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Abstract. We describe an experience in applying model based testing
in verifying especially the parallel behavior of a device level service and
discovery protocol. Our approach is two phased: we first define a high
level domain model in B and use cases in CSP that can be verified and
then create a more detailed reference model that we use for testing the
implementation on-the-fly. The use cases are used to drive both the B
model and the reference model.

1 Introduction

This paper documents our experiences in applying formal methods and model-
based testing approaches in an industrial, semi-formal environment. We were
tasked with testing an embedded session and transport protocol for mobile de-
vices based on SOA [1] principles. It is expected that subsystems connected by
such a protocol would be provided by an external vendor and must be tested as
black box implementations.

We were expected to construct the tester during development of the system, the
implementation work had already started and there were no formal specifica-
tions for the system. Our main goal was to find bugs arising from concurrency.
Experiences of the modeling work and some empirical evidence related to this is
described in [2]. During the development the requirements and the the environ-
ment evolved forcing us to attempt a less formal and more pragmatic approach.

It is well known that parallel systems are hard to verify and test. Exhaustive ver-
ification and proving of correctness are options for systems that are constructed
in well controlled environments and often with specialized languages. When test-
ing parallel systems the above problems are augmented by the fact that it is not
possible to force an executing parallel system to a certain state as timing and
scheduling issues that cannot be influenced from outside of the implementation
affect the behavior of the system under test.

We attempted a rigorous approach where we specified requirements at a high
level, dividing them into use cases and system model and then refined that
model strictly to a concrete model that could then be used as basis for auto-
mated testing which would partly alleviate the problems of testing a parallel



system. Especially we planned to rely on on-the-fly testing technique to cope
with parallelism.

Our experience was that maintaining the refinement between a high level model
and a more concrete model that was used for testing was too laborious, thus
maintaining that was abandoned. Use cases remained the only link between
those two models. To measure the coverage of the use cases we initially limited
the model used for testing so that it would execute according to the use cases.
We also post-processed traces of random execution of the model to recognize use
case behaviors. Eventually tool support allowed us to drive the model directly
with use cases.

We attempted to measure the quality of the testing by comparing function call
counts from an instrumented implementation that was tested by our approach
and with existing “traditional” style testers, but we noted that this kind of
coverage values do not reflect quality of testing. Although on-the-fly testing
typically gives higher values it is easy to create a traditional test suite that
produces values of same or higher magnitude by blind repetition. For same call
count values the model-based on-the-fly tester is able to order the sequence of
calls in more different ways, which is useful especially in uncovering errors arising
from concurrency. At the same time we note that it is usually not feasible to
be able to exhaustively test all possible parallel combinations, thus we propose
that a way to ensure uncovering parallel errors is to drive the model with a
use case to a situation with high parallelism and then letting the tester tool
execute unguided after that. The produced traces can be postprocessed to obtain
a measure on how many of the possible parallel executions have been covered.

The rest of the paper is arranged as follows: section 2 describes our approach,
section 3 describes the system that we are testing, section 4 elaborates on the
construction of the tester, including modeling and other decisions during devel-
opment, section 5 describes the results of testing and finally section 6 presents
our conclusions.

2 The Approach

Our initial approach is outlined in figure 1: the system requirements (1) are split
into use cases (2) and an abstract system (3). We have chosen to design the use
cases as CSP (4) and the abstract domain model of the system in B [3] (5).The B
model can be checked for consistency by theorem proving and further validated
against the use cases by model checking. Another view of the same thing is that
the CSP can drive the B model, which acts as an oracle.

Then we ideally construct a concrete reference model (6) based on the abstract
B model using the B method and refinement. The CSP can be used to drive the
reference model as well so in addition to the construction method the CSP is
used as another mechanism for ensuring the validity of the reference model.

The reference model is concrete enough that it contains necessary information
for testing an implementation of the defined system without adding behavior
outside of the model. Note that the reference model is really a model of the
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Fig. 1. The attempted process.

system rather than model of the tests, we rely on tools to be able to infer the
tests from the system model. We assumed that it would be less effort to operate
on the same terms as the system design rather than having a completely separate
tester. Also we are especially interested in testing of the parallel features and thus
we wanted to perform on-the-fly testing [4] under the assumption that it would
be easier to have the tester adapt to the parallel behavior of the system rather
than to have test cases that would contain essentially the same functionality.
These assumptions led us to use the commercial Conformiq Qtronic [5] tool for
testing.

3 NOTA Architecture, Session and Transport Protocol
Layer

The system under test is the “high interconnect” (H_IN) part of the Network
on Terminal Architecture (NoTA) [6,7]. The driving force behind NoTA is to
produce a device which supports “horizontalisation” of technology in the most
extreme form currently available while adhering to the constraints of very small,
embedded devices - namely, but not limited to, the mobile phone as we cur-
rently know today. The two goals that drive NoTA are modularity and service
orientation.

Modularity is seen in the way devices are physically (and possibly logically) con-
structed while service orientation allows the functionality of the device to be
abstracted away from that functionality’s implementation and physical location.
What this achieves is a complete separation of the functionality from the con-
struction of the device. In other words the whole product line [8] based upon the
Network on Terminal Architecture concepts becomes simply the choice of what



functionality is required and then the choice of the most suitable implementation
technologies; or even possibly vice versa.

A NoTA device is constructed in a modular fashion from components which
are termed subsystems. A subsystem is simply a self-contained, independent
unit of the device which provides processing capabilities. Typically a subsystem
manifests itself as a unit containing a processor, local memory and a set of local
devices, for example, a camera, solid state storage and so on. A subsystem must
also provide communication to the NoTA Interconnect allowing the services that
run upon that subsystem to communicate with other services elsewhere in the
whole NoTA device. Figure 2 shows this pictorially with a device containing two
subsystems of various configurations.
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Fig. 2. Pictorial Representation of a NoTA Device

The Interconnect can be any suitable communication medium, although in a
mobile device this means some kind of high speed bus. In the simplest design,
the interconnect is either of star or bus topology, although any particular network
topology is possible.

The interconnect is divided into three layers: High Interconnect (H_IN), Low
Interconnect (L_.IN) and Network (TCP/IP, MipiUnipro etc) layer.

The H_IN provides services with resource discovery and management, session and
upper level transport facilities. It is into this layer that services and applications
request communication channels to other services and applications, while services
themselves announce and register their existence and provide functionality to
the world. The communication mechanism provided by the H_IN is connection
oriented and provides asynchronous message based passing and streaming data
communication possibilities:

Typically the asynchronous message based type of communication is reserved for
control commands and general interaction between services, while large quanti-
ties of data, eg: multimedia, are sent via the streaming connections. The L_IN
is more of a device driver level which abstracts the underlying communication
network away from the H_IN.

While devices are constructed out of subsystems and an interconnect, without
services the device is not capable of providing any end-user functionality. The



subsystems and interconnect serve to support the provision of services. The no-
tion of service in NoTA is an abstraction of some logical grouping of functionality

[9]-

4 Modeling the system and constructing the tester

There are two requirements for testing of a NoTA system that we focus on:
the parallel nature of the system and testing of third party provided subsystem
implementations. Each subsystem must be able to communicate with entities
(services or applications) on the H_IN network regardless of which subsystem
they reside on. Each subsystem may be a separate computing entity and there
is no global scheduling mechanism for the whole system, which means that even
if there is a deterministic behavior for a single subsystem, the behavior of all
the subsystems executing in parallel most likely does not have one. We wanted
to flush out bugs in the H_.IN arising from this parallel complexity. Secondly
we wanted to test that a third party subsystem implementation would work
properly in the H_IN network.

While not covered in this work, we also wanted to be able to test the services
themselves as they also may have parallel behavior and hopefully use the same
approach as described in this work.

We decided to model the H_IN layer itself rather than the protocol between the
subsystems or the individual services and applications using the H_IN. The rea-
son for this was that we wanted to concentrate our effort on the system itself and
then derive the possible correct behaviors from the system model automatically
to cope with the expected complexity. The downside of this decision is that the
system model as such treats all of the entities using H IN the same data-wise,
that is, the model of the system (or the real implementation itself) does not
contain any specific information about the content of the data that it passes.
When needed, we planned to provide this data by use cases or as a more drastic
measure, model the particular services in the same model as the H_IN.

Also, we are modeling the system (H_IN layer) and we want to test based on
the same or refined model of the system rather than construct a separate model
of the tester for the system. This is because after constructing a valid model
of the parallel system we want to reuse this effort in automatically deriving
the tests from this model. The difference between a tester model and a system
model is that the tester exists outside of the system acting as a user whereas
the system model describes the behavior from the system point of view. So
when a tester model sends a message, the system model expects a message. One
way of thinking about this is that we want to compare the system model with
the implementation. Here the system model acts as a reference implementation.
Another view is that the tester is an “inverse” of the system.

The model communicates with the outside world by sending messages to named
ports and receiving messages from them. The number of ports that allow com-
munication to the outside world is fixed, but easily parameterizable. Each of
these ports corresponds to an entity offering a service or using some service on
top of the H_IN layer, so the chosen number of ports determines the maximal
parallelism for the model. When the model sends a message to the outside world,



it means that we expect the system to produce that kind of message and when
the model receives a message we expect the implementation to accept that kind
of message.

For high level modeling of the H_IN layer we chose the B language because we
had previous experience in building systems using that methodology [10] and
using CSP for use cases followed from the available B tool support. Furthermore
the B method has the notion of refinement which allows stepwise generation
of less abstract models until BO subset of B for which there exist mappings
to imperative programming languages. We used the ProB animator and model
checker [11] and the commercial ClearSy Atelier B for analyzing the B.

Also, since we expected to be testing a parallel system, we wanted to be able to
perform testing on-the-fly, that is we wanted to “execute” the model in parallel
with the implementation and adapt to the behavior of the implementation. It is
possible to use the system model to generate a set of linear test cases, but using
this mechanism to attempt testing of parallel systems is cumbersome. Firstly
because attempting to generate all possible linear test cases covering all parallel
interleavings becomes infeasible for nontrivial systems due to the state explosion
problem. Secondly, a parallel system may execute correctly but differently than
what a test case expects, which means that the test case signals “inconclusive”
or “fail” and the effort spent for that test case is wasted. Finally, while typically
testing languages have the possibility of branching based on replies from the
implementation, constructing a test case that would attempt to adapt to the
implementation would lead to implementing an on-the-fly tool using the testing
language. We expect that on-the-fly testing alleviates these problems. There
is existing work on generation of test cases from a model [12,13] and also on
various test selection heuristics [14,15] which attempt to produce a subset of
possible testing for best possible coverage of the model. We expect that the
most successful of these heuristics will be applicable for test case generation as
well as on-the-fly testing and that support for them will appear in tools.

The two particular requirements of the ability to base its testing on the model of
the system and ability to execute testing on-the-fly led us to use the Conformiq
Qtronic tool for testing. At the time of this decision Qtronic supported a variant
of LISP to define the models. Qtronic executes the the LISP model symbolically
in parallel with the executing system under test causing messages to be sent to
the system under test. The feedack from the tested system is taken into account
by the symbolic executor and influences the permissible behavior later on. The
tool also has possiblity of guiding the testing by various coverage criteria: there is
structural criteria, such as branch, condition and boundary value coverage over
the LISP model and coverage over user specified checkpoints that are entries in
the LISP model. In addition there is notion of coverage over use cases, which are
also defined in LISP.

4.1 The models

The B machine contains operations for each H_IN primitive and the CSP is then
used to express the use cases that specify the desired behavior of the system over
those primitives. The CSP can be then verified against the B model as described
in [16]. For example, figure 3 shows the B operations for registering a service



and the CSP for a use case that shows that after a service has registered under
some service identifier, another entity may connect to that particular identifier.
Effectively this is one possible and desired linear trace in the system.

The first two events in the CSP are internal to the used ProB tool and thus
implementation details, but the register with ResourceManager?Sname?Sid!
REGISTRATION OK event is the first H_IN specific one and expresses that the
particular event can occur successfully for some service id Sid and service name
Sname. The register event is then followed eventually by a connect event that
uses the same service id Sid to connect successfully. The RUN process that is
executed concurrently states that all the events that are passed as its parameters
do not constrain the CSP process (the list of events here is truncated). In effect
we are saying that the events in the RUN process are ignored until the desired
connect event with desired arguments is encountered. This same mechanism is
also used to hide operations that are purely internal to the B machine, such as
the rm_register above, so that only H_IN primitives are used to build the use
cases. This way the use cases should be applicable to any system that has the
same set of primitives.

ss,err <-- rmregister(nn,aa) =
PRE

nn : SERVI CE_NAME &

aa <: | CNODE_ADDRESS

THEN
CHO CE
err := REG STRATI ON_ERRCR | |
sid,err <-- register_w th_ResourceManager(nn) = ss :: SID
PRE R
nn : SERVI CE_NAME & ANY
i cnode_state = RUNNI NG newsi d
THEN VHERE
sid,err <-- rmregister(nn,icnode_address) newsid : SID - rnsids
END ; THEN
ss :=newsid ||
rmeids := rmsids \/ { newsid } ||
err := REG STRATI ON_COK
END
END
END ;

CSP: MAIN=initialise -> notify_resource_nanager_| ocation -> REG STER; ;
REG STER = regi ster_w t h_Resour ceManager ?Snanme?Si d! REG STRATI ON_ K - >
(CONNECT ||| RUN[register_w th_ResourceManager, send, nmregister,...]);;
CONNECT(SS) = connect! SS! CONNECT_OK -> skip;;

Fig. 3. The “register” primitive expressed in B and a CSP property.

By the time we completed this model, the specifications had already changed
somewhat and the initial test model had turned out to be complex enough that
we felt that constructing the chain of refinements between these models would
be too time consuming, especially as this process might have to be repeated.
Thus we decided to develop the models separately but nevertheless make an
effort to make sure that the CSP use cases would be compatible with both.
We felt that it was still worth the while to continue, as a correct - in terms of



verification - system does not guarantee that the system would have behaved in
accordance with the customer’s wishes - hence the need for testing at all levels
of development.

It can be argued that correct development of the system would have been
achieved if we had followed the refinement rules and constructed a concrete
specification in the B0 subset of B which is translatable to a ‘normal’ imperative
language (B0 sequentializes actions and removes non-determinism). There do ex-
ist code generators from B0 to C, C++ (and also Java and Ada). We faced three
problems here, firstly the time spent developing and refining the specification
would have been considerable and secondly we would have to have developed a
code generator to LISP and ensured that it preserved the semantics of the model.
Finally we felt that there would certainly be changes that would result from con-
necting the LISP system to the tester and all of these changes could not be done
at the LISP level but higher up in the refinements chain. These facts together
outweighed the potential benefits - of course if B (and it has now been super-
seded) would have been taken into more general use then this route might pay off
in the future. Additionally, strict refinement based approaches do not cope with
change in the specification well resulting in techniques such as retrenchment to
preserve the mathematical link between now differing specifications.

The LISP model was constructed essentially as an event loop: the system reads in
messages from incoming ports and these events are then processed. These events
match the H_IN primitives. Notably, initially all H_IN events were accepted by
the event loop. Since this model is used for testing this meant that given this
model to a model based tester, it would generate any of these primitives to be
sent to the implementation. The effects of this are described further below in
section 4.2.

Figure 4 shows the LISP code that corresponds to the “register” primitive in
figure 3. This function is called from the event loop after an event Hactivate
Service with one parameter sid of integer type has been received.

If the parameter sid has been registered before (1), the event HactivateService
_ret is sent back with parameter value zero signaling failure (3) and the event
loop is re-entered. The model has been augmented with a tool specific checkpoint
mechanism (2), which allows tagging parts of the model so that the tags are
reported in test traces, but they can also be used as coverage guides. If the sid
is new, it is then associated with the port from which the original message came
from (4) and a new internal interface is created (5) and also associated with the
sid (6) for later use. Then a random value non-zero is generated (7) and after
some more bookkeeping and checkpoints (8), the return message is sent back (9)
containing the random value. Again, since this is a model of the system, emitting
a message with a random value means that the tester expects the implementation
to produce that message with any value in place of the random value.

Each H_IN primitive has a similar function and furthermore there are functions
for bookkeeping and internal data structures as well as functions whose purpose
is to enforce the typing of the primitive parameters.

The use cases are also written in LISP and they are similar to the CSP ones in
that they are essentially sequences of events. Figure 5 shows the same use case
as earlier in figure 3: the main function calls three functions, that perform the



(define Handl eActi vateService
(lambda (nmsg env in_port ret_port)
(let*
((msg_name (ref nmsg 0)) (sid (ref msg 1))

1 (known_sid (r_known_sid? (env_rmap_port env) sid)))
(if (known_sid)
(begin
2 (checkpoint (tuple 'unable-to-register sid)) ; a named checkpoint
3 (output ret_port (tuple ’HactivateService ret sid 0)) ; sending a nmessage
(h_in_router env))
(begin
4 (r_dict_add (env_sid_to_outport env) sid ret_port)
5 (let ((sid_port (make-interface)))
(begin
6 (r_dict_add (env_rmap_port env) sid sid_port)
7 (let ((pid (+ (random 254) 1))) ; make up a val ue
(begin

(r_dict_add (env_s2p_port env) sid pid)
(env_incr_service_ctr env)
8 (checkpoint (tuple ’'service-activated (print-pname in_port) sid))
9 (output ret_port (tuple 'HactivateService_ret sid pid))))
(h_in_router env))))))))

Fig. 4. The LISP code corresponding to the “register” primitive.

communication. This use case is expected to be running as an observer in parallel
with the system model. The way this use case either influences the testing or
adapts to it is elaborated below.

4.2 Use cases, data and control of the system

As mentioned earlier, the model of the system contains no information about
the content of the data it is handling, the only properties the model deals with
is the size of the data. This is consistent with the B model where the structure
of the data was abstracted out using a generic DATA type.

For instance, a camera service has registered itself to the system under the name
CAM. In order to use that service, an application must know that name and
furthermore be able to send across correct commands, potentially in a certain
order. For H_IN the name of the service is any sequence of characters with a
maximum length that is associated with some port. If someone asks for that
particular string then H_IN can freely choose a number within some bounds to
represent a connection to that service and then transmit data, which from H_IN
point of view is a sequence of items in a buffer.

For theorem proving and model checking purposes this generality is not a prob-
lem and also if the H.IN can be tested in a test bench where no real world
entities are running it is possible to use essentially random data. However, if
there is a service implementation in the network, it becomes necessary to know
its identity and also how to maintain communication with it by sending com-
patible messages in right order. So there should be a mechanism of dealing with
the data.



(define send-hactivate (define send-connect

(| anbda () (1anbda (si d)
(let* ((oport (any-oport)) (sid (random 254))) (et (FOPO" (any-oport)))
(begin (begin
(output oport (tuple 'HactivateService sid)) (output oport (tuple 'Hconnect_req sid))

(tuple oport sid))))) #t )))) ;; we have reached our goal

(define main
(define receive-hactivate_ret (1 anbda ()

(l'anbda (send-port sid) (if |usecase:use case 2|

(let ((receive-port (oport-to-iport send-port) )) (let ((a (send-hactivate)))
(let ((inmsg (handshake receive-port #f))) (let* ((s_oport (ref a 0))
(let* ( (iport (gp inmsg)) (msg (gminnsg))) (sid (ref a 1)) )
(begin (begin

;5 W nmake sure that nessage is what we want

(receive-hactivate_ret s_oport sid)
(require (equal ? (ref msg 0) 'HactivateService_ret) #f) (send-connect sid)))))))

(require (equal ? (ref msg 1) sid) #f)

(require (> (ref msg 2) 0) #f)))))))

Fig. 5. The LISP use case corresponding to the B use case.

Also, the system is built with a certain purpose in mind: H_IN should connect
entities and transport data between them. The information how to do this is
contained in the model, but the sequence of primitives that performs the data
transfer is just as probable as any other sequence. For example a valid sequence
of primitives always starts with a “register” primitive and is then followed by a
“connect” primitive, but the model may always enable sending a “send” message
with bogus arguments first. Of course this is due to the way the model has
been constructed: all primitives should always be accepted. This generation of
unexpected behavior is partly the reason why model based testing is powerful,
but it also has the risk that the intended behavior is never completely exercised
as there is always a high possibility of choosing a bogus message.

Both the data issue and sequencing of primitives can be resolved by modifying
the model. The expected data can be hard-coded in the model so that whenever
a message is to be sent or received from a given address, it has the desired format.
The major downside of this is that this is completely bound to the particular
application. The sequencing can also be enforced in the model: a boolean flag
in the event loop can ensure that a “send” can only occur after a successful
“connect”. This is more general than the data hard-coding but it seems clear
that if more complex sequences than two messages are considered, the system
quickly becomes complex.

Both of these clearly limit the state space of the system so it might be possible
to consider these models a refinement of the “generic” model, but the loss of
generality is unappealing.

To solve this we put the application specific information to use cases and then
count on the testing tool to be able to utilize the information in them. The use
cases are used in two ways: to influence the test execution and to observe the
test execution.

Figure 6 gives an example of both cases. This is part of the use case shown in
figure 5 and on the left hand side of figure 6 the use case adapts and observes



(define send-hactivate

(define send-hactivate (1 anbda ()
(lambda () (let* ((oport portl) (sid 12))
(let* ((oport (any-oport)) (sid (random 254))) (begin
(begin (output oport (tuple 'HactivateService sid))
(output oport (tuple 'HactivateService sid))

| id
(tuple oport sid))))) (tupte oport sid)))))

Fig. 6. A use case that observes and another that influences.

the test run, here the HactivateService primitive that is used to register the
sender of this primitive under the id given as parameter. There are parameter
values that are both chosen randomly, the port where the message occurs and
an integer variable corresponding to the service id. As we explained earlier, the
random value indicates that any value produced by the test tool can occur here.
So this states that we want to be able to observe primitive HactivateService
for any port and service id and that we want to remember both for later use. The
version the right hand side of figure 6 is similar, but both the port and service
id have fixed values; we expect this use case to influence the tester tool so that
it is able to generate the values given in the use case. For payload data, this is
the mechanism we force the service commands to comply with possible existing
systems.

For control flow, we can explicitly guide the implementation event by event, but
we’d prefer to encode the same use case as in figure 3 and let the tester tool
find the path to such a state. This allows us to guide the implementation to a
state of high concurrency or otherwise unlikely situations and then let the tester
tool proceed (semi-)randomly. Unfortunately the tester tool did not support this
kind of use cases at the time so we could not try this approach. We expect this
feature to appear in future. The potential downside of this feature is that it might
require heavy computations, which are problematic when performing on-the-fly
testing.

While not obvious from the use case listings, we expect that tool support will
remove the work needed to write the use cases as code. The primitives for com-
municating with the implementation can be derived from interface specification,
resulting in a user interface that allows specifying the use cases in an MSC-like
format. The user only needs to fill in the sequence of actions and constraints on
the data values.

4.3 Test configuration

There are multiple parallel entities that operate over the H_IN layer, but the
H_IN layer itself may cover several subsystems as described in section 3, so there
needs to be a way of connecting the tester tool to all of them. The model considers
H_IN as a single system: there may be several points of communication, but they
all reside on the same H_IN layer and are independent of each other.

In practice each entity on the H_IN layer must reside on some subsystem. Also,
every subsystem must implement part of the H_IN network that offers primi-
tives to the users and is able to communicate to other similar subsystems within
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Fig. 7. Test configuration for a H IN system consisting of three subsystems.

the H_IN network. There exists a C-language interface for these primitives and
when model communicates with the outside world via port, this communication
in terms of the tool run time system must be mapped to these C data types and
function calls and back. Our aim was to construct the model used for testing at
detailed enough level that we could claim that no information loss or informa-
tion generation would be needed in these adapters. The only part where we are
not entirely convinced about meeting this goal is the handling of asynchronous
messages, which required its own bookkeeping mechanism.

Qtronic has the notion of an “adapter process” which communicates with the
tester tool using a specific protocol, in this case over TCP/IP, and contains
the user produced adaptation between the implementation and the Qtronic run
time system. We have decided to make each adapter process correspond to one
model port, rather than have one adapter process for each subsystem. This gives
more flexibility in at the price of more overhead, which may be a problem for
subsystems with low processing capabilities.

The traffic between different adapter processes is routed via a special “combiner
adapter” that is configured with the address information of the port specific
adapters. This configuration has to match the real world subsystem configura-
tion. Figure 7 shows an example configuration, where the model has four ports
and the system under test consists of three subsystems. Two of the ports have
been mapped on the same subsystem, while other two are mapped to two differ-
ent susbsytems.

We assume that we are able to execute the adapter processes on the subsystems,
which is a valid assumption for in-house testing. However, if we want to test a
subsystem implementation we have two possibilities: either demand the producer
of the subsystem that there is an access to H.IN or then we must be able to
exercise the service that exists on the subsystem using its own primitives. Use
cases that contain the service specific data is one possibility, another one is to
model the service in addition to the H.IN model.



5 Results and Conclusions

The abstract B model has 800 +/- 100 lines of code, the LISP model has 2100
+/- 200 lines of code and the C implementation of the H.IN has 20000 +/-
1000 lines of code. As usual, the modeling phase already uncovered some errors
and assumptions in the implementation. The modelling process (including re-
quirements elicitation and revision, plus various versions of the model) took 4
man months to produce the first major release of the specification and the first
feature complete tester also took about 4 man months.

During testing, one bug was found that essentially was due to the implementation
not expecting out-of-band messages, for example a “send” before a “connect”
had been made. These could have been found by writing a tester that would
have produced messages randomly.

We found four bugs that were of a concurrent nature, the earliest one is shown
in figure 8, where two services on same subsystem register themselves and then
an application tries to connect to both producing a connect request only for the
other one. This trace is the shortest one to that error.

Another error of a similar kind, occurred with the same configuration where the
indication of arrived data was given to the wrong entity. The third error was
related to closing down of connections when two entities on different subsystems
closed down the connection at same time and the fourth error occurred when two
connections were sending data in both directions requiring four entities where
connections were across subsystems. Furthermore we found errors that had no
concurrent cause and most likely would have been caught by any kind reason-
able testing. Typically the faults were such that they manifested themselves as
multiple reported errors and identifying the root cause took some human work.
Also, at times it was necessary to modify the model so that these errors could
be circumvented and testing could be continued.

The implementation under test had simple test programs that set up a service
and then a client would connect to that service to transfer simple data and this
could be repeated. There were three scenarios: client connects and sends data,
client connects and receives data and client connects and both client and service
send and receive data.

Our assumption was that model-based testing would be able to exercise the
system better and that our approach would be more efficient when compared to
taking the “traditional” approach of writing linear test cases or test programs,
especially for errors that arise from concurrency.

Bugs were found and the mentioned parallel errors were such that save for the
first one there were no explicit requirements that would have led to test cases
uncovering the errors. In the first case, the requirement existed, but there were
multiple potential configurations of subsystems which were not explicitly noted
down. We feel that it is unlikely that there would have been hand written se-
quential test cases that would have caught these errors. Furthermore, we note
that they would not have been repicated by repeated executions of the existing
test programs.



HactivateService [0, "(0){0)(0)(0)" (HEX 0 0 0 0) (BIN 0 0 0 0)}
#1 [1.99449 s]
HactivateService_ret{ 0, 1}
#2 [2.13929 5]
| B
HactivateService{ 1, "((M((®)" (HEX 0 0 0 0) (BIN 0 0 0 0)}
#3 [4.5253 5]
HactivateService_ret{ 1, 1}
#4 [4.66925 s]
=
Hconnect_req 1, "(0){0y " (HEX 000 0)(BINo 0 0 0)}
#5 [9.831 s]
HEventConnect_ind{ 3, 1}
#6 [9.97894 5|
E2
Hconnect_reg {0, "((M(0y(M" (HEX 0 o0 0 o) (BIN 0 0 0 D)}
#7 [13.0132 5]
HEventConnect_ind{3, 1}
#8 [13.1596 5|
Testrun was aborted here. Alternative
continuation starts. This is an example of a
correct trace that could have been executed
instead of any erroneous execution above.
Note that this continuation was never actually
executed.
T
HEventConnect_ind{3, 1}
#8' [0 s]

Fig. 8. An error trace involving three entities.

However measuring the parallel goodness of the testing is not straightforward
as complete coverage is most likely not going to be achieved. Given this, would
it be possible to identify the part that was not tested and guide later testing to
cover that?

We used gprof utility to obtain call information for C functions for the individ-
ual H_IN components on subsystems, but it seemed that while the results of the
longer on-the-fly produced more coverage data, this could always be matched
simply by running the existing simple tests more times. It may be that a cov-
erage analysis with smaller granularity than function level is needed to note the
changes. However, the C implementation relies on threads and callbacks, which
means that the branching is not detectable on the C-code level. It seems that
measuring the parallel quality of the testing based on this kind of metrics is not
good enough.



Another possibility we considered is using the traces produced by testing to de-
duce how much of the potential state space has been exercised. We implemented
a prototype tool that takes in a description of a use-case and then attempts
to show how many of the potential parallel executions of those were seen in
the testing. Other approach would have been feeding the traces back to the B
model checker and obtaining relevant information there. However, both of these
approaches required tool development for which we didn’t have resources.

Yet another way is to add the desired information to the model or the use
cases. The Qtronic test tool has its own coverage criteria which aims to cover
the model as well as possible and as the model has been constructed so that
observable events are part of the coverage, the tool is able to produce meaningful
testing and report checkpoints that may have metadata associated with them.
It is possible to modify the model with auxiliary constructs that keep track of
its own parallel state and produce that as output. The downside here is that
another model is embedded in the model of the actual system.

Our preferred approach would have been to drive the model to a desired state
with high concurrency using a use case and then let the tester tool proceed with
a random walk. Unfortunately the tool support for this feature was not available
at the time.

Our approach managed to uncover errors that would otherwise most likely not
been found, but at the price of creating the system essentially twice. Construct-
ing the models is a different skill when compared to writing test cases and this
may be the greatest obstacle in adoption of this kind of testing. Nevertheless the
possibility of using use cases to drive the model may be useful in demonstrat-
ing the value in terms that are understandable to traditional testers. The tool
support is nearly there to allow the use cases to act as a loose template for test
execution which would allow the test engineer to write testcase-like constructs
to exercise the implementation.

We did not set out to do comparisons with other existing approaches and tools,
rather we were looking for experiences in combining components in a toolchain.
There are alternative approaches for both the specification and the tester tool
side, especially ToRX [17] and the Spec Explorer [18], but we did not evaluate
these.

It is inevitable that errors, especially of a concurrent nature, are introduced
during development through decisions (primarily architectural) made while im-
plementing. In addition we see errors introduced through requirements change
which can not be adequately modelled and verified at the more abstract levels
of modelling. Even though we have had to take a pragmatic approach which has
compromised some “formal methods ideals” we have seen our approach uncover
errors earlier and provide more detail about those errors.
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