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Abstract. To be cost effective, the decision to automate tests that are
usually hand-executed has to rely on a tradeoff between the time con-
sumed to build the automation infrastructure and the time actually saved
by the automated tests. Techniques which improve software reuse not
only reduce the cost of automation, but the resulting productivity gain
speeds up development. Such issues are specially relevant to the software
development for mobile phones, where the time-to-market pressure asks
for faster design and requires quicker deployment of new products. This
paper presents a novel object-oriented framework tailored to support the
automation of user-level test cases so as to improve the rate of deploy-
ment of mobile phones. Despite inherent test automation limitations,
experimental results show that, with automation, the overall testing ef-
fort is about three times less than the manual effort, when measured
within a one-year interval.

Key words: Software verification, Software reusability, Software met-
rics.

1 Introduction

Many mobile phone models are released to the market every year with improved
or brand new features. Examples of common phone features are messaging (short
messages — SMS, multimedia messages — MMS and E-mail), phone and appoint-
ment books, alarm, embedded camera and so on. These functionalities are largely
implemented in software. Every feature of each new phone model must be tested
prior to its release to the end users. Also, the interaction among features must
be checked, so as to ensure their proper integration. Such user-level functional
tests are crucial to reduce both customer dissatisfaction and technical assistance
costs.

Functional testing relies on checking many use-case scenarios. Each test case
(TC) is a sequence of steps that performs a specific task or a group of tasks.
TCs not only specify the steps, but also the expected results.



Test engineers usually execute TCs manually. A TC may be repeated several
times during successive software development life cycles. Manual test execution
is both time-consuming and error prone, especially because exact TC repro-
duction cannot be guaranteed through different phone software versions. Such
inadequacy leads to the use of software to automate TC execution. An automated
test case (ATC) can automatically reproduce the steps that would be performed
manually by the test engineer.

This paper presents a novel object-oriented framework tailored to support
ATC creation for user-level functional testing of mobile phones. Our test au-
tomation framework, from now on called TAF, was designed to allow as much
ATC reuse as possible across distinct phone models of a given product family.
Essentially, TAF allows the automation of functional T'Cs and the efficient retar-
geting of pre-existing ATCs to distinct phone models. Such a retargeting within
a product family is the very key to achieving productivity gain. Once a TC is au-
tomated, it is ready to be executed as many times as needed, through all phone
development life cycles, reducing the time-to-market. The main contribution of
this paper consists in the analysis of solid experimental results which show the
actual impact of software reuse on test automation. The reuse achieved with our
framework makes it worthy to be employed in the corporate environment, given
certain conditions described later in this paper.

The remainder of this paper is organized as follows: Section 2 reviews related
work; the structure of the automation framework is described in Section 3;
Section 4 summarizes experimental results and finally our conclusions are drawn
in Section 5.

2 Related Work

2.1 Practices in the Corporate Environment

While TC manual execution is still current practice, many companies are widely
adopting test automation for unit and regression testing, since they are recurrent
during software development life cycles, despite the inherent limitations imposed
upon automation (for instance, 50% of the TCs within typical user-level test
suites are not suitable for automation).

Although the approaches vary from one company to another, test automation
has been progressively adopted at the user-level as a way of reducing the required
effort for test execution. At this level, the main approaches employ either in-
house developed test ware, such as PTF [1], or third party test systems, such as
TestQuest Pro (R) [2].

Motorola relies on in-house test automation infrastructure. TAF, which will
be described in Section 3, is the keystone of such infrastructure.

2.2 Related Research Topics

Related approaches on test automation address two basic goals: test case gener-
ation, and test execution and analysis.



Test suite generation focuses on finding ways of capturing test cases from code
or design specifications. As an example, model-based testing is an approach in
which the behavior of the software under test is described by means of formal
models (such as Petri nets, state charts and so forth) as a starting point to au-
tomatic or semi-automatic TC generation [3] [4] [5] [6]. Other approach relies on
algorithms able to create test cases which cover the interaction among different
applications in rich-feature communicating systems [7].

The automation of test execution and result analysis aims to produce software
artifacts able to execute test suites (automatically generated or not) and to
compare the obtained results to the expected ones [8].

Recent work seems to indicate that there is not so far an ultimate solution
for software test automation challenges [9]. On the contrary, distinct successful
approaches are reported [8], [10], [11], [12], [13].

To assess the economic viability of test automation, a preliminary trade-
off analysis [14] should be performed. Since high frequency of invocation is a
prerequisite for automating a TC, common pitfalls should be avoided, such as
overestimating the required effort for manual execution or underestimating the
percentage of tests that are actually suitable for automation [15] [16].

As test automation often consists in producing software to test software, an
alternative approach to achieve a better trade-off is to promote software reuse
when constructing testware. Object-oriented frameworks are reusable software
artifacts able to support testware development [17]. JUnit is a well-known ex-
ample of framework applied to the domain of test development [18].

Since there is a trade-off between generality and effectiveness of reuse, domain-
specific frameworks (such as JUnit) are expected to lead to a lower percentage of
reuse than application-specific ones. That was the motivation to the development
of a novel application-specific framework tailored to mobile phones.

There is lack of evidence in the literature quantifying the impact of software
reuse on test automation. That’s why the main contribution of this paper is to
report the quantitative impact of an application-specific framework on real-life
state-of-the-art product deployment.

3 TAF Design Description

TAF is an object-oriented framework tailored to automate functional user-level
test-case execution for mobile phones. TAF provides the proper infrastructure
to automate a test, but this process is essentially manual. In other words, TAF
addresses the automation of test ezecution, not the automatic generation of tests.

TAF enables reuse by raising the abstraction level so as to make ATCs largely
independent of model-specific phone properties. Therefore, it has to rely on a
lower-level infrastructure, as described in the following subsection.



TAF was developed by Brasil Test Center (BTC), an R&D network of re-
search institutes under Motorola’s leadership®.

3.1 Low-level Implementation Infrastructure

In order to interface with the phone, TAF relies on a Motorola proprietary arti-
fact, the so-called phone test framework (PTF) [1]. PTF provides an application-
programming interface (API) that allows the user to simulate events from the
phone’s input/output behavior, like key pressing and display capture. Since most
API methods are encoded at low abstraction levels, PTF leads to test scripts
that are hard to read, difficult to maintain and inefficient to port to other phones.
However, PTF represents a highly appropriate basis for test automation imple-
mentation.

3.2 High-level ATC Encoding

The key to raising the abstraction level is to encapsulate lower-level test input
actions (such as sequence of key pressings) and test output analysis (such as
checking the phone display contents) into a so-called wtility function (UF). UFs
are primitive entities that hierarchically isolate functionality from implementa-
tion, leading to high-level ATCs. An ATC tells “what” to test, but not “how”
to perform some input action or output analysis. As a result, UFs must rely on
PTF components for actual test implementation.

Fig. 1 shows an example of a high-level ATC using utility functions. This
ATC fragment performs the following sequence of steps: first, it takes a pic-
ture and stores it as a file (Steps 1 to 3); then, it checks some attributes and
deletes the file (Steps 4 to 8). Note that seven UFs are employed: LaunchApp
(it launches the camera application), CapturePictureFromCamera (it takes the
picture), storeMultimediaFileAs (it stores the picture into the phone file sys-
tem), scrollToAndSelectMultimediaFile (it scrolls through a list and opens a
specific multimedia file), openCurrentFileDetails (it opens the screen which dis-
plays file attributes such as type, size, etc), verifyAliMultimediaFileDetails (it
checks whether the picture file has the expected properties) and DeleteFile (it
simply deletes the file from the phone file system).

Although different phones exhibit distinct input/output behavior, a same
high-level ATC is applicable to several phone models of a given product family,
since they basically implement the same features. Therefore, a TC is automated
only once for a product family and the resulting high-level ATC must be retar-
geted to every distinct phone model within the family. This retargeting process
is called porting.

TAF was designed to allow efficient porting of high-level ATCs, as will be
described in the next subsection.

! TAF’s initial design and development involved the Computer Science Department of
Federal University of Santa Catarina (INE-UFSC) and the Center for Informatics
of Federal University of Pernambuco (CIn-UFPE).



// Step 1: launch Camera application
navigationTk.launchApp (PhoneApplication.CAMERA) ;

// Step 2: take the picture
multimediaTk.capturePictureFromCamera() ;

// Step 3: store the picture and hold its file name in variable picture
MultimediaFile picture =
multimediaTk.storeMultimediaFileAs (Multimedialtem.STORE_ONLY) ;

// Step 4: take the phone to PICTURES_FILE_LIST screen
navigationTk.launchApp (PhoneApplication.PICTURES) ;

// Step 5: open the picture
multimediaTk.scrollToAndSelectMultimediaFile(picture);

// Step 6: open the file details screen
multimediaTk.openCurrentFileDetails();

// Step 7: verify picture file attributes
multimediaTk.verifyAllMultimediaFileDetails(picture);

// Step 8: return to PICTURE_VIEWER
phoneTk.returnToPreviousScreen() ;

multimediaTk.deleteFile(picture, true);

Fig.1. An ATC fragment

3.3 TAF Organization

To enable the reuse of ATCs, TAF was designed to overcome the issues that are
raised by PTF’s low-level APIs, such as creating scripts that are hard to read
and difficult to maintain.

Fig. 2 summarizes the organization of TAF in terms of class relations.

The interface Step lies at the top of the diagram. It provides a generic method
(execute) allowing ATCs to invoke the functionality of distinct UFs.

The class BaseTestCase stores a collection of objects of type Step. It is ex-
tended to give rise to a test case (e.g. Testl).

On the one hand, the framework relies on key abstract classes that define
distinct UF APIs that implement the interface Step (e.g. LaunchApp and Cap-
turePictureFromCamera). They define additional methods to convey UF-specific
information (e.g. setApplication and setResolution).

On the other hand, TAF employs concrete classes to extend UF APIs. UF
implementations invoke PTF APIs, thereby enclosing the low-level input/output
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Fig. 2. A TAF class diagram

behavior of a specific phone (e.g. LaunchAppImp and CapturePictureFromCam-
eralmp). Target-independent and target-dependent classes are organized in dis-
tinct packages (e.g. Common Implementation and Phone XYZ).

To allow proper instantiation of UF implementations for a given phone, TAF
relies on the notion of Feature Toolkit (e.g. Phone Toolkit, Navigation Toolkit,
Multimedia Toolkit), as illustrated in Fig. 2, at the bottom. Since TAF has
potentially more than one implementation for each UF API, this class must know
the appropriate UF implementation for the phone under test. This information
is encoded within an XML file, which is maintained by TAF developers. Another
role of a Feature Toolkit is to add the instantiated UF to the list of test case
steps, and to launch their execution. As soon as the step list is created, the
test case execution can be started. In brief, an ATC consists of several calls to
methods encapsulated within Feature Toolkits. Fig. 3 summarizes the hierarchy
of TAF layers from the highest to the lowest level.

3.4 Automating a Test Case with the Aid of TAF

The structure of TAF has facilities to create an ATC from a TC written in natu-
ral language and conceived to be manually executed. First, a subclass BaseTest-
Case has to be created as a template for the new ATC. Three of its abstract
methods — buildPreConditions(), buildProcedures() and buildPostConditions() —
must be overwritten. Such methods define the functional structure of a test: the
phone configuration actions required for the test (e.g. date and hour settings,
web browser set-up, e-mail accounts, etc.), the actual test steps and post-test
clean-up procedures (e.g. the rollback of side effects that could possibly affect
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Fig. 3. TAF layer view

further tests). The next step consists in inserting calls to methods of Feature
Toolkits. The code to be inserted within the overwritten methods ressembles the
one shown in Fig. 1. Once the subclass is created (i.e. the new ATC), a prelimi-
nary checking is performed to verify if there are suitable implementations of the
required UF APIs for the target-phone. If a proper implementation is found, it
will be reused as it is; otherwise, a new one will be created.

3.5 Object-Oriented Framework: a Keystone for Worthy
Automation

The object-oriented approach adopted by TAF achieves significant software reuse
through three distinct mechanisms: inheritance-based creation of ATCs, reuse of
available UF's and porting of pre-existent ATCs to other phones.

Inheritance-Based Creation of ATCs. Remember that the methods men-
tioned in Section 3.4 provide an interface between the ATC and the UF APIs.
Since TAF currently has hundreds of distinct UF APIs available, suitable APIs
are very likely to be found for a new test.

Note that, in the worst case, the implementation of a specific UF would re-
quire the creation of a subclass of the abstract class in which the UF API is
defined, as illustrated in Fig. 2, where the specific implementation CapturePic-
tureFromCamera is created when targeting phone XYZ. Note that, even in the
worst case (no implementation reuse at all), the process of UF creation is still
guided by TAF through the inheritance mechanism.

Reuse of Pre-existent UF Implementations. A new implementation is
rarely created from scratch. Sometimes, it may be obtained through the creation
of a subclass of a pre-existent UF by partially reusing its code. A non-negligible
amount of reuse should be expected in this way, as explained in the following.
Consider the classes within the Common implementation package (see Fig. 2).
Their method ezecute() is a template that invokes several hooks[19]. Since an



implementation inheriting another implementation must only re-implement the
hook methods required by a specific phone, all the other methods already en-
coded in the superclass are reused.

In the best case, an untouched UF implementation is reused. Fortunately,
the best case is dominant, as it will be seen in Section 4.1.

Porting ATCs to Other Phones. Given a set of pre-existing ATCs, let’s
analyze how TAF supports the porting of a test case to another phone. First, in
the same way as described in the previous section, it should be checked if every
UF in that ATC matches the expected behavior for the phone under porting. If
not, a new low-level implementation for this UF must be created. Since UFs are
extended only if no compatible UF could be found, TAF maximizes the amount
of software reuse. In such a way, the whole code of the ATC is reused for different
phone models.

4 Experimental Results

This section presents real-life values collected from BTC’s Test Automation
Project. Three classes of experiments were performed to assess how effective
and sustainable is the impact of TAF on test automation. First, we provide a
quantitative breakdown of software reuse induced by the framework (Section
4.1). Second, we quantify the impact of reuse in the process of porting new
phones (Section 4.2). Later, we quantify the actual productivity gain by first
adding the effort of automating TCs to the effort of executing ATCs and then
comparing the overall effort with manual TC execution (Section 4.3).

4.1 Quantifying Reuse upon TAF

Table 1 displays reuse figures measured for a set of 10 phones, each submit-
ted to a same test suite containing 67 TCs. Such suite employs 246 distinct
UFs. The second column shows the number of phone-specific UF implementa-
tions required to perform the porting to each phone (i.e. the number of new
UF implementations created either extending the UF API or extending other
UF implementation). The third column shows the number of UFs whose im-
plementations were untouched when reused. The fourth column summarizes the
percentage of untouched UFs with respect to the total number of invoked UFs.

The high amount of achieved reuse (84.8% on average) contributes to at-
tenuate the TC automation effort required as a result of the ATC-generation
learning curve, as will be discussed in the next section.

4.2 The Impact of Software Reuse

Fig. 4 and Fig. 5 show the evolution of TC automation for two product families
during a period of seven months.



Table 1. UF reuse breakdown

Phone ID‘# phone-specific UF Imps‘# UFs reused‘% of reuse‘

1 56 190 77.24%
2 48 198 80.49%
3 44 202 82.11%
4 44 202 82.11%
5 52 194 78.86%
6 54 192 78.05%
7 58 188 76.42%
8 6 240 97.56%
9 7 239 97.15%
10 5 241 97.97%

Fig. 4 shows the average number of hours required per ATC per developer,
normalized to the number of hours required when automation was launched
(Month 1). In practice, since the simplest TCs are automated first and the
most complex ones later, the TC automation effort increases with time. The
minimum effort corresponds to the simplest and shortest TCs. The maximum
effort corresponds to the most complex TCs (requiring 1.8 times more effort
than in Month 1). On average, the effort is about 1.4 times larger than at the
time automation was launched. In brief, Fig. 4 could be seen as a learning curve
for ATC generation within typical product families. This is the price to pay to
obtain a first ATC, which will be hopefully reused with the help of TAF.
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Fig. 4. TC automation effort



Fig. 5 shows the average number of hours required per porting per developer,
normalized to the same reference adopted in Fig. 4. Note that the ATC porting
effort decreases with time as a consequence of software reuse. The minimum
porting effort is approximately 1/4 of the effort required to automate the first
TCs. On average, the time to port an ATC to a new phone is about 1/3 of the
time to create a new ATC. This is a strong evidence that the TAF architecture
effectively enables test reuse.
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Fig. 5. ATC porting effort

By correlating the average values extracted from Fig. 4 and Fig. 5, we con-
clude that porting is on average 4 times faster than building an ATC from
scratch. This speed up is the very key to achieving productivity gain, as will be
shown in the next subsection.

4.3 The Overall Impact of Test Automation

To be worth doing, the overall effort spent in all tasks involved in automation
(TC automation, ATC porting, ATC execution and TAF maintenance) must
be smaller than executing the same tests manually. In this section, we provide
quantitative evidence that, despite the automation limitations at the user level,
the adoption of a test framework does pay off.

Experimental Set up. The values summarized in next subsection were mea-
sured while testing 15 different phone models belonging to a same product family.
Given a phone model, a test suite consisting of 60 TCs (suitable for automation)
was selected. First, the TCs were automated gradually, giving rise to ATCs.
While an ATC is not completed, its original TC is manually executed instead.



The cumulative effort of testing with the aid of automation was measured along
a fourteen-month interval. Since the selected TCs were invoked many times in
distinct development life cycles, this procedure captured the overall effort spent
with testing.

To assess the impact of automation as compared to purely manual text ex-
ecution, we performed an estimation of how much time would be spent to run
those TCs manually. An estimate of the effort required under purely manual
test execution was obtained by multiplying the average manual execution time
by the number of TCs that would be invoked for the same test suite during the
same period. Such a manual test execution estimate will be used from now on
as a reference for effort normalization.

Assessment of Productivity Gain. Fig. 6 depicts the overall testing effort
along the monitored period, normalized to the manual test execution effort.

Ratio without/with automation
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Fig. 6. The impact of automation on effort

Note that the effort to manually execute the test suite for all phones under
development within the product family would be 2.8 times larger, if automation
was not employed. Therefore, a productivity gain of approximately 3 times was
reached within about slightly more than one year. Note also that it took about
three months to reach a breakeven point (that is, the time after which automation
starts paying off). This indicates that, to deserve automation, TCs must be
selected among the highest recurrent ones.

Let’s now analyze the impact of automation on each software development
cycle. Instead of reporting the cumulative value (as it was shown in Fig. 6),
let’s now focus only on actual test execution speed-up (i.e. the ratio between the
estimated time that the manual test execution team would spend to execute the



whole test suite and the actual time spent to execute the same suite with the
aid of automation).

In Fig. 7, dots represent speed-up values obtained within distinct develop-
ment cycles of various phone models. Note that, the speed-up is 2 on average.
This means that, with automation, the whole test suite is executed twice as fast
as compared to purely manual test execution. In other words, assuming a con-
stant number of test engineers, manual test execution takes twice as much time
to deliver test results.
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Fig. 7. Test execution speed-up with automation

5 Conclusions and Future Work

We reported an object-oriented framework granting significant test productivity
gain by means of software reuse.

As opposed to most reported approaches, we present abundant quantitative
evidence of the impact of test automation on real-life state-of-the-art mobile
phones. Experimental results indicate that a productivity gain of three times can
be achieved in about one year. To reach such a gain, it was shown that the porting
of a pre-existing ATC should be around four times faster than automating an
equivalent TC from scratch.

As future work, our framework will be extended to support other mobile
phone platforms. We also intend to employ Aspect-Oriented Programming and
Formal Verification so as to detect possible flaws in the test software.
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