
A Bounded Incremental Test Generation

Algorithm for Finite State Machines

Zoltán Pap1, Mahadevan Subramaniam2, Gábor Kovács3,
Gábor Árpád Németh3

1 Ericsson Telecomm. Hungary, H-1117 Budapest, Irinyi J. u. 4-20, Hungary
zoltan.pap@ericsson.com

2 Computer Science Department, University of Nebraska at Omaha
Omaha, NE 68182, USA

msubramaniam@mail.unomaha.edu
3 Department of Telecommunications and Media Informatics – ETIK,

Budapest University of Technology and Economics,
Magyar tudósok körútja 2, H-1117, Budapest, HUNGARY

kovacsg@tmit.bme.hu, rubrika@gmail.com

Abstract. We propose a bounded incremental algorithm to generate
test cases for deterministic finite state machine models. Our approach,
in contrast to the traditional view, is based on the observation that
system specifications are in most cases modified incrementally in practice
as requirements evolve. We utilize an existing test set available for a
previous version of the system to efficiently generate tests for the current
– modified – system. We use a widely accepted framework to evaluate the
complexity of the proposed incremental algorithm, and show that it is a
function of the size of the change in the specification rather than the size
of the specification itself. Thus, the method is very efficient in the case
of small changes, and never performs worse than the relevant traditional
algorithm – the HIS-method. We also demonstrate our algorithm through
an example.

Keywords: conformance testing, finite state machine, test generation
algorithms, incremental algorithms

1 Introduction

Large, complex systems continuously evolve to incorporate new features and new
requirements. In each evolution step – in addition to changing the specification
of the system and producing a corresponding implementation – it may also be
necessary to modify the testing infrastructure. Manual modification is an ad hoc
and error prone process that should be avoided, and automatic specification-
based test generation methods should be applied.

Although testing theory is especially well developed for finite state machine
(FSM)-based system specifications, existing algorithms handle changing speci-
fications quite inefficiently. Most research has been focusing on the analysis of
rigid, unchanging descriptions. Virtually all proposed methods rely solely on a

given specification machine to generate tests. These approaches are therefore in-
capable of utilizing any auxiliary information, such as existing tests created for
the previous version of the given system. All test sequences have to be created
from scratch in each evolution step, no matter how small the change has been.

In this paper we develop a novel, bounded incremental algorithm to auto-
matically re-generate tests in response to changes to a system specification. In
its essence the algorithm maintains two sets incrementally; a prefix-closed state
cover set responsible for reaching all states of the finite state machine, and a
separating family of sequences applied to verify the next state of transitions.
The complexity of the algorithm is evaluated based on the bounded incremen-
tal model of computation of Ramalingam and Reps [1]. It is shown that the
time complexity of the proposed algorithm depends on the size of the change
to the specification rather than the size of the specification itself. Furthermore,
it is never worse than the complexity of the most traditional algorithm – the
HIS-method [2] [3] [4].

This research builds on our earlier work in [5] where we have developed a
framework to analyze the effects of changes on tests based on the notion of
consistency between tests and protocol descriptions. In the current paper, we
have extended our focus to the test generation problem, which is a major step
both in terms of complexity and practical importance.

The rest of the paper is organized as follows. A brief overview of our as-
sumptions and notations is given in Section 2. In Section 3, we describe some
relevant FSM test generation algorithms and the HIS-Method in particular. Sec-
tion 4 describes the model of incremental computation. In Section 5 we introduce
the incremental algorithm for maintaining a checking sequence across changes,
provide a thorough analysis of its complexity and demonstrate it through an
example. Sections 6 and 7 describe related work and conclusions, respectively.

2 Finite State Machines

Finite state machines have been widely used for decades to model systems in
various areas. These include sequential circuits [6], some types of programs [7] (in
lexical analysis, pattern matching etc.), and communication protocols [8]. Several
specification languages, such as SDL [9] and ESTELLE [10], are extensions of
the FSM formalism.

A finite state machine M is a quadruple M = (I,O, S, T) where I is the
finite set of input symbols, O is the finite set of output symbols, S is the finite
set of states, and T ⊆ S × I ×O × S is the finite set of (state) transitions. Each
transition t ∈ T is a 4-tuple t = (sj , i, o, sk) consisting of start state sj ∈ S,
input symbol i ∈ I, output symbol o ∈ O and next state sk ∈ S.

An FSM can be represented by a state transition graph, a directed edge-
labeled graph whose vertices are labeled as the states of the machine and whose
edges correspond to the state transitions. Each edge is labeled with the input
and output associated with the transition.

FSM M is said to be deterministic if for each start state – input pair (s, i)
there is at most one transition in T . In the case of deterministic FSMs both the
output and the next state of a transition may be given as a function of the start
state and the input of the transition. These functions are referred to as the next
state function δ: S × I → S and the output function λ: S × I → O. Thus a
transition of a deterministic machine may be given as t = (sj , i, λ(sj , i), δ(sj , i)).

For a given set of symbols A, A∗ is used to denote the set of all finite sequences
(words) over A. Let K ⊆ A∗ be a set of sequences over A. The prefix closure of
K, written Pref(K), includes all the prefixes of all sequences in K. The set K
is prefix-closed if Pref(K) = K.

We extend the next state function δ and output function λ from input sym-
bols to finite input sequences I∗ as follows: For a state s1, an input sequence
x = i1, ..., ik takes the machine successively to states sj+1 = δ(sj , ij), j =
1, ..., k with the final state δ(s1, x) = sk+1, and produces an output sequence
λ(s1, x) = o1, ..., ok, where oj = λ(sj , ij), j = 1, ..., k. The input/output sequence
i1o1i2o2...ikok is then called a trace of M .

FSM M is said to be strongly connected if, for each pair of states (sj , sl),
there exists an input sequence which takes M from sj to sl. If there is at least one
transition t ∈ T for all start state – input pairs, the FSM is said to be completely
specified (or completely defined); otherwise, M is a said to be partially specified
or simply a partial FSM.

We say that machine M has a reset capability if there is an initial state s0 ∈ S
and an input symbol r ∈ I that takes the machine from any state back to s0.
That is, ∃r ∈ I : ∀sj ∈ S : δ(sj , r) = s0. The reset is reliable if it is guaranteed
to work properly in any implementation machine M I , i.e., δI(sI

j , r) = sI
0 for all

states sI
j ∈ SI , and sI

0 is the initial state of M I ; otherwise it is unreliable.
Finite state machines may contain redundant states. State minimization is

a transformation into an equivalent state machine to remove redundant states.
Two states are equivalent written sj

∼= sl iff for all input sequences x ∈ I∗,
λ(sj , x) = λ(sl, x). Two states, sj and sl are distinguishable (inequivalent), iff
∃x ∈ I∗, λ(sj , x) 6= λ(sl, x). Such an input sequence x is called a separating
sequence of the two inequivalent states. A FSM M is reduced (minimized), if no
two states are equivalent, that is, each pair of states (sj , sl) are distinguishable.

For the rest of the paper, we focus on strongly connected, completely specified
and reduced deterministic machines with reliable reset capability. We will denote
the number of states and inputs by n = |S| and p = |I|, respectively.4

2.1 Representing Changes to FSMs

Although the FSM modeling technique has been used extensively in various
fields, impact of changes on FSM models and their effects on test sets have only
been studied recently following the observation that system specifications are in
most cases modified incrementally in practice as requirements evolve. (See some
of our earlier papers [11] [12] [5]).

4 Therefore, |T | = p ∗ n.

A consistent approach for representing changes to FSM systems has been
proposed in [12]. Atomic changes to a finite state machine M are represented
by the means of edit operators ωM : T → T .5 An edit operator turns FSM
M = (I,O, S, T) into FSM M ′ = (I,O, S′, T ′) with the same input and output
sets. We use the term “same states” written sj = s′j for states that are labeled
alike in different machines. Obviously, these states are not necessarily equivalent,
written sj

∼= s′j .
For deterministic finite state machines two types of edit operators have been

proposed based on widely accepted fault models. A next state change operator
is ωn(sj , i, ox, sk) = (s′j , i, ox, s′l), where δ(sj , i) = sk 6= s′l = δ′(s′j , i). An output
change operator is ωo(sj , i, ox, sk) = (s′j , i, oy, s′k), where λ(sj , i) = ox 6= oy =
λ′(s′j , i). It has been shown in [12], that with some assumptions the set of deter-
ministic finite state machines with a given number of states is closed under the
edit operations defined above. Furthermore, for any two deterministic FSMs M1

and M2 there is always a sequence of edit operations changing M1 to M2, i.e.,
to a machine isomorphic to M2.

3 FSM Test Generation and the HIS-Method

Given a completely specified deterministic FSM M with n states, an input se-
quence x that distinguishes M from all other machines with n states is called
a checking sequence of M . Any implementation machine Impl with at most n
states not equivalent to M produces an output different from M on checking
sequence x.

Several algorithms have been proposed to generate checking sequences for
machines with reliable reset capability [13] [14], including the W-method [15],
the Wp-method [16] and the HIS-method [2] [3] [4]. They all share the same
fundamental structure consisting of two stages: Tests derived for the first – state
identification – stage check that each state presented in the specification also
exists in the implementation. Tests for the second – transition testing – stage
check all remaining transitions of the implementation for correct output and
ending state as defined by the specification. The methods, however, use different
approaches to identify a state during the first stage, and to check the ending
state of the transitions in the second stage. In the following we concentrate on
the HIS-method as it is the most general approach of the three.

The HIS-method derives a family of harmonized identifiers [4], also referred
to as a separating family of sequences [3]. A separating family of sequences of
FSM M is a collection of n sets Zi, i = 1, ..., n of sequences (one set for each state)
satisfying the following two conditions: For every pair of states si, sj : (I) there
is an input sequence x that separates them, i.e., ∃x ∈ I∗, λ(si, x) 6= λ(sj , x);
(II) x is a prefix of some sequence in Zi and some sequence in Zj . Zi is called
the separating set of state si. The HIS-method uses appropriate members of
the separating family in both stages of the algorithm to check states of the
implementation.

5 ω(t) is used instead of ωM (t) if M can be omitted without causing confusion.

3.1 The HIS-Method

Consider FSM M with |S| = n states, and implementation Impl with at most
n states. Let Z = {Z1, ..., Zn} be a separating family of sequences of FSM
M . Such family may be constructed for a reduced FSM the following way: For
any pair of states si, sj we generate a sequence zij that separates them using
for example a minimization method [17]. Then define the separating sets as
Zi = {zij}, j = 1...n.

The state identification stage of the HIS-method requires a prefix-closed state
cover set Q = {q1, ..., qn} of FSM M , and generates test sequences r · qi · Zi,
i = 1...n based on it, where r is the reliable reset symbol and “·” is the string
concatenation operator. A Q set may be created by constructing a spanning tree6

of the state transition graph of the specification machine M from the initial state
s0. Such a spanning tree is presented on Figure 1(a) in Section 5.1. A prefix-
closed state cover set Q is the concatenation of the input symbols on all partial
paths of the spanning tree, i.e., sequences of input symbols on all consecutive
branches from the root of the tree to a state.

If Impl passes the first stage of the algorithm for all states, then we know
that Impl is similar to M , furthermore this portion of the test also verifies all
the transitions of the spanning tree. The second, transition testing stage is used
to check non-tree transitions. That is, for each transition (sj , i, o, sk) not in the
spanning tree the following test sequences are generated: r · qj · i · Zk.

The resulting sequence is a checking sequence, starting at the initial state
(first a reset input is applied) and consisting of no more than pn2 test sequences
of length less than 2n interposed with reset [3]. Thus the total complexity of the
algorithm is O(pn3), where p = |I| and n = |S|.

4 Incremental Computation Model

A batch algorithm for a given problem is an algorithm capable of computing
the solution of the problem f(x′) – the output – on some input x′. Virtually all
traditional FSM-based conformance test generation algorithms [13] [14] are such
batch algorithms. Their input is the specification of a system in form of an FSM
model and the output is a checking sequence that is (under some assumptions)
capable of determining if an implementation conforms to the specification FSM.

An incremental algorithm intends to solve a given problem by computing
an output f(x′) just as a batch algorithm. Incremental computation, however,
assumes that the same problem has been solved previously on a slightly different
input x providing output f(x), and that the input has undergone some changes
since, resulting in the current input x + dx = x′. An incremental algorithm
takes the input x and the output f(x) of the previous computation, along with

6 A spanning tree of FSM M rooted from the initial state is an acyclic subgraph (a
partial FSM) of its state transition graph composed of all the reachable vertices
(states) and some of the edges (transitions) of M such that there is exactly one path
from the initial state s0 to any other state.

the change in the input dx. From that it computes the new output f(x + dx),
where x + dx denotes the modified input. A batch algorithm can be used as
an incremental algorithm, furthermore, in case of a fundamental change (take
x = null input for example) the batch algorithm will be the most efficient
incremental algorithm.

4.1 Evaluating the Complexity of an Incremental Algorithm

The complexity of an algorithm is commonly evaluated using asymptotic worst-
case analysis; by expressing the maximum cost of the computation as a function
of the size of the input. While this approach is adequate for most batch algo-
rithms, worst-case analysis is often not very informative for incremental algo-
rithms. Thus, alternative ways have been proposed in the literature to express
the complexity of incremental algorithms. The most widely accepted approach
has been proposed in [1]. Instead of analyzing the complexity of incremental
algorithms in terms of the size of the entire current input, the authors suggest
the use of an adaptive parameter capturing the extent of the changes in the in-
put and output. The parameter ∆ or “CHANGED” represents the size of the
“MODIFIED” part of the input and the size of the “AFFECTED” part of
the previous output. Thus ∆ represents the minimal amount of work necessary to
calculate the new output. The complexity of incremental algorithm is analyzed
in terms of ∆, which is not known a priori, but calculated during the update
process. This approach will be used in this paper to evaluate the complexity of
the presented algorithm and to compare it to existing batch and incremental
methods.

5 Incremental Test Generation Method

This section presents a novel incremental test generation algorithm. The algo-
rithm – in contrast to traditional (batch) test generation methods – is capable of
maintaining a checking sequence across changes in the specification, thus avoid-
ing the need of regenerating a checking sequence from scratch at each stage of
an incremental development.

We focus on the following problem: Consider a system specification given as a
reduced, completely specified and deterministic FSM M . There exists a complete
checking sequence for M capable of detecting any fault in an implementation
Impl, which has the same input I and output O alphabet as M and has no
more states than M . The specification is modified to M ′ by a unit change, i.e.,
by applying a single – output or a next state – change operator. The problem
is to create a complete checking sequence for the new specification M ′ if such
exists.

We concentrate on systems with reliable reset capability, and we assume
the HIS-Method as a reference point in creating an incremental algorithm and
evaluating its performance. The HIS-method is essentially the superposition of
two completely independent algorithms. One is used to build a set of input

sequences responsible for reaching all states of the finite state machine (a prefix-
closed state cover set). The other is applied to create a set of input sequences to
verify the next state of the transition (a separating family of sequences).

Our incremental test generation method likewise involves two completely
autonomous incremental algorithms. Note that these algorithms may also be
applied independently for various purposes. They could be used to detect unde-
sirable effects of a planned modification during development, such as subsets of
states becoming equivalent or unreachable.

It has to be emphasized that a given change to the specification FSM may
affect the two algorithms differently. Therefore two separate ∆ parameters (see
Section 4.1) have to be used to capture the extent in which the changes affect
the two algorithms.

5.1 Incremental Algorithm for Maintaining a Prefix-closed State

Cover Set

Given a specification FSM M , a prefix-closed state cover set Q of M and a
change ω(sm, i, o, sj) to FSM M turning it to M ′ our purpose is to create a new
valid prefix-closed state cover set Q′ for M ′.

The problem can be reduced to maintaining a spanning tree of the state
transition graph of the specification machine rooted from the initial state s0 (see
Section 3.1). Assuming the spanning tree ST of FSM M representing the Q set
– i.e., input sequences on all partial paths of ST are in Q – we intend to produce
a new valid spanning tree ST ′ of FSM M ′.

Let us call a transition an ST -transition iff it is in ST . A subtree of ST
rooted from a state si 6= s0 is a proper subtree of the spanning tree ST and will
be referred to as STsi

.
Given the change ω(sm, i, o, sj) we will refer to state s′m of FSM M ′ as

modified state, since a transition originating from state sm of FSM M is modified
by the change. In this paper we focus on unit changes; at each incremental step
there is a single modified state, i.e., the cardinality of the set of modified states
MODIFIED abbreviated as MOD is one: |MOD| = 1.

A state s′i of FSM M ′ is affected by the change with respect to the Q set
iff for input sequence qi ∈ Q corresponding to state si: δ(s0, qi) 6= δ′(s′0, qi).
Such a state is said to be a q-affected state.7 The algorithm identifies the set of
q-affected states AFFECTEDQ abbreviated as AFFQ, where 0 ≤ |AFFQ| ≤ n.
If AFFQ is not an empty set – |AFFQ| > 0 – then ST must be adapted to M ′.

We define the set CHANGEDQ ⊆ S′ to be MOD ∪ AFFQ and denote
|CHANGEDQ| as ∆Q. The set CHANGEDQ will be used as a measure of the

7 Other definitions of q-affected state could be used depending on the assumed testing
algorithm. A more relaxed definition could be for example the following: A state s′i
of FSM M ′ is affected by the change with respect to the Q set iff there exists no
path from s′0 to s′i in ST ′ after the change. This definition should be assumed in
case the same set (for example a distinguishing sequence or W -set) is used to check
each ending state.

size of the change to the specification, and the complexity of the incremental
algorithm will be expressed as a function of parameter ∆Q, where 1 ≤ ∆Q ≤ n.

The input of the algorithm is the original machine M , the change operator
and the spanning tree ST of M . It provides M ′, the new spanning tree ST ′ of
M ′ and the set of unreachable states as output. The algorithm consists of two
phases and handles output and next state changes separately in the first phase.
The first phase marks all q-affected states of FSM M ′ then collects them in
the set AFFQ. If |AFFQ| = 0 then ST is a valid spanning tree of M ′ and the
algorithm terminates, otherwise the second phase completes the spanning tree
for all q-affected states.

Phase 1 – Output Change Take output change ωo(sm, i, ox, sj) =
(s′m, i, oy, s′j), ox 6= oy. Create FSM M ′ by applying the change operator. Initial-
ize AFFQ as an empty set, and the spanning tree ST ′ of M ′ as ST ′ := ST .

As an output change operator is applied to FSM M , it only changes an edge
label of the state transition graph of FSM M , but does not affect its structure.
That is, δ(sm, i) = δ′(s′m, i), and the change does not affect any states with
respect to the Q set. AFFQ is not extended.

Phase 1 – Next State Change Take next state change ωn(sm, i, ox, sj) =
(s′m, i, ox, s′k), sj 6= s′k. Create FSM M ′ by applying the change operator. Initial-
ize AFFQ as an empty set, and the spanning tree ST ′ of M ′ as ST ′ := ST .

– (sm, i, o, sj) 6∈ ST : If the transition upon input i at state sm is not an ST -
transition then any change to it can not affect the spanning tree of FSM M .
AFFQ is not extended.

– (sm, i, o, sj) ∈ ST : If the transition upon input i at state sm is an ST -
transition then the change affects the spanning tree. The q-affected states
are identified walking the ST ′

s′

j
subtree. All states of ST ′

s′

j
(including s′j)

are marked as q-affected states. The AFFQ set can be determined using a
simple breadth-first search of the ST ′

s′

j
subtree with a worst case complexity

of |AFFQ|.

Phase 2: Determining a spanning tree of M
′ Phase 2 of the algorithm

takes the set AFFQ from Phase 1 and completes the spanning tree for each
member of AFFQ to create a spanning tree ST ′ of M ′.

If |AFFQ| = 0 (there are no q-affected states) then ST is a spanning tree of
M ′. Return ST ′ and the algorithm terminates.

If |AFFQ| > 0 then we apply the following method: All transitions of ST ′

leading to q-affected states are removed from ST ′ along with the modified tran-
sition (s′m, i, o, s′k). Then we extend ST ′ as follows.

For all s′x in AFFQ we start checking the transitions leading to s′x in M ′ until
either a transition originating from an unaffected state is found or there are no
more inbound transitions left. If a transition (s′i, i, o, s

′

x) such that s′i 6∈ AFF ′

Q

is found then: (I) ST ′ := ST ′ ∪ (s′i, i, o, s
′

x), (II) AFFQ := AFFQ \ {s′x}, (III) if
there is transition (s′x, i, o, s′y) where s′y ∈ AFFQ then repeat Steps I-III on s′y.

The algorithm stops after all s′x in AFFQ has been checked, then return ST ′

and AFFQ; the algorithm terminates. At the end of the last turn ST ′ will be a

spanning tree of M ′, and any s′z remaining in AFFQ is unreachable from s′0 in
M ′.

Q-set example. Take FSM M on Figure 1(a) where bold edges represent the
spanning tree and the double circle denotes the initial state.

s0 s1
a/x

s2

b/x
 b/x

s3
a/y

a/x
b/x

b/x

a/x

(a) FSM M with its spanning tree ST

s0’

a/x

s1’

s2’
b/x

 b/x

s3’
a/y

a/x
b/x

b/x

a/x

(b) Modified FSM M ′ with the updated
spanning tree ST ′

Fig. 1. Example for maintaining the preamble

Initially let ST ′ = ST and AFFQ = ∅. The modification ωn(s0, a, x, s1) =
(s′0, a, x, s′0) is a next state change. As transition (s0, a, x, s1) is in ST , we
need to determine the set of q-affected states by walking the ST ′

s′

1

subtree.

We get AFFQ = {s′1, s
′

3}. In Phase 2 transitions leading to q-affected states
– (s′0, a, x, s′1) and (s′1, a, y, s′3) – are removed from ST ′. Then one of the states
– say s′1 – is selected from AFFQ. Transition (s′2, a, x, s′1) is identified, which is
a link originating from a not affected state s′2. We add it to ST ′ and remove s′1
from AFFQ. We then check transitions originating from s′1 and find (s′1, a, y, s′3)
that leads to a q-affected state. We add (s′1, a, y, s′3) to ST ′ and remove s′3 from
AFFQ. Now, AFFQ = ∅, so the algorithm terminates and returns ST ′, see
Figure 1(b).

Theorem 1. The incremental algorithm for maintaining a spanning tree de-

scribed above has a time complexity of O(p ∗ ∆Q), where 1 ≤ ∆Q ≤ n.

Proof. Phase 1 of the algorithm has worst case complexity of O(|AFFQ|).
Phase 2 of the algorithm first searches a path from the unaffected states of

M ′ to the q-affected states. There are exactly p ∗ |AFFQ| transitions originating
from the q-affected states. Therefore there can be at most p ∗ |AFFQ| steps
that do not provide a path from unaffected states of M ′ to the q-affected states
summarized over all backward check turns of Phase 2. Thus there are no more
than (p + 1) ∗ |AFFQ| backward check turns.

If a link is found from an unaffected state to an affected state s′x then the
algorithm adds all states of AFFQ reachable from s′x via affected states. Again,
there can be at most p ∗ |AFFQ| such steps summarized over all forward check
turns of Phase 2.

As any of the p ∗ |AFFQ| transitions are processed at most twice by the
algorithm, less than 2 ∗ (p + 1) ∗ |AFFQ| ≈ O(p ∗ |AFFQ|) steps are necessary

to complete Phase 2. The total complexity of the algorithm is O(p ∗ |AFFQ|) ≤
O(p ∗ ∆Q) ut

The new set Q′ of M ′ contains |AFFQ| modified sequences: Input sequences
of ST ′ leading from s′0 to s′i for all s′i in AFFQ.

5.2 Incremental Algorithm for Maintaining a Separating Family of

Sequences

We are again given the specification FSM M , and the change ω(sm, i, o, sj)
turning M to M ′. We also have a separating family of sequences of FSM M (a
separating set for each state): Z = {Z1, ..., Zn}|Zi = {zij}, j = 1...n, where zij

is a separating sequence of states si, sj of FSM M . Our objective is to create a
new separating family of sequences Z ′ for M ′. Note that we consider a somewhat
structured separating family of sequences as discussed later. This, however, does
not restrict the generality of the approach as each incremental step generates a
separating family according the assumed structure.

Informally speaking, to maintain a separating family of sequences we have to
identify all separating sequences affected by the change. Then for all such state
pairs a new separating sequence has to be generated. Notice that this is a problem
over state pairs rather than states. Therefore we introduce an auxiliary directed
graph AM with n(n+1)/2 nodes, one for each unordered pair (sj , sk) of states of
M including identical state pairs (sj , sj). There is a directed edge from (sj , sk)
to (sl, sm) labeled with input symbol i iff δ(sj , i) = sl and δ(sk, i) = sm in M .
The auxiliary directed graph AM is used to represent and maintain separating
sequences of FSM M . The graph is updated by our algorithm at each incremental
step.

We define a separating state pair as an unordered pair of states (sx, sy) such
that λ(sx, i) 6= λ(sy, i) for some i ∈ I. A machine M is minimal iff there is a path
from each non-identical state pair (sj , sk), j 6= k to a separating state pair in its
auxiliary directed graph AM . The input labels along the route concatenated by
the input distinguishing the separating state pair form a separating sequence of
states sj and sk.

We make the following assumptions on the separating sequences of FSM M :
(I) Each separating state pair (sx, sy) has a single separating input i|λ(sx, i) 6=
λ(sy, i) associated to it. If a given pair has multiple such inputs, then the input
to be associated is chosen randomly. (II)The set of separating sequences of FSM
M is prefix-closed.

Then separating sequences of FSM M form an acyclic subgraph of the aux-
iliary directed graph AM , such that there is exactly one path from each state
pair (sx, sy), x 6= y to a separating state pair. That is, separating sequences form
a forest over the non-identical state pairs of AM , such that each tree has a sep-

arating state pair as root and all edges of the given tree are directed toward the
root – see Figure 2(a) below for example. Let us refer to this forest (a subgraph
of AM) as SF . We call an edge of AM an SF -edge iff it is in SF . A subtree of
SF having state pair (si, sj) as root is a proper subtree of the forest SF and

will be referred to as SFsi,sj
. Note that by walking such a tree (or its subtree)

we always assume that it is explored opposing edge directions from the root (or
an inner node) toward leaves.

Thus the problem of deriving the separating family of sequences for FSM M
can be reduced to maintaining separating state pairs, their associated separating
input and a forest SF over non-identical state pairs of AM across changes.

Given the change ω(sm, i, o, sj) turning M to M ′ all state pairs that include

state sm are modified to construct the auxiliary directed graph AM ′

of FSM
M ′. Accordingly all unordered state pairs of AM ′

involving s′m are referred to as
z-modified state pairs. As a result of the unit change assumption the cardinality
of the set of z-modified state pairs MODIFIEDZ abbreviated as MODZ is n:
|MODZ | = n.8

The algorithm derives the set of state pairs affected by the change. Such
state pairs are said to be z-affected. The set of z-affected state pairs is referred
to as AFFECTEDZ abbreviated as AFFZ , where 0 ≤ |AFFZ | ≤ n(n − 1)/2.
We define the set CHANGEDZ ⊆ S′ × S′ as MODZ ∪ AFFZ . The complex-
ity of the incremental algorithm will be expressed as a function of parameter
|CHANGEDZ | referred to as ∆Z , where n ≤ ∆Z ≤ n(n − 1)/2.

The input of the algorithm is the auxiliary directed graph AM of FSM M ,
the change operator and the forest SF of AM representing separating sequences
of M . The output is AM ′

, the new forest SF ′ of AM ′

and a set containing pairs
of equivalent states.

The algorithm consists of two phases and handles output and next state
changes separately in the first phase.

Phase 1 – Output Change Take output change ωo(sm, i, ox, sk) = (s′m, i,
oy, s′k), ox 6= oy. Initialize AFFZ as an empty set, AM ′

:= AM and SF ′ := SF .

For state pairs ∀s′i ∈ S′ : (s′m, s′i) apply the change to AM ′

and:

– If state pair (s′m, s′i) is a new separating state pair then mark it and associate
i as separating input.

– If i has been the separating input of separating state pair (sm, si) in AM but
λ′(s′m, i) = λ′(s′i, i) = oy then all state pairs of the tree with (s′m, s′i) root –
including (s′m, s′i) – are added to AFFZ (marked as z-affected). These states
can be identified by walking the given tree from the root.
• If there is another input i1|λ

′(s′m, i1) 6= λ′(s′i, i1) then (s′m, s′i) remains a
separating state pair with i1 associated as separating input. State pair
(s′m, s′i) is removed from AFFZ .

• If ∀i ∈ I : λ′(s′m, i) = λ′(s′i, i) then (s′m, s′i) is no longer a separating state

pair, thus the separating state pair marking is removed from (s′m, s′i).
– Do nothing otherwise.9

Phase 1 – Next State Change Take next state change ωn(sm, i, ox, sk) =
(s′m, i, ox, s′l), sk 6= s′l. Initialize AFFZ as an empty set, AM ′

:= AM and SF ′ :=
SF .

For state pairs ∀s′i ∈ S : (s′m, s′i) apply the change to AM ′

and:

8 Pairs s′i, s
′

i of identical states are also modified here.
9 One could assume different definitions for affected state pairs as a design choice.

– If the edge of AM marked by input i at state pair (sm, si) is an SF -edge
then the modification affects the given tree of the spanning forest. All state
pairs of the SF ′

s′

m,s′

i
subtree are z-affected states (including (s′m, s′i)). Thus

the SF ′

s′

m,s′

i
subtree is explored using a simple breadth-first search, all state

pairs are added to AFFZ (marked as z-affected).
– Do nothing otherwise.

Phase 2 Phase 2 of the algorithm takes the set AFFZ from Phase 1 and updates
the forest SF ′ for each member of AFFZ .

If |AFFZ | = 0 then SF is a valid forest over AM ′

representing a separating
sequence for each non-identical state pair of M ′. Return SF ′ and the algorithm
terminates.

If |AFFZ | > 0 then the following method is applied: All edges of SF ′ origi-
nating from z-affected state pairs are removed from SF ′. Then we extend SF ′

as follows. We examine all edges of AM ′

originating from a z-affected state pair
and construct a subgraph of AM ′

denoted as AM ′

AFF the following way: (I) For

each z-affected state pair there is a corresponding node in AM ′

AFF . (II) For each

edge between z-affected state pairs there is an edge in AM ′

AFF . (III) If there is an
edge originating from a z-affected state pair leading to a not affected state pair
then we mark the given z-affected state pair at the head of the edge.

Next we explore AM ′

AFF opposing edge directions from marked state pairs

using breadth-first search to create a spanning forest over AM ′

AFF with marked
state as root nodes. All state pairs covered by the spanning forest are removed
from AFFZ . Finally SF ′ is expanded simply appending the spanning forest of
AM ′

AFF . Each tree of the forest of AM ′

AFF is linked to SF ′ by an edge leading to a
not affected state pair from its marked root node. Return SF ′ and AFFZ ; the
algorithm terminates.

At the end of the algorithm AFFZ contains any pairs of equivalent states
for which no separating sequence exists. Each partial path of SF ′ represents a
separating sequence of M ′: Given a path from node (s′i, s

′

j) to separating state

pair (s′x, s′y) the input labels along the route concatenated by the separating
input of s′x, s′y form a separating sequence z′ij of states s′i and s′j . The separating
family of sequences of FSM M ′ is given as Z ′ = {Z ′

1, ..., Z
′

n}|Z
′

i = {z′ij}, j = 1...n.

Z set example. The auxiliary graph AM of M is presented on Figure 2(a). Bold
edges represent the forest SF of M , separating state pairs are shown in bold
ellipses, separating inputs are represented by bigger sized edge labels, while the
dotted edges between identical state pairs are maintained but have no impor-
tance for the algorithm.

Initially AFFZ = ∅ and let SF ′ = SF . Edges labeled with input a origi-
nating from state pairs (s′0, s

′

0), (s′0, s
′

1), (s′0, s
′

2), (s′0, s
′

3) are modified to create
AM ′

. (s′0, s
′

1) is a separating state pair and is therefore not affected. The a-
labeled edge originating from state pair (s0, s2) is not in SF thus (s′0, s

′

2) is
not affected either. (s′0, s

′

0) is irrelevant. Therefore only state pair (s′0, s
′

3) is z-

affected : AFFZ = {(s′0, s
′

3)}. In Phase 2 the a-labeled edge originating from
(s′0, s

′

3) is removed from SF ′. Then edges originating from (s′0, s
′

3) are checked

s0, s1 s0, s3 s2, s2

b

s1, s3

a

s0, s2 s1, s1
a

s2, s3

b

b

 a

b

s3, s3

 a

a

b

s1, s2

ab b

a

b

a
s0, s0

a b

b

a

(a) The auxiliary graph AM of FSM M

s0’, s1’ s0’, s3’
a

s2’, s2’

b

s1’, s3’

s0’, s2’

a

s1’, s1’

s2’, s3’

b

b

a

b

s3’, s3’

 a

a

b

s1’, s2’

ab b

a

b

a
s0’, s0’

b

a
b

a

(b) The updated auxiliary graph AM
′

of
FSM M ′

Fig. 2. Auxiliary graphs

and an edge 〈(s′0, s
′

3), (s
′

0, s
′

2)〉 leading to a non-affected state pair is found. The
given edge is added to SF ′ and (s′0, s

′

3) is removed from AFFZ . Now, AFFZ = ∅,
thus the algorithm terminates and returns SF ′, see Figure 2(b). All separating
sequences are unchanged except the one of states s′0 s′3, which is changed from
a · a to b · b · a · a.

Theorem 2. The incremental algorithm for maintaining a separating family of

sequences described above has a time complexity of O(p ∗∆Z), where n ≤ ∆Z ≤
n2.

Proof. Regardless of change operator type Phase 1 of the algorithm involves
|MODZ | modification steps and O(|AFFZ |) steps to identify affected state pairs.
Phase 2 of the algorithm first creates a subgraph in p ∗ |AFFZ | steps and then
creates a spanning forest over it with O(p ∗ |AFFZ |) complexity. Thus the total
complexity of the algorithm is O(p ∗ ∆Z). ut

5.3 Total Complexity of the Incremental Testing

Our algorithm – just as the original HIS-method – derives actual test sequences in
two stages by concatenating sequences from the sets Q and Zi. Each test sequence
– a part of the checking sequence – is either a sequence r · qi · zij (stage 1) or a
sequence r ·qi ·i·zxy (stage 2). A test sequence must be regenerated after a change
if either the q-sequence, or the z-sequence of the given test sequence is modified
by our incremental algorithms above. That is, a test sequence r · qi · ... · zij of
M is modified iff s′i ∈ AFFQ or (s′i, s

′

j) ∈ AFFZ . Such sequences are identified
using links between the sets Q′, Z ′

i, i = 1...n and test sequences. The number
of modified test sequences is less or equal than p ∗ n2, i.e., in worst case the
number of test cases to be generated is equivalent to those generated by a batch
algorithm. The resulting test set is a complete test set of M ′ that is no different

than one generated using the batch HIS-method. It consists of the same set of
test sequences generated using valid Q′ and Z ′ sets of M ′.

Note that the concatenation operation is – from the complexity point of view
– a quite expensive step. Concatenation, however, only has to be performed as a
part of the testing procedure itself. If no actual testing is needed after a change
to the specification then we should only – very efficiently – maintain the sets Q
and Z according to each modification and do the concatenation just as necessary.

6 Related Work

Nearly all test generation approaches in the FSM test generation literature pro-
pose batch algorithms, i.e., they focus on building test sets for a system from
scratch without utilizing any information from tests created for previous versions
of the given system. One of the few exceptions – the most relevant research –
has been the work of El-Fakih at al. [18]. Similarly to our approach, the au-
thors assume a specification in form of a complete deterministic FSM M , which
is modified to a new specification M ′. The problem in both cases is to gen-
erate a checking sequence to test if an implementation Impl conforms to M ′.
Our approach, however, involves some fundamental improvements on El-Fakih’s
method. The most important are:

1. El-Fakih’s algorithm does not intend to create a complete test set for the
modified specification M ′, instead it may be used to “generate tests that
would only test the parts of the new implementation that correspond to
the modified parts of the specification” [18]. This necessitates the follow-
ing quite restrictive assumption: “the parts of the system implementation
that correspond to the unmodified parts of the specification have not been
changed” [18]. Thus, it is presumed that no accidental or intentional (mali-
cious) changes are introduced to supposedly unmodified parts of the imple-
mentation. Such faults could remain undetected as the test set generated by
the algorithm is not complete. Note that the assumption above is unavoid-
able as not even the union of the existing test set of M and the incremental
test set generated by the algorithm provide a complete test set for M ′.
Our algorithm, on the other hand, maintains a complete test set across the
changes to the specification. The algorithm modifies the existing test set of
M to create a complete test set for M ′ – if such exists – capable of detecting
any fault in Impl.

2. El-Fakih’s algorithm is not a bounded incremental algorithm in the sense
that it uses traditional batch algorithms to create a state cover set and a
separating family of sequences for a given FSM upon each modification.
Therefore its complexity is the function of the size of the input FSM, not
the extent of the change.
Our method in turn is a bounded incremental algorithm, its complexity
is dependent on the extent of the change. It identifies how the modification
affects the existing test set of the original specification machine M . New tests

are only generated for the affected part and the calculation is independent
of the unaffected part. The complexity of our algorithm is no worse than the
complexity of the corresponding batch algorithm.

7 Conclusion

We have presented a bounded incremental algorithm to generate test cases for
deterministic finite state machine models. Our approach assumes a changing
specification and utilizes an existing test set of the previous version to efficiently
maintain a complete test set across the changes to the specification. For each
update of the system a complete test set is generated with the same fault detec-
tion capability as that of a traditional batch algorithm. The complexity of the
algorithm is evaluated based on the bounded incremental model of computation
of Ramalingam and Reps [1]. The time complexity of the proposed algorithm
is shown to be bounded; it is a function of the size of the change to the spec-
ification rather than the size of the specification itself. It is never worse than
the complexity of the relevant traditional algorithm – the HIS-method. Further-
more, the two autonomous incremental algorithms building up the incremental
test generation method may also be applied independently for various purposes
during development.

In the future we plan to further experiment with the presented algorithm
to gain sufficient performance data for practical analysis. Our current focus has
been on time complexity but the approach leaves space for fine-tuning and opti-
mizations in several aspects that will have to be studied. The research reported
here is regarded as a first step in developing efficient incremental testing al-
gorithms. We plan to investigate if this approach can be extended to different
problems and models.

References

1. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph
problems. Theoretical Computer Science 158(1-2) (1996) 233–277

2. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works and ISDN Systems 15(4) (1988) 285–297

3. Yannakakis, M., Lee, D.: Testing finite state machines: fault detection. In: Selected
papers of the 23rd annual ACM symposium on Theory of computing. (1995) 209–
227

4. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic state ma-
chines in protocol conformance testing. In: Proceedings of the IFIP TC6/WG6.1
Sixth International Workshop on Protocol Test systems VI. (1994) 363–378

5. Subramaniam, M., Pap, Z.: Analyzing the impact of protocol changes on tests.
In: Proceedings of the IFIP International Conference on Testing Communicating
Systems, TestCom. (2006) 197–212

6. Friedman, A.D., Menon, P.R.: Fault Detection in Digital Circuits. Prentice-Hall
(1971)

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

8. Holzmann, G.J.: Design and Validation of Protocols. Prentice-Hall (1990)
9. ITU-T: Recommendation Z.100: Specification and description language (2000)

10. TC97/SC21, I.: Estelle – a formal description technique based on an extended
state transition model. international standard 9074 (1988)

11. Subramaniam, M., Chundi, P.: An approach to preserve protocol consistency and
executability across updates. In: Proceedings of Formal Methods and Software En-
gineering, 6th International Conference on Formal Engineering Methods, ICFEM.
(2004) 341–356

12. Pap, Z., Csopaki, G., Dibuz, S.: On the theory of patching. In: Proceedings of the
3rd IEEE International Conference on Software Engineering and Formal Methods,
SEFM. (2005) 263–271

13. Lee, D., Yiannakakis, M.: Principles and methods of testing finite state machines
– a survey. Proceedings of the IEEE 84(8) (1996) 1090–1123

14. Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance
for software testing. In: ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, New York, NY, USA,
ACM Press (1994) 109–124

15. Chow, T.: Testing software design modelled by finite-state machines. IEEE Trans-
actions on Software Engineering 4(3) (1978) 178–187

16. Fujiwara, S., v. Bochmann, G., Khendec, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state model. IEEE Transactions on Software Engenieering
17 (1991) 591–603

17. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York
(1978)

18. El-Fakih, K., Yevtushenko, N., von Bochmann, G.: FSM-based incremental confor-
mance testing methods. IEEE Transactions on Software Engineering 30(7) (2004)
425–436

