
Utilising Code Smells to Detect Quality
Problems in TTCN-3 Test Suites

Helmut Neukirchen1 and Martin Bisanz2

1 Software Engineering for Distributed Systems Group,
Institute for Informatics, University of Göttingen,

Lotzestr. 16–18, 37083 Göttingen, Germany
neukirchen@cs.uni-goettingen.de

2 PRODYNA GmbH, Eschborner Landstr. 42–50, 60489 Frankfurt, Germany
martin.bisanz@prodyna.de

Abstract. Today, test suites of several ten thousand lines of code are
specified using the Testing and Test Control Notation (TTCN-3). Expe-
rience shows that the resulting test suites suffer from quality problems
with respect to internal quality aspects like usability, maintainability, or
reusability. Therefore, a quality assessment of TTCN-3 test suites is de-
sirable. A powerful approach to detect quality problems in source code
is the identification of code smells. Code smells are patterns of inappro-
priate language usage that is error-prone or may lead to quality prob-
lems. This paper presents a quality assessment approach for TTCN-3
test suites which is based on TTCN-3 code smells: To this aim, various
TTCN-3 code smells have been identified and collected in a catalogue;
the detection of instances of TTCN-3 code smells in test suites has been
automated by a tool. The applicability of this approach is demonstrated
by providing results from the quality assessment of several standardised
TTCN-3 test suites.

1 Introduction

Current test suites from industry and standardisation that are specified using
the Testing and Test Control Notation (TTCN-3) [1, 2] reach sizes of around
40–60 thousand lines of code [3–5]. These test suites are either generated or
respectively migrated automatically [6] or they are created manually [4, 5]. In
both cases, the resulting test suites need to be maintained afterwards. The main-
tenance of test suites is an important issue for industry [6] and standardisa-
tion [7, 8]. A burden is put on the maintainers if the test suites have a low internal
quality resulting from badly generated code or from inexperienced developers [6].
Hence, it is desirable to assess the quality of TTCN-3 test specifications.

According to the ISO/IEC standard 9126 [9], a software product can be
evaluated with respect to three different types of quality: internal quality is
assessed using static analysis of source code. External quality refers to properties
of software interacting with its environment. In contrast, quality in use refers
to the quality perceived by an end user who executes a software product in a
specific context. In the remainder, we will focus on internal quality problems.



A simple approach for the quality assessment of source code are metrics [10].
In earlier work, we have experienced that metrics are suitable to assess either
very local [3] or very global [11] internal quality aspects of TTCN-3 test suites.
However, properties of language constructs which are, for example, related but
distributed all over the source code are hard to assess using simple metrics.
Instead, a more powerful pattern-based approach is required to detect patterns of
inappropriate language usage that is error-prone or may lead to quality problems.
These patterns in source code are described by so called code smells.

This paper introduces TTCN-3 code smells and utilises them to detect inter-
nal quality problems in TTCN-3 test suites. The located quality problems can
be used as input for the plain quality assessment of test suites and as well as a
starting point for the quality improvement of test suites.

The structure of this paper is as follows: subsequent to this introduction,
foundations and work related to smells in software are presented in Section 2.
A survey of work concerning smells in tests is given in Section 3. As the main
contribution, a catalogue of TTCN-3 code smells is introduced in Section 4.
Then, in Section 5, a tool is described which is able to automatically detect
instances of TTCN-3 code smells in test suites. Section 6 provides results from
applying this tool to several huge standardised test suites. Finally, this paper
concludes with a summary and an outlook.

2 Foundations

The metaphor of “bad smells in code” has been coined by Beck and Fowler in
the context of refactoring [12]. Refactoring is a technique to improve the internal
quality of software by restructuring it without changing its observable behaviour.
As an aid to decide where the application of a refactoring is worthwhile, Beck and
Fowler introduce the notion of smell: they define smells in source code as “certain
structures in the code that suggest (sometimes they scream for) the possibility of
refactoring” [12]. According to this definition, defects with respect to program
logic, syntax, or static semantics are not smells, because these defects cannot be
removed by a behaviour-preserving refactoring. This means, smells are indicators
of bad internal quality with respect to (re-)usability, maintainability, efficiency,
and portability.

Smells provide only hints: whether the occurrence of an instance of a certain
smell in a source code is considered as a sign of low quality may be a matter
that depends on preferences and experiences. For the same reason, a list of code
structures which are considered as smell is never complete, but may vary from
project to project and from domain to domain [13].

Beck and Fowler provide a list of 22 smells which may occur in Java source
code. They describe their smells using unstructured English text. The most
prominent smell is Duplicated Code. Code duplication deteriorates in particular
the changeability of a source code: if code that is duplicated needs to be modi-
fied, it usually needs to be changed in all duplicated locations as well. Another
example from Beck’s and Fowler’s list of smells is Long Method which relates



to the fact that short methods are easier to understand and to reuse, because
they do exactly one thing. A further example is the smell called Data Class
which characterises classes that only have attributes and accessor methods, but
the actual algorithms working on these data are wrongly located in methods of
other classes.

Most of the smells from Beck and Fowler relate to pathological structures in
the source code. Thus, to detect such structures, a pattern-based approach is
required: for example, to identify duplicated code, pattern-matching is required;
to detect data classes, it has to be identified whether the methods of a class
are only simple get and set methods and whether methods in other classes do
excessively manipulate data from that particular class. Such patterns cannot be
detected by metrics — however, the notion of metrics and smells is not disjoint:
each smell can be turned into a metric by counting the occurrences of a smell,
and sometimes, a metric can be used to detect and locate an instance of a smell.
The latter is, for example, the case for the Long Method smell which can be
expressed by a metric which counts the lines of code of a method.3

Bad smells are also related to anti-patterns [14]. Anti-patterns describe so-
lutions to recurring problems that are wrong and bad practice and shall thus be
avoided. A well-known anti-pattern is the one called Spaghetti Code, i.e. software
with little structure. Even though this and other anti-patterns relate to source
code, anti-patterns do not refer to low-level code details as code smells do. In
fact, the majority of the anti-patterns do not relate to source code at all, but to
common mistakes in project management.

The awareness of problematic source code structures is older than the notion
of smells in source code. For example, patterns of data flow anomalies which
can be detected by static analysis have been known for a long time [15]. How-
ever, these older works mainly relate to erroneous, inconsistent, inefficient, and
wasteful code constructs. The added value of smells is to consider also more
abstract source code quality problems, for example those which lead to mainte-
nance problems.

3 Smells in Tests

As stated in the previous section, the perception of what is considered as a smell
may vary from domain to domain. Hence, for the testing domain, a separate
investigation of smells is required. Van Deursen et al. and Meszaros studied
smells in the context of tests that are based on the Java unit test framework
JUnit [16].

3 It has to be noted that Beck and Fowler state that for detecting instances of a
smell “no set of metrics rivals informed human intuition”. This is obviously true
for those smells where no corresponding metric exists. However, in the cases, where
such a metric exists, this statement does in our opinion rather relate to the fact that
reasonable boundary values for such a metric may vary from case to case and thus
it is hard to provide a universally valid boundary value for that metric.



Van Deursen et al. [17] introduce the term test smell for smells that are
specific to the usage of JUnit as well as for more general JUnit-independent
issues in test behaviour that can be removed by a refactoring. An example for a
JUnit-specific test smell is General Fixture which refers to test cases that share
unnecessarily the same fixture (i.e. test preamble), just because the test cases
are collected in the same JUnit testcase class. A more general test smell is, for
example, Test Run War which relates to the fact that test cases may behave
non-deterministic due to shared test resources when several test campaigns run
in parallel.

Meszaros [18] refines the notion of test smell by distinguishing between three
kinds of smells that concern tests: code smells relate to test issues that can be
detected when looking at source code, behaviour smells affect the outcome of
tests as they execute, and project smells are indicators of the overall health of
a project which do not involve looking at code or executing tests. Within this
classification, smells of different kinds may affect each other; for example, the
root cause of a behaviour smell may be a problem in the code. We regard this
classification of test smells as reasonable and adopt this terminology as well.

Those test smells from Van Deursen et al. that are JUnit-specific (e.g. General
Fixture) can be considered as code smells while others are more general (e.g. Test
Run War) and can thus be regarded as behaviour smells. Meszaros does not
only refine the notion of test smells, but also extends the list of test smells from
Van Deursen et al. by further smells. An example for an additional code smell
is Conditional Test Logic which refers to tests which are error-prone because
they use complex algorithms to calculate test data and to steer test behaviour.
A behaviour smell identified by Meszaros is, for example, Fragile Tests, which
are tests that fail after non-relevant changes of the System Under Test (SUT).
An example of a project smell is Developers Not Writing Tests.

4 A TTCN-3 Code Smell Catalogue

While code smells have been identified for tests written using the JUnit frame-
work, smells have not yet been investigated in the context of TTCN-3. The
project smells identified by Meszaros [18] are independent from any test lan-
guage and can thus be used as well in projects that involve TTCN-3. Most of
Meszaros’ behaviour smells apply to TTCN-3 tests without change, however
those behaviour smells whose root cause is a JUnit related code smell are only
applicable after a reinterpretation. Only a subset of the JUnit related code smells
can be reinterpreted in a way that they are applicable to TTCN-3. Hence, code
smells related to TTCN-3 need further investigation.

We have started to identify TTCN-3 code smells which we use to assess the
internal quality of TTCN-3 test specifications. When investigating possible smell
candidates we have relaxed Beck’s and Fowler’s definition of smells in source
code: We include not only internal quality problems in TTCN-3 source code
that can be improved by a behaviour preserving refactoring, but we consider as
well quality problems which obviously require a change of the behaviour. One



example is a test case which never sets a test verdict. In this case, a statement
that sets a verdict needs to be added. This cannot be achieved by applying
a refactoring, since this is a change that would not be behaviour-preserving.
Though, we still adhere to the definition of code smell, in that we do not consider
errors in TTCN-3 source code with respect to syntax or static semantics as a
smell.

As a starting point for our investigations, we examined those code smells that
were already known for implementation and testing languages. Even though the
smells listed by Beck and Fowler [12] are intended for Java code, some of them
proved to be suitable for TTCN-3 code. A further source was the TTCN-3 refac-
toring catalogue [3, 19, 20] which was in turn inspired by the JUnit refactorings
and JUnit code smells published by Van Deursen et al. [17]. The refactorings
collected in the TTCN-3 refactoring catalogue already refer briefly to code smell-
like quality issues as a motivation for each refactoring.

In contrast to the plain listing of unstructured smell descriptions that is
used by Beck and Fowler or by Van Deursen et al., we have catalogued our
TTCN-3 code smells in a structured way. This structured presentation allows a
more systematic and faster access to the smell descriptions. The entries in our
TTCN-3 code smell catalogue are listed in the following format: each smell has
a name; those smells which are derived from other sources have a derived from
section which lists the corresponding references; a description provides a prose
summary of the issue described by the smell; the motivation part explains why
the described code structure is considered to have low quality; if several variants
of a smell are possible (e.g. by relaxing or tightening certain requirements on
a code structure), this is mentioned in an options section; one or more actions
(typically refactorings) which are applicable to remove a smell are listed in the
related actions section; finally, a TTCN-3 source code snippet is provided for
each smell in the example section.

In our smell catalogue, the names of TTCN-3 code smells are emphasised
using slanted type and TTCN-3 keywords are printed using bold type. The
following overview on our TTCN-3 code smell catalogue gives an impression of
the so far identified 38 TTCN-3 code smells. The overview provides the name
and the summary of each smell and uses the same division into 10 sections as
our TTCN-3 code smell catalogue:

Duplicated Code

– Duplicate Statements: A duplicate sequence of statements occurs in the
statement block of one or multiple behavioural entities (functions, test cases,
and altsteps).

– Duplicate Alt Branches: Different alt constructs contain duplicate branches.
– Duplicated Code in Conditional: Duplicated code is found in the branches

of a series of conditionals.
– Duplicate In-Line Templates: Two or more in-line templates are very similar

or identical.



– Duplicate Template Fields: The fields of two or more templates are identical
or very similar.

– Duplicate Component Definition: Two or more test components declare iden-
tical variables, constants, timers, or ports.

– Duplicate Local Variable/Constant/Timer: The same local variable, con-
stant, or timer is defined in two or more functions, test cases, or altsteps
running on the same test component.

References

– Singular Template Reference: A template definition is referenced only once.
– Singular Component Variable/Constant/Timer Reference: A component

variable, constant, or timer is referenced by one single function, test case, or
altstep only, although other behaviour runs on the component as well.

– Unused Definition: A definition is never referenced.
– Unused Imports: An import from another module is never used.
– Unrestricted Imports: A module imports more than needed.

Parameters

– Unused Parameter: A parameter is never used within the declaring unit:
in-parameters are never read, out-parameters are never assigned, inout-
parameters are never accessed at all.

– Constant Actual Parameter Value: The actual parameter values for a formal
parameter are the same for all references.

– Fully-Parametrised Template: All fields of a template are defined by formal
parameters.

Complexity

– Long Statement Block: A function, test case, or altstep has a long statement
block.

– Long Parameter List: The number of formal parameters is high.
– Complex Conditional: A conditional expression is composed of many Boolean

conjunctions.
– Nested Conditional: A conditional expression is unnecessarily nested.
– Short Template: A template definition is very short.

Default Anomalies

– Activation Asymmetry: A default activation has no matching subsequent
deactivation in the same statement block, or a deactivation has no matching
previous activation.

– Unreachable Default: An alt statement contains an else branch while a
default is active.



Test Behaviour

– Missing Verdict: A test case does not set a verdict.
– Missing Log: setverdict sets the verdict inconc or fail without calling log.
– Stop in Function: A function contains a stop statement.

Test Configuration

– Idle PTC: A Parallel Test Component (PTC) is created, but never started.
– Isolated PTC: A PTC is created and started, but its ports are not connected

to other ports.

Coding Standards

– Magic Values: A literal is not defined as a TTCN-3 constant.
– Bad Naming: An identifier does not conform to a given naming convention.
– Disorder: The sequence of elements within a module does not conform to a

given order.
– Insufficient Grouping: A module or group contains too many elements.
– Bad Comment Rate: The comment rate is too high or too low.
– Bad Documentation Comment: A documentation comment does not conform

to a given format, e.g. T3Doc [21].

Data Flow Anomalies

– Missing Variable Definition: A variable or out parameter is read before a
value has been assigned.

– Unused Variable Definition: An assigned variable or in-parameter is not read
before it becomes undefined.

– Wasted Variable Definition: A variable is assigned and assigned again before
it is read.

Miscellaneous

– Over-specific Runs On: A behavioural entity runs on a component but uses
only elements of the super-component or no component elements at all.

– Goto: A goto statement is used.

To give an impression of how the entries in our TTCN-3 code smell catalogue
look like, the smells Duplicate Alt Branches and Activation Asymmetry are
subsequently presented in detail. In addition to the already mentioned style of
typesetting TTCN-3 keywords and names of smells, references to refactorings
from the TTCN-3 refactoring catalogue [3, 19, 20] are printed in slanted type
as well.4 Please refer to our complete TTCN-3 code smell catalogue [22] for a
detailed description of all so far identified TTCN-3 code smells.
4 References to refactorings and to smells can still be distinguished, because the names

of refactorings usually start with a verb followed by a noun, whereas the names of
smells usually consist of an adjective and a noun.



4.1 TTCN-3 Code Smell: Duplicate Alt Branches

Derived from: TTCN-3 refactoring catalogue [3, 19, 20].
Description: Different alt constructs contain duplicate branches.
Motivation: Code duplication in branches of alt constructs should be avoided

just as well as any other duplicated code, because duplication deteriorates
changeability. In particular, common branches for error handling can often
be handled by default altsteps if extracted into an own altstep beforehand.

Options: Since analysability is increased if the path leading to a pass verdict is
explicitly visible in a test case, alt branches leading to pass can be excluded
optionally.

Related action(s): Use Extract Altstep refactoring to separate the duplicate
branches into an own altstep. Consider refactoring Split Altstep if the ex-
tracted altstep contains branches which are not closely related to each other
and refactoring Replace Altstep with Default if the duplicate branches are
invariably used at the end of the alt construct.

Example: In Listing 1.1, both test cases contain an alt construct where the
last branch (lines 6–10 and lines 19–23) can be found as well in the other
alt construct.

1 testcase myTestcase1() runs on myComponent {
2 alt {
3 [ ] pt.receive(messageOne) {
4 pt.send(messageTwo);
5 }
6 [ ] any port.receive {
7 log(”unexpected message”);
8 setverdict(inconc);
9 stop;

10 }
11 }
12 }
13
14 testcase myTestcase2() runs on myComponent {
15 alt {
16 [ ] pt.receive(messageThree) {
17 pt.send(messageFour);
18 }
19 [ ] any port.receive {
20 log(”unexpected message”);
21 setverdict(inconc);
22 stop;
23 }
24 }
25 }

Listing 1.1. Duplicate Alt Branches

4.2 TTCN-3 Code Smell: Activation Asymmetry

Description: A default activation has no matching subsequent deactivation
in the same statement block, or a deactivation has no matching previous
activation.

Motivation: The analysability with respect to active defaults is improved if
default activation and deactivation is done on the same “level”, usually at
the very beginning and end of the same statement block. Furthermore, this
enables a static analysis of matching activation and deactivation.



Options: Because defaults are implicitly deactivated at the end of a test case
run, statement blocks in test cases can be excluded optionally.

Related action(s): Default activation or deactivation should be added if miss-
ing, and matching default activation and deactivation should be moved to
the same statement block.

Example: In Listing 1.2, the altstep “myAltstep” (lines 1–6) is used as default.
Function “myFunction” (lines 8–10) activates this altstep as default, but no
deactivate statement is contained in the statement block of this function.
Even though it might be reasonable in some situations to move activation and
deactivation of defaults into separate functions, this has to be considered as
an asymmetric default activation. A further asymmetry can be found in the
test case “myTestcase”: the statement block of the deactivate statement in
Line 20 consists of lines 13–15 and Line 20. This statement block contains no
activate statement, since the activation of the default is performed within
the statement block of the function “myFunction” that is called in Line 14.

1 altstep myAltstep() runs on myComponent {
2 [ ] any port.receive {
3 log(”unexpected message”);
4 setverdict(inconc);
5 }
6 }
7
8 function myFunction() return default {
9 return activate(myAltstep());

10 }
11
12 testcase myTestcase() runs on myComponent {
13 var default myDefaultVar := null;
14 myDefaultVar := myFunction();
15 alt {
16 [ ] pt.receive(messageOne) {
17 pt.send(messageTwo);
18 }
19 }
20 deactivate(myDefaultVar);
21 }

Listing 1.2. Activation Asymmetry

5 A Tool for Detecting TTCN-3 Code Smell Instances

Our TTCN-3 code smell catalogue can be utilised for the quality assessment
of TTCN-3 test suites. One possibility is to use it as part of a checklist in
a manual inspection of TTCN-3 code. However, the efficiency of such a code
inspection can be significantly improved if the detection of instances of TTCN-3
code smells is automated by a tool.5 This allows the code reviewers to focus
on high-level logical errors in the test suite, since instances of low-level code
5 All of our TTCN-3 code smells are intended to be detected by static analysis; how-

ever, those analyses required for smells related to test behaviour and data flow
anomalies are —in the general case— undecidable and can thus only solved by static
analysis heuristics (in the simplest case by neglecting any branching and assuming
a linear control flow instead).



smells have already been detected automatically. However, in our experience an
everyday usage of an automated issue detection outside of a formal inspection
is even more beneficial: the push-button detection of smell instances allows test
engineers to easily obtain feedback on the internal quality of the TTCN-3 test
suites that they are currently developing.

We have implemented the automated detection of instances of TTCN-3 code
smells into our open-source TTCN-3 Refactoring and Metrics tool TRex [20].
The initial version of TRex [23] has been developed in collaboration with the
Motorola Labs, UK, to provide an Integrated Development Environment (IDE)
for the quality assessment and improvement of TTCN-3 test suites. In that ver-
sion, the quality assessment was based on metrics; for the quality improvement,
refactoring is used [3]. Since then, we have extended the quality assessment ca-
pabilities of TRex by an additional automated detection of TTCN-3 code smell
instances. So far, TRex provides rules to detect by static analysis instances of
the following 11 TTCN-3 code smells:

– Activation Asymmetry,
– Constant Actual Parameter Value smells for templates,
– Duplicate Alt Branches,
– Fully-Parametrised Template,
– Magic Values of numeric or string types with configurable tolerable magic

numbers,
– Short Template smells with configurable character lengths,
– Singular Component Variable/Constant/Timer Reference,
– Singular Template Reference,
– Duplicate Template Fields,
– instances of any local Unused Definition,
– an Unused Definition of a global template instance.

As stated in Section 2, whether a certain code structure is considered as
a smell or not, may vary from project to project. Therefore, TRex supports
enabling and disabling individual TTCN-3 code smell detection rules and to store
these preferences as customised analysis configurations (Figure 1). Furthermore,
it is possible to parametrise some smell detection rules. For example, for detecting
instances of the Magic Values smell, a Magic Number detection rule and a Magic
String detection rule are available; the Magic Number detection rule can be
parametrised to exclude user defined values (e.g. 0 and 1 which are usually
considered to be tolerable magic numbers) from the smell instance detection.

The results of the smell analysis are displayed as a tree in the Analysis
Results view (Figure 2). The results are collected in a history, which allows to
compare analysis results. Clicking on an entry of the analysis result jumps to
the corresponding location in the TTCN-3 source code to allow a further manual
inspection. Some rules, for example Unused Definitions, offer the possibility of
invoking so called Quick Fixes. Quick Fixes automatically suggest the invocation
of TTCN-3 refactoring to remove a detected instance of a smell. Since a couple of
refactorings are implemented in TRex [23], this does not only allow an automated
quality assessment, but as well an automated quality improvement of TTCN-3
test suites.



Fig. 1. TRex Smell Analysis Configuration

Fig. 2. TRex Smell Analysis Results View

5.1 Implementation

The implementation of the TRex tool is based on the Eclipse platform [24]
as shown in Figure 3. Eclipse provides generic user interface and text editor
components as well as a language toolkit for behaviour preserving source code
transformation. As an infrastructure for the automated quality assessment and
quality improvement functionality of TRex (blocks (2) and (3) of Figure 3),
TRex creates a syntax tree and a symbol table of the currently opened test
suites (Block (1) of Figure 3). For lexing and parsing the TTCN-3 core nota-
tion, ‘ANother Tool for Language Recognition’ (ANTLR) [25] is used. A further
description of the implementation of the quality improvement based on refactor-
ings and of the implementation of the quality assessment based on metrics can
be found in earlier papers [3, 23].

The smell analysis configuration dialogue and the smell analysis results view
are provided by the static analysis framework which is part of the Eclipse Test
& Performance Tools Platform (TPTP) [26]. In the context of the TPTP static



(1) Static Analysis

Eclipse Platform User
Interface Text Editor TPTP Language

Toolkit
...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactored
TTCN-3

Core
Notation(3) Quality Improvement

Refactoring

Syntax Tree /
Symbol Table

(2) Quality Assessment

Metrics

Automated Smell Detection

Fig. 3. The TRex Toolchain

analysis framework, each smell detection capability is represented by a rule.
TPTP provides the underlying programming interface to add and implement
rules and to call and apply the rules to files according to the user-defined analysis
configuration. The actual smell instance detection is based on syntax tree traver-
sals and symbol table lookups. For example, to detect Duplicate Alt Branches,
the sub-syntaxtrees of all branches of alt and altstep constructs of a TTCN-3
module are compared. Currently, only exact sub-tree matches are detected; how-
ever, since the syntax tree does not contain tokens which do not have any seman-
tical meaning, the detection of duplicates is tolerant with respect to formatting
and comments. The Unused Definition rules make intensively use of the symbol
table to check for every symbol whether it is referenced at least once or not.
To ease the implementation of future smell detection rules, we have extracted
frequently used helper algorithms into methods of a smell detection library.

5.2 Related Work

Approaches for the automatic detection of source code issues that are detectable
by static analysis and go beyond the application of metrics have been known for
a long time. The most prominent example is probably the Lint tool [27]. Even
though Lint is older than the notion of smells, it detects issues which are nowa-
days considered as code smell. Current research shows that automatic detection
of instances of a smell is still relevant [13, 28]. In addition to this research, mature
tools for detecting instances of smells in Java programs do already exist. Exam-
ples are tools like FindBugs [29] or PMD [30]. All the mentioned work deals with
the detection of instances of smells in source code written in implementation lan-
guages like C or Java. Hence, this work does neither consider TTCN-3 related
smells nor more general test specific smells at all. The only known work on the
automated detection of instances of test smells is restricted to the detection of
JUnit code smells [31].

6 Application

To evaluate the practicability of our approach, we applied TRex to several huge
test suites that have been standardised by the European Telecommunications



Standards Institute (ETSI). The first considered test suite is Version 3.2.1 of the
test suite for the Session Initiation Protocol (SIP) [4], the second is a preliminary
version of a test suite for the Internet Protocol Version 6 (IPv6) [5]. Table 1
shows the number of detected instances of TTCN-3 code smells and provides
as well some simple size metrics to give an impression of the size of these test
suites.

Both test suites are comparable in size and in both, the same types of smells
can be found. Magic numbers can be found quite often in both test suites. An
excerpt from the SIP test suite is shown in Listing 1.3: the magic number “65.0”
used in Line 10 occurs several times throughout the test suite. If that number
must be changed during maintenance, it must probably changed at all other
places as well which is very tedious.

The number of detected instances of the Activation Asymmetry smell is as
well very high in both test suites. However, the number drops, if test cases are
excluded from the detection. Even though the SIP test suite has less Activation
Asymmetry smell instances, they still deteriorate the analysability of this test
suite as shown in Listing 1.3: the altstep “defaultCCPRPTC” is activated in
Line 6 and remains activated after leaving this function. Hence, calling this
function leads to side effects that are difficult to analyse.

Finally, Listing 1.3 can be used to demonstrate occurrences of the Unused
Definition smell in the SIP test suite: the local variable “v BYE Request” defined
in Line 3 is never used in the function and thus just bloats the code, making it
harder to analyse.

The instances of Singular Component Variable/Constant/Timer Reference
smells can be neglected in both test suites. However, the high number of Dupli-
cate Alt Branches in both test suites indicates that the introduction of further
altsteps is worthwhile. For example, the branch in lines 9–11 of Listing 1.4 can
be found as duplicate in several alt statements of the IPv6 tests suite.

This and our further analysis [22] of the detected smell instances give evidence
that these instances are correctly considered as issues and can thus be used for

Metric/TTCN-3 Code Smell SIP IPv6

Lines of code 42397 46163
Number of functions 785 643
Number of test cases 528 295
Number of altsteps 10 11
Number of components 2 10

Instances of Magic Values (Magic numbers only, 0 and 1 excluded) 543 368
Instances of Activation Asymmetry (Test cases included) 602 801
Instances of Activation Asymmetry (Test cases excluded) 73 317
Instances of Duplicate Alt Branches (Inside the same module only) 938 224
Instances of Singular Component Variable/Constant/Timer Reference 2 15
Instances of Unused Definition (Local definitions only) 50 156

Table 1. Instances of TTCN-3 Code Smells Found in ETSI Test Suites



quality assessment and as starting point to improve the internal quality of the
respective test suites.

1 function ptc CC PR TR CL TI 015(CSeq loc CSeq s ) runs on SipComponent
2 {
3 var Request v BYE Request;
4
5 initPTC(loc CSeq s);
6 v Default := activate(defaultCCPRPTC());
7
8 tryingPTCBYE();
9

10 waitForTimeout(65.0∗PX T1);
11
12 notRepeatBYE(PX TACK);
13
14 } //end ptc CC PR TR CL TI 015

Listing 1.3. Magic Values, Activation Asymmetry, Unused Definition (SIP)

1 tc ac.start;
2 alt {
3 [ ] ipPort.receive ( mw nbrAdv noExtHdr (
4 p paramsIut.lla,
5 p paramsRt01.lla ) ) {
6 tc ac.stop;
7 v ret := e success;
8 }
9 [ ] tc ac.timeout{

10 v ret := e timeout;
11 }
12 } // end alt

Listing 1.4. Duplicate Alt Branches (IPv6)

7 Conclusion

We presented a catalogue of 38 TTCN-3 code smells that can be utilised to de-
tect code-level problems in TTCN-3 test suites with respect to internal quality
characteristics like usability, maintainability, or reusability. Each of our entries in
the TTCN-3 code smell catalogue provides a description of the considered code
issue, a motivation why it is considered to have low quality, an action to remove
the smell (typically using a TTCN-3 refactoring [3]), and an example. In this
paper, we gave an overview of our TTCN-3 code smell catalogue and presented
excerpts from the full version [22]. We have implemented the automated detec-
tion of instances of TTCN-3 code smells in our TRex tool and demonstrated the
applicability of our approach by assessing the internal quality of standardised
test suites.

In future, we intend to extend our TTCN-3 smell catalogue by further code
smells and also by more sophisticated high-level smells (e.g. smells related to
issues in a test architecture). In parallel, we will implement further smell de-
tection rules in TRex and evaluate their validity. The current smell detection
rules are implemented in an imperative style in Java. To ease the implementa-
tion of further smell detection rules it is desirable to specify the code pattern
that is described by a smell in a declarative way like the PMD tool [30] supports



for Java-specific smells. Finally, we believe that it is worthwhile to investigate
smells for other test specification languages, for example the UML 2.0 Testing
Profile (U2TP) [32].

Acknowledgements: The authors like to thank Jens Grabowski and the anony-
mous reviewers for valuable comments on improving this paper.

References

1. ETSI: ETSI Standard (ES) 201 873-1 V3.2.1 (2007-02): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis, France, also published
as ITU-T Recommendation Z.140 (February 2007)

2. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An introduction to the testing and test control notation (TTCN-3). Computer
Networks 42(3) (June 2003) 375–403

3. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and
Metrics for TTCN-3 Test Suites. In Gotzhein, R., Reed, R., eds.: System Analysis
and Modeling: Language Profiles. 5th International Workshop, SAM 2006, Kaiser-
slautern, Germany, May 31–June 2, 2006, Revised Selected Papers. Volume 4320
of Lecture Notes in Computer Science (LNCS)., Berlin, Springer (December 2006)
148–165

4. ETSI: Technical Specification (TS) 102 027-3 V3.2.1 (2005-07): SIP ATS & PIXIT;
Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra In-
formation for Testing (PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (July 2005)

5. ETSI: Technical Specification (TS) 102 516 V1.1 (2006-04): IPv6 Core Protocol;
Conformance Abstract Test Suite (ATS) and partial Protocol Implementation eX-
tra Information for Testing (PIXIT). European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France (April 2006)

6. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-
text – Motorola Case Study. In Briand, L., Williams, C., eds.: Model Driven En-
gineering Languages and Systems: 8th International Conference, MoDELS 2005,
Montego Bay, Jamaica, October 2–7, 2005. Volume 3713 of Lecture Notes in Com-
puter Science (LNCS)., Berlin, Springer (November 2005) 476–491

7. ETSI: Specialist Task Force 296: Maintenance of SIP Test Specifications. European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France (2007)

8. ETSI: Specialist Task Force 320: Upgrading and maintenance of IPv6 test spec-
ifications. European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (2007)

9. ISO/IEC: ISO/IEC Standard No. 9126: Software engineering – Product quality;
Parts 1–4. International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC), Geneva, Switzerland (2001-2004)

10. Fenton, N.E., Pfleeger, S.L.: Software Metrics. PWS Publishing, Boston (1997)
11. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying

the ISO 9126 Quality Model to Test Specifications – Exemplified for TTCN-3 Test
Specifications. In Bleek, W.G., Raasch, J., Züllighoven, H., eds.: Proceedings of
Software Engineering 2007 (SE 2007). Volume 105 of Lecture Notes in Informatics
(LNI)., Bonn, Gesellschaft für Informatik, Köllen Verlag (March 2007) 231–242



12. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

13. van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells.
In: Proceedings of the 9th Working Conference on Reverse Engineering, IEEE
Computer Society Press (October 2002) 97–106

14. Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: Anti-Patterns.
Wiley, New York (1998)

15. Fosdick, L.D., Osterweil, L.J.: Data Flow Analysis in Software Reliability. ACM
Computing Surveys 8(3) (1976) 305–330

16. Gamma, E., Beck, K.: JUnit. http://junit.sourceforge.net (February 2007)
17. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring Test Code.

In: Extreme Programming Perspectives. Addison-Wesley, Boston (2002) 141–152
18. Meszaros, G.: XUnit Test Patterns. Addison-Wesley, Boston (2007) (to appear).
19. Zeiss, B.: A Refactoring Tool for TTCN-3. Master’s thesis, Institute for Informat-

ics, University of Göttingen, Germany, ZFI-BM-2006-05 (March 2006)
20. TRex Team: TRex Website. http://www.trex.informatik.uni-goettingen.de

(February 2007)
21. ETSI: ETSI Standard (ES) 201 873-10 V3.2.1: TTCN-3 Documentation Comment

Specification. European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (2007) (to appear).

22. Bisanz, M.: Pattern-based Smell Detection in TTCN-3 Test Suites. Master’s
thesis, Institute for Informatics, University of Göttingen, Germany, ZFI-BM-2006-
44 (December 2006)

23. Baker, P., Evans, D., Grabowski, J., Neukirchen, H., Zeiss, B.: TRex – The
Refactoring and Metrics Tool for TTCN-3 Test Specifications. In: Proceedings
of TAIC PART 2006 (Testing: Academic & Industrial Conference – Practice And
Research Techniques), Cumberland Lodge, Windsor Great Park, UK, 29th–31st
August 2006., IEEE Computer Society (August 2006) 90–94

24. Eclipse Foundation: Eclipse. http://www.eclipse.org (February 2007)
25. Parr, T.: ANTLR parser generator. http://www.antlr.org (February 2007)
26. Eclipse Foundation: Eclipse Test & Performance Tools Platform Project (TPTP).

http://www.eclipse.org/tptp (February 2007)
27. Johnson, S.: Lint, a C Program Checker. Unix Programmer’s Manual, AT&T Bell

Laboratories (1978)
28. Moha, N., Gueheneuc, Y.G.: On the Automatic Detection and Correction of Design

Defects. In Demeyer, S., Mens, K., Wuyts, R., Ducasse, S., eds.: Proceedings of
the 6th ECOOP Workshop on Object-Oriented Reengineering. Lecture Notes in
Computer Science (LNCS), Springer (to appear).

29. Pugh, B.: FindBugs. http://findbugs.sourceforge.net (February 2007)
30. Dixon-Peugh, D.: PMD. http://pmd.sourceforge.net (February 2007)
31. van Rompaey, B., du Bois, B., Demeyer, S.: Characterizing the Relative Signifi-

cance of a Test Smell. In: Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM 2006), Philadelphia, Pennsylvania, September
25–27, 2006, IEEE Computer Society (September 2006) 391–400

32. OMG: UML Testing Profile (Version 1.0 formal/05-07-07). Object Management
Group (OMG) (July 2005)


