of good, practically valuable 
signatures are needed. This means, on the other hand, long vulnerability intervals of the 
respective systems which cannot be accepted in practice (see [6]). Even if accurate sig-
natures are found further adaptations may be required. This is due to the diversity of 
today IT environments which force further adaptations to the given deployment environ-
ment and the security policies applied. Additional adaptations and enhancements of the 
signatures are needed when new vulnerabilities or attack mutations become known. The 
derivation and the maintenance of signatures, therefore, represent one of the most com-
plex tasks for the development and deployment of misuse detection systems.  

Only a few approaches have been reported up to now on the systematic derivation of 
signatures from exploits. Cheung et al. try to simplify the signature design by applying 
attack models [1]. This approach corresponds to the design patterns of software en-
gineering. It allows the reuse of architectural design decisions. The reuse of concrete 
modeled signatures or signature fragments is, however, not possible. Rubin et al. des-
cribe how mutants can be generated for a given attack [10]. Attack mutants exploit the 
same vulnerabilities as basis attack without, however, performing the same security 
relevant actions. If a signature for an attack mutant is supposed to be developed the 
signature of the basis attack could be reused, if available. Rubin et al. further describe in 
[11] a refinement of signatures based on formal languages. This approach can help the 
signature developer to remove triggers for false positives caused by imprecise signatures. 
The procedure, however, assumes an almost error-free reference signature. In [13] an 
approach is proposed to use diversity to modeling an implicit complete attack model. 
This has the advantage of an improved model, however multiple specifications are 
needed. Larson et al. [4] present a tool for extracting the significant events of an attack 
from the audit trail. It executes the attack and records the respective audit data. Then the 
differences between these audit data and an attack free audit trail are derived. The pro-
blem of deriving a signature from this difference, however, remains unsolved. In [12] the 
authors presented an approach to reusing patterns of existing signatures for the 
development of new signatures. It exploits the fact that similar attacks produces similar 
traces so that existing signatures may provide an informative basis for the development 
of new signatures. The approach is based on an iterative abstraction of signatures. Based 
on a weighted abstraction tree it selects those signatures or signature fragments, 
respectively, which possess similarities with the novel attack. The reuse of proved 
structures may not only reduce the efforts of the signature derivation process but it can 
also considerably shorten the costly test and correction phase.  

3 On the test of signatures 

Inaccurate signatures strongly limit the detection power of misuse detection systems 
as well as their economic profitability. As discussed the signature development process 
is complicated and tedious. Systematic derivation procedures are scarcely available. A 
certain inaccuracy is, therefore, inherent to the derived signatures. A testing and cor-
recting phase is indispensable to improve the quality of the signatures. This phase is an 
essential part of the signature development process independently of the fact, whether 
the signatures are derived systematically or by experience.  

The objective of a signature test is to prove the accuracy of the given signature by ap-
plying it to an audit trail which contains traces of the respective attack. If the signature 



does not completely detect all traces it must be corrected to approximate the ideal 
signature, i.e. the signature which describes all manifestations MI of the attack. Normally 
the signature derivation process does not induce ideal signatures. The derived signatures 
are either under or over specified. 

Under specified signatures describe beside action sequences which are required for a 
successful attack also actions which either correspond to legitimate behavior or which do 
not exploit the vulnerability. That means they describe a manifestation set MU which 
represents a superset of the manifestations of the ideal signature MI, i.e. MI ⊂ MU. Under 
specified signatures thus increase the false positives rate. A test strategy to detect under 
specified signatures has to investigate, whether the actions recorded in the audit trail 
really exploit the vulnerability. To derive test data actions have complementarily to be 
assigned to the audit events. These action sequences are then tested on a dedicated 
system concerning the exploitation of the vulnerability. If the vulnerability is not ex-
ploited a specification error exists and the signature must be corrected. The difficulties 
and limits of this approach lie beside the derivation of the action sequence in the 
assessment, whether the vulnerability is really exploited. 

Over specified signatures do not detect all variants of the attack, i.e. there exist action 
sequences which successfully exploit the vulnerability but are not captured by the 
signature. The set of detected manifestations MO is a subset of the manifestations of the 
ideal signature MI, i.e.  MO ⊂ MI ⊂ MU. Over specified signatures induce not detected 
security violations, i.e. they increase the false negatives rate. The objective of a test and 
correction strategy for detecting over specified signatures is to enhance the signature to 
approximate the ideal signature. This can be achieved by extending the signature, by 
substituting actions, and by changing the order of the actions. The test strategy has to 
ensure that the detection of the attack remains guaranteed, if some actions are replaced 
by semantically equivalent actions, and that the vulnerability is further exploited. 

4 Methods for the test of signatures 

In this section we present four methods for testing signatures. The main approaches 
deal with the tests for under and over specified signatures. Furthermore, we present a 
preliminary test and a test of escape events. 

4.1 Preliminary test 

The objective of preliminary tests is to ensure that the derived signatures do not 
contain grave errors.  

 
Test method: The test consists of two steps. Test step (1): Assuming a newly derived 

signature S of attack A. This attack is first executed on a dedicated system. The resulting 
audit trail T is recorded and analyzed to determine the events representing traces of A. 
We call these events characterizing events CE⊂T here. In test step (1) S is tested 
against CE, i.e. it is proved, whether a misuse detection systems containing signature S 
detects A. If the test fails a grave error in the signature specification can be assumed. 

 



Test step (2): Now S is tested against the whole audit trail T, i.e. it is proved, whether 
the misuse detection system triggers an alarm when A is executed. If the test passes the 
test procedure can be continued. A negative test outcome usually indicates that the newly 
derived signature does not correctly correlate the characterizing events CE in T. Reasons 
for this are not exactly or too weakly specified signature conditions.  

 
The test method can be mostly automated depending on the applied attack description 

language. 

4.2 Tests for under specified signatures 

Under specified signatures contain specifications of action or event sequences which 
correspond to legitimate behavior or which do not exploit system vulnerabilities. They 
cause false positives.  

The test methods presented in the following to detect under specified signatures is 
based on the mapping relation δ of the IDS sensor which maps the various security 
relevant actions into audit events. This relation is usually bijective realized in intrusion 
detection systems, i.e. there is a δ-1. This means that the corresponding action sequences 
of the attack can be derived from the audit events demanded by the signature. The 
objective of the tests is to validate whether these action sequences corresponds to a 
successful attack. If not, the signature contains a specification error which triggers a 
false alarm. 

 
Test method: The proposed test method comprises 3 steps. In step (1) appropriate 

test cases are derived. Since there is a wide range of conditions which have to be 
fulfilled between the correlating audit events it is not possible like in many other tests to 
exhaustively test all possible action sequences. Therefore an appropriate subset of test 
cases has to be selected depending of the coverage aimed at. Here either path or test 
coverage criteria can be applied as in software testing. 

 
Step (2) derives for the selected test cases the corresponding action sequences from 

the signatures by means of δ-1. Signatures specify the properties of the audit events, e.g. 
type, parameters etc during the attack. They also define conditions regarding the 
appearance and the context of the correlated audit events. Furthermore, the temporal 
order of the audit events can be demanded. If these conditions are taken into account the 
corresponding attack can be re-established. 

 
In step (3) each derived action sequence is executed on a vulnerable system to prove 

whether they correspond to attacks. This first requires that correct attack conditions are 
established, especially temporal constraints have to be preserved if necessary. This is a 
decisive precondition because attacks are only successful, when certain conditions are 
fulfilled, e.g. a load situation. However, not all attacks depend on additional conditions. 
We distinguish deterministic successful attacks, attacks with preconditions and brute 
force attacks. Former attacks are independent of special system or application 
circumstances, therefore correct execution of a deterministic attack is always successful. 
Consequently this class of attacks is unrestricted testable with this test strategy. In the 
case of attacks with preconditions, the vulnerability is only exploitable if specific system 
parameters are fulfilled, e.g. special system load situations. Therefore the necessary 



preconditions must be synthesized before the test. The class of brute force attacks 
summarizes all attacks which do not exploiting a concrete vulnerability, e.g. brute force 
attacks of single authentication systems. Signatures for this kind of attacks are not 
testable with this test strategy.  

The detection of a successful attack execution depends on the attack strategy and the 
exploited vulnerability, respectively. For disclosing this, four approaches may be gene-
rally applied. (a) Instrumentation of the exploit, i.e. the derived action sequence has to be 
changed so that a significant system change is observable. This can be done, for inst-
ance, by appending additional actions to the derived attack actions, e.g. setting up a root 
file or starting/terminating a privileged system process. (b) Instrumentation of the 
vulnerability, i.e. the vulnerable system or code is changed so that the exploitation of the 
vulnerability becomes observable. This is, for instance, useful, if the program code is 
available but the vulnerable system (e.g. a technical facility) cannot be patched. (c) 
Instrumentation of the whole system: This approach compares normal system behaviour 
recorded by an appropriate audit component with the system behaviour after executing 
an attack. Unlike the other approaches a detailed observation of the system is required. 
On the other hand, no interference of the attack and the system is needed. (d) Using a 
test oracle which passively examines the system behaviour. This approach though is not 
able to detect attacks which do not destroy systems functions, e.g. backdoors. 

 
The test method can be automated if certain constraints are fulfilled which is often 

given. Table 1 contains these constraints. However, there are also shortages which limit 
the practicality of the method. One problem is that not every action generates an audit 
event so that δ-1 does not always re-establish the complete action sequence. It is not 
always required to correlate all events of an attack to detect the attack. The crucial issue, 
however, is to re-establish the attack preconditions. This requires a detailed knowledge 
of the system behaviour and the attack strategy by the test engineer. 

 
Step Objective Can be automated?

1 Test case selection yes, using typical approaches of software testing 

2 Derivation of action 
sequences yes, if  bijective IDS sensors are deployed 

3 

I Establishing the correct 
attack conditions 

yes, for deterministic attacks
yes, if constraints can be automated re-established 

II Execution of action 
sequences yes 

III Test of success yes, if detection of a successful attack can be automated 

Table 1: Automation degree of test steps 

4.3 Tests for over specified signatures 

Over specified signatures do not capture all action sequences which successfully 
exploit a given vulnerability. Attackers often replace one or more actions of the attack by 
semantically equal actions. The aim of this transformation is to change the traces of the 
attack so significantly that the attack is not detected by the intrusion detection system. 
The proper attack strategy, however, remains preserved, i.e. the given vulnerability is 
further exploited for running the attack. If the signature does not recognize these attacks 



it produces false negatives. Test strategies for over specified signatures aim at detecting 
this detection weakness. Before describing the test strategy we first have to introduce the 
different types of transformations to change the attack. 

 
There are three types of transforming an attack: No-Op insertion, permutation of 

actions, and action substitution. 
 
No-Op insertion: In this transformation redundant actions are added which do not 

change the attack but its traces in the audit trail. This transformation tries to exploit 
deficiencies of the intrusion detection system to correlate audit events. The evasion of 
intrusion detection by means of No-Op insertion due to a signature error can be excluded 
as long as the signature does not strictly demand a direct timed sequence of certain audit 
events. This demand is only useful in very seldom, specific scenarios. Therefore a signa-
ture test can be waived for this transformation. 

 
Permutation of actions: This transformation changes the order of certain actions of 

the attack and thus the sequence of their related audit events. Two actions can be 
changed if their execution and their influence on the attack do not depend on each other. 
These transformations allow bypassing signatures with over specified event sequences. 
The reason for this kind of over specification is mostly a not correct understanding of the 
semantics of the attack actions.  

 
Action substitution: This transformation replaces single actions or action sequences 

by semantically equal action sequences. Thus the IDS sensor registers different actions 
and events, respectively, although the result of the actions remains the same. A simple 
example is the substitution of the file renaming operation mv file1 file2 by a copy and an 
erase operation: cp file1 file2; rm file1. 

 
Permutations and substitutions of attack actions produce isomorphic action sequences 

without enlarging the attack/exploit by redundant actions. Now we present a strategy to 
test a signature on the detection of isomorphic attack sequences. First we introduce some 
needed basic notions.  

 
An action a of an attack changes, erases, creates, or uses a certain type of system 

resource, an object. The object type O characterizes the type of the system resource, e.g. 
a process, a socket, or a file. It is represented by the tuple (P, A, r, f) where P defines the 
set of object properties. The object type file, for instance, possesses among others the 
properties file name/path, creation date and access rights. A describes the set of actions 
of the object type O. Some of them can change the properties of O. The relation r: a p 
with a є A, p ⊆ P describes for each action a є A the subset pa ⊆ P of the object 
properties which are changed by a. Finally f defines a relation f:a,p Aa, with a є A, p ⊆ 
P, Aa ⊆ A which defines for a given action a the set of semantically equivalent actions Aa 
preserving the properties of the object type unchanged. An object o є O is an instance of 
O which is characterized by the concrete property values. The object types together with 
the associated relations can be defined for a concrete system by an expert with average 
effort. These definitions have to be performed mostly once per system (e.g. with host 
based intrusion detection systems once per operating system or monitored application) 
and can be used for all signature tests concerning the system. 



 
We now describe rules for transforming action sequences into semantically equal 

sequences using object types. Each action belongs to a certain object type. The infor-
mation which action can be executed on an object is sufficient. This information can be 
easily derived from the signature by the test engineer. If the object types are given each 
action or action sequence, respectively, can be assigned an object type. Thus an action 
sequence a1a2a3….an with ai є A, can be mapped on objects o1o2o3…on (with oi=oj, if ai 
and aj relate on the same object). An action ai can be replaced by a semantically equal 
action ái if (1) ái compared to ai does not change additional properties of the respective 
object, or (2) if the additionally changed object properties by ái are not changed by 
former or later actions in the action sequence. Thus all substitutable action sequences 
á1á2á3…án   
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from the original sequence a1a2a3….an by means of the respective object types and the 
relations r and f. The approach can be extended without loss of generality to replace 
single actions by action sequences and vice versa. 

 
Permutations of actions in an action sequence require additional specifications by the 

test engineer to indicate dependencies between objects and between the actions of an 
object. In many cases though the following semantics preserving permutation can be 
performed: An action ai is almost always exchangeable with action aj (i<j), if ai and aj 
relate to the same object and ai influences other properties than aj (r(ai) ∩ r(aj) = Ø). 
Further there exists no action al with i<l<j which uses the object associated with ai and 
aj. If such an action exists and ai is exchanged with aj then action al is executed under 
different conditions. The order of actions which create and erase objects remains 
unchanged due to the above mentioned rule that they change all properties. If the test 
engineer further specifies which objects are independent of each other so the associated 
actions can be exchanged as long as the before mentioned condition is fulfilled. This 
specification requires though certain knowledge about the system behaviour and the 
attack strategy. It is required once per signature. 

 
The described substitution and permutation rules do not cover the whole range of 

possible action sequence transformations. There are certain types of attacks which can be 
transformed into action sequences which do correspond to a valid attack. These excep-
tional cases must be handled by the test engineer. 

 
Test method: For the test, all action sequences are derived which distinguish 

concerning action sequence. This can be done analogously to step (1) and (2) of test 
method 2 whereby path coverage is applied in step (1). Next all possible combinations 
are generated for each action sequences according to the above given rules. Thereafter it 
is proved using an intrusion detection system, whether one of the derived action 
sequences is not detected by the signature. In this case the intrusion detection system 
does not trigger an alarm for this signature and action sequence. If the signature does not 
detect a transformed action sequence it has to be checked, whether this action sequence 
corresponds to a valid attack sequence. This test can be performed analogously to test 



method 2. If the test outcome is positive the signature has to be completed so that this 
sequence is also detected. 

4.4 Test of escape events 

Signatures only describe action sequences which represent successful attacks. When 
during analysis events are recognized which make the successful completion of an attack 
impossible the analysis has to be stopped to avoid false negatives and, of course, for 
performance reasons. Actions which prevent the attack to be completed are called escape 
events. They transfer the signature into the initial state. Many escape events are 
implicitly given by contrary events. For example, in Solaris OS the system calls fork and 
exit for creating and terminating processes are complementary events. If the creation of a 
new process is an indispensable condition for the success of an attack fork is a 
significant part of the signature. The corresponding escape event is exit. Escape events 
are, therefore, an indispensable part of the signature to stop or to re-initialize attack 
tracking. Consequently, their handling has to be tested.  

 
For this, all events specified in the signature are again converted into actions 

according to step (2) test strategy 2 (comp. Section 4.2). Next the contrary events are 
assigned to each signature event using lists of actions with their corresponding contrary 
actions. The resulting sequence of contrary actions is then again converted into the 
corresponding events. This can be done using an IDS sensor. In the last step it is proved, 
whether the signature handles each contrary event. If this is not the case, the escape 
event is generally not modeled in the signature.  

 

5 Example: Test for under specified signatures 

Signatures are specified using various description languages. Therefore the test sce-
narios has to be adapted to the given signature description language or semantic model, 
respectively. We now demonstrate this for the test method for under specified signatures 
with a concrete signature description language. We use EDL (Event Description Lan-
guage) [8] which is based on a Petri-net like modeling approach. It supports the spe-
cification of complex multi-step attacks and possesses a high expressiveness and ne-
vertheless allows for efficient analysis. Before describing the test procedure we first out-
line some essential features of EDL. More details can be found in [8]. 

5.1 Modeling signatures in EDL 

The descriptions of signatures in EDL consist of places and transitions which are con-
nected by directed edges. Places represent states of the system which are traversed by 
the related attack. Transitions represent the state changes. They describe the specific 
events which cause the state change, e.g. security relevant actions. These events are 
contained in the audit data stream recorded during the attack. The signature execution is 



represented by tokens which flow from state to state. Tokens represent concrete signature 
instances. They can be labeled with values as in colored Petri-nets. 

 
Places describe the relevant system states of an attack. They are characterized by a set 

of features and a place type. Features specify the properties of the tokens which are lo-
cated in a place. The information contained in a token can change from place to place. 
EDL distinguishes four place types: initial, interior, escape, and exit places. Initial 
places are the starting places of a signature. They are marked with an initial token at the 
start of analysis. Each signature has exactly one exit place which describes the final 
place of signature. If a token reaches this place, then the signature has identified a 
manifestation of an attack in the audit data stream. Escape places indicate an analysis 
stop of an attack instance. They are reached if events occur which make the completion 
of the attack instance impossible. Tokens which reach these places are discarded. All 
other places are interior places. Fig. 3 shows a simple signature with places P1 to P4 for 
illustration. 
 

 
Fig. 3: Features and places 

Transitions represent events which trigger state changes of signature instances. A 
transition is characterized by input places, output places, event type, conditions, feature 
mappings, consumption mode, and actions. Input places of transition t are places with an 
edge leading to the transition t. They describe the required state of the system before the 
transition can fire. Output places of transition t are places with an incoming edge from 
the transition t. They characterize the system state after the transition has fired. A change 
between system states requires a security relevant event. Therefore each transition is 
associated with an event type. Further, a system change can require additional conditions 
which specify that certain features of the event (e.g. user name) are assigned with 
particular values (e.g. root). Conditions can require distinct relationships between event 
and token features on input places (e.g. same values). 

 
If a transition fires, then tokens are created on the transition's output places. These 

tokens describe the new system state. To bind values to the features of the new tokens 
the transitions contain feature mappings. These are bindings which can be parameterized 
with constants, references to event features, or references to input place features. The 
consumption mode (cf. [8]) of a transition controls whether tokens that activate the 
transition remain on the input places after the transition fired. This mode can be in-
dividually defined for each input place. The consumption mode can be considered as a 
property of a connecting edge between input place and transition. Only in the consuming 
case the tokens which activate the transition are deleted on the input places. 

 
Fig. 4 illustrates the properties of a transition. The transition T1 contains two condi-

tions. The first condition requires that feature Type of event E contains the value 
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FileCreate. The second condition compares feature UserID of input place P1, referenced 
by “P1.UserID”, and feature EUserID of event type E, referenced by “EUserID”. This 
condition demands that the value of feature UserID of tokens on input place P1 is equal 
to the value of event feature EUserID. Transition T1 contains two feature mappings. The 
first one binds the feature UserID of the new token on the output place P2 with the value 
of the homonymous feature of the transition activating token on place P1. The second 
one maps the feature Name from the new token on place P2 to event feature EName of 
the transition triggering event of type E. 

 
Fig. 4: Transition properties 

5.2 Test steps 

We now explain the test for under specified signatures according Section 4.2 for a 
shell-link-attack which is described in EDL. A shell-link-attack exploits a special shell 
feature and the SUID (Set-User-ID) mechanism. If a link to a shell script is created and 
the link name starts with "-", then it is possible to create an interactive shell by calling 
the link. In old shell versions regular users could create an appropriate link which points 
to a SUID-shell-script and produce an interactive shell. This shell runs with the 
privileges of the shell-script owner (maybe root).  

Fig. 5 depicts the respective EDL-signature.  
 

 
Fig. 5: Simplified EDL-signature of the shell-link-attack 
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Applying the test method of Section 4.2 to the test of shell-link-attack signature the 
following test steps have to be executed: 

 
Step1: For test case selection, we use the path coverage criteria (C4). Thus every 

possible path from the initial to the exit place will be selected. In our example this results 
in 19 different paths (e.g. T1,T5,T4,T9,T10,T12,T14), if each loop is passed maximum once.  

 
Step2: Based on the selected paths action sequences are assigned to the events 

required by the transition by means of the inverse relation δ-1. In this case timed 
independencies between the action sequences of transitions T1 to T8 and T9 to T13 can be 
neglected. This restriction is possible, since the actions of the two transition paths from 
places init_place_1 and init_place_2, respectively, to the exit_place are concurrent. Only 
transition T14 synchronizes the two concurrent action sequences. Since the shell-link-
attack represents an attack which is executed within a shell, the inverse relation δ-1

 
assigns shell commands to the associated events. The transition conditions are used to 
implement the parameters of the shell commands.  

We show this as example for transition T3: T3 fires, when a rename_link-event occurs 
and there is a token on place link_with_prefix and the event fulfils the two transition 
conditions (link_with_prefix.link_name == new_link_name) and (new_link_name == 
RegExp(“-.*“)). The associated rename_link-event is mapped by δ-1 onto the shell 
command mv. This command has two parameters: the old (old_name) and the future 
name (new_name) of the link or the file, respectively. The first transition condition 
determines the old_name parameter of mv command with the value of the link_name 
feature from the token of the place link_with_pefix. The second parameter (new_name) 
of the mv command is arbitrary, but due the second transition condition it is restricted to 
a name which begins with “–“.  

 
Step3a (Establishing the correct attack conditions): The step is dropped, since the 

shell-link-attack is a deterministic successful attack. 
 
Step3b: Because the derived action sequence are shell commands they are simply 

executed by means of a scripts in a shell.  
 
Step3c: The successful exploitation of the vulnerability by the action sequence can be 

proved by means of the shell command id which outputs the effective UserID. In case of 
a successful attack it should correspond to the UserID of the script owner. Therefore 
each action sequence has to be completed by appending an id-statement for comparing 
the UserID. Thus a successful attack execution can be determined automatically. 

 
Test outcome: The execution of the 19 action sequences showed that all sequences 

which containing copy statements for triggering transition T12 don’t leading to a suc-
cessful attack. Accordingly the transition T12 must be incorrect. The analysis of this 
transition and the associated copy command cp revealed in a short time that cp during 
copying removes the SUID bit set before with chmod (T10). Accordingly the signature 
must be corrected so that the outgoing edge of transition T12 leads to script_created and 
not as up to now to place SUID_scrip. 



6 Final Remarks 

 The derivation of signatures from new exploits is still a tedious process which 
requires much experience. Systematic approaches are still rare. Newly derived signatures 
often possess therefore significant detection shakiness. Inaccurate signatures strongly 
limit the detection power of misuse detection systems as well as their acceptance in 
practice. A longer test and correction phase is needed until qualitative and accurate 
signatures can be applied which implicates an unacceptable vulnerability window. 
Systematic test methods can help to accelerate the signature development process and to 
reduce the vulnerability period of affected systems. In this paper we presented first 
approaches for a systematic signature test.  

The detection shakiness of newly derived signatures is the result of heuristic 
derivation procedures. Even the rare systematic approaches scarcely induce ideal 
signatures due to the broad range of system details to be taken into account. Normally 
derived signatures are either under or over specified. We presented two test methods to 
detect these both kinds of variances as well as preliminary tests and a test on escape 
events. Test methods for signature tests require a strong involvement of the test engineer 
in details of the considered system. Unlike other tests signature tests do not require 
specific test architecture. All tests are executed on the vulnerable system and the 
monitoring intrusion detection system. A central issue of signature testing is to re-
establish the conditions needed for successfully running an attack. This requires a lot of 
experience and limits the practicability of the tests. Beside this or in the case of 
deterministic successful attacks the test engineer needs only sparsely knowledge about 
the concrete attack and signature to accomplish the tests. We are currently investigating 
the proposed test methods with concrete signatures. Further we look for other test 
strategies.  
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