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Abstract. Conformiq Qtronic1 is a commercial tool for model driven testing.
It derives tests automatically from behavioral system models. These are black-
box tests [1] by nature, which means that they depend on the model and the
interfaces of the system under test, but not on the internal structure (e.g. source
code) of the implementation.

In this essay, which accompanies my invited talk, I survey the nature of Con-
formiq Qtronic, the main implementation challenges that we have encountered
and how we have approached them.

Problem Statement

Conformiq Qtronic is an ongoing attempt to provide an industrially applicable
solution to the following technical problem: Create an automatic method that
provided an object (a model) M that describes the external behavior of an open
system (begin interpreted via well-defined semantics) constructs a strategy to
test real-life black-box systems (implementations) I in order to find out if they
have the same external behavior as M .

(Now the fact that we have created a company with the mission to solve this
technical problem hints that we believe it to be a good idea to employ automatic
methods of this kind in actual software development processes—which is not a
priori self-evident. In this essay, however, I will not touch these commercial and
methodological issues, but will concentrate on the technical problem only.)

Two notes are due, and the first concerns the test harness. It is namely usually
so that the model M describes a system with different interfaces and behavior
than the real implementation that is being tested (iut, implementation under
test). Virtually always, the model M is somehow described on a higher level of
abstraction than the real implementation. As a concrete example, sip (Session
Initiation Protocol) [2] is a packet-oriented protocol that is run over a transport
(e.g. udp [3]) and that has an ascii encoding: every sip packet is encoded as a
series of ascii characters. However, some possible model M for testing an sip
implementation could define the logical flow of packets with their main contents
but not describe, for instance, their actual encoding. How can this model M
be used to test a real sip implementation that requires ascii encoded packets
over udp? The answer is that the “abstract” tests generated automatically from
M are run through a test harness that provides the “low-level details” such as
encoding and decoding data and managing the udp packets.
1 www.conformiq.com



Model
(Simulation)

Generated
Testing Logic

IUT

Test Harness

Generated
Testing Logic

Fig. 1. The relation between a model and a corresponding implementation under test.
The test harness bridges the higher-level model with the concrete executable imple-
mentation. The logic of the test harness itself is not explicitly tested by the generated
testing logic.

What does this mean in terms of testing? The automatic tests derived from
M are not testing the codec layer of the sip implementation per se, because the
codec was not specified in M . Instead, the tests focus on the “high-level” logic
above the codec layers. See Fig. 1.

This is a very commonly occurring pattern. Yet testing the codecs could
also benefit from model-based testing. In practical deployments this would be
usually carried out by using a different model and different testing set-up that
would focus solely on the testing of the codecs. Regardless, we have found that
succesful deployments of model-based testing usually focus on the “higher level”
issues.

The second note concerns the models M in the context of Conformiq Qtronic.
For us, the models are—on the internal level—multithreaded Scheme [4] pro-
grams that can “talk” with an external, unspecified (open) environment, and
the semantics for these programs are given via small-step virtual machine oper-
ational semantics [5, 6], defined in the corresponding language specification [7].

Design of Conformiq Qtronic

The development of Conformiq Qtronic has always been driven by two major
design goals, which are industrial applicability and openess. In other words, we



have strived to create a tool that can be applied to real-world problems by
“normal” software engineers in the industry, and that can be integrated easily
into heterogenous software development tool chains.

The most visible consequence is that Conformiq Qtronic allows the user to
use in modeling many constructs that are known to create difficulties for model
checking algorithms. Namely, Conformiq Qtronic supports infinite data types
(e.g. rational numbers and strings), fully dynamic data with garbage collection,
classes with static and dynamic polymorphism, concurrency, and timings. Fur-
thermore, the user is not asked to provide abstractions [8, 9] or slicings [10, 11]
of the model, as the design philosophy has been that Conformiq Qtronic should
relieve the user of such technicalities.

Challenge:
Legal models can have arbitrarily complex, infinite state spaces

It follows immediately that there exist models that are too difficult for Con-
formiq Qtronic to handle. Our solution to this problem is that we do not try to
solve it, because to provide the tool’s raison d’être, it is sufficent that there exist
enough contexts where Conformiq Qtronic can create substantial value.

Another consequence is that many of the known methods for model checking
and test generation that assume finite-state specifications [12–20], or even only
finitely branching specifications, are of limited value for us. I do not claim that
research into model driven testing from finite-state models would be useless in
general, especially as there exist case studies that prove otherwise [21]. However,
our experience is that the number of industrial systems that have natural finite-
state specifications is limited. There exists certainly a larger body of systems that
have somewhat natural finite-state abstractions, but as I already mentioned, we
do not want to force the user to do abstraction manually.

Modeling

The main artifact the user of Conformiq Qtronic must manage is the model, and
we believe it is very important that the model can be described in a powerful
language that is easy to adopt.

Challenge:
Providing industrial-strength specification and modeling language

In the out-of-the-box version of Conformiq Qtronic, the behavioral models are
combinations of uml statecharts [22, 23] and blocks of an object-oriented pro-
gramming language that is basically a superset of Java [24] and C# [25]. We
have dubbed this semi-graphical language qml (Qtronic Modeling Language).
The use of uml statecharts is optional so that models can be described in pure
textual notation also.

qml [26] extends Java by adding value-type records (which exist already in
C#), true static polymorphism (i.e. templates or generics), discretionary type
inference [27–29], and a system for free-form macros (see Fig. 2). To avoid any



_rec -> _port ::= _port.send(_rec, -1)

Fig. 2. A free-form macro that gives a new syntax for sending data through ports
without timeouts. Note that there is no built-in meaning for the arrow literal, and
when matched, port and rec can correspond to arbitrary expressions.

misunderstanding it must be mentioned that qml does not include the standard
libraries that come with Java or C#.

A qml program must specify an open system, i.e. a system with one or more
message passing interfaces that are open to the “environment” (please see Fig. 1
again). These interfaces correspond to the testing interfaces of the real system
under test. For example, if a qml program starts by sending out a message X,
then a conforming system under test must also send out the message X when it
starts. Thus, in a very concrete manner, a qml program is an abstract reference
implementation of the system it specifies. As a matter of fact, a great way to test
Conformiq Qtronic itself is to run tests derived from a model against a simulated
execution of the very same model (expect no failures!), or mutants [30–32] of it.

In order to clarify this further, we do not rely on any existing Java or C#
compilers, but have a full custom-built translator for qml. (I elaborate this later
in this paper.)

Online and Offline Testing

Conformiq Qtronic offers two complementary ways for deploying the derived
tests: online testing (on-the-fly) and offline test generation. Online testing means
in our context that Conformiq Qtronic is connected “directly” with the sys-
tem under test via a dll (dynamically linked library) plug-in interface. In this
mode, the selection and execution of test steps and the validation of the system
under test’s behavior all take place in parallel. In contrast, offline test gen-
eration decouples test case design from the execution of tests. In the offline
mode, Conformiq Qtronic creates a library of test cases that are exported via
an open plug-in interface and that can be deployed later, independent of the
Conformiq Qtronic tool.

Conformiq Qtronic supports the testing of systems against nondeterministic
system models, i.e. again models that allow for multiple different observable
behaviors even against a deterministic testing strategy—but only in the online
mode.

Challenge:
Supporting nondeterministic system models

At the present, the offline test case generator assumes a deterministic system
model. One of the reasons for this is that the test cases corresponding to a non-
deterministic model resemble trees as at the test generation time the choices
that the system under test will make are not yet known. The branching factor of



such trees is difficult to contain, especially in the case of very wide nondetermin-
istic branches (e.g. the system under test chooses a random integer). In contrast,
the online algorithm can adapt to the already observed responses of the system
under test, and choose the next test steps completely dynamically. [21, 33]

Challenge:
Timed testing in real time

One important source of nondeterminism is time [33–35], especially because the
testing setup itself typically creates communication latencies. For example, if
the sut sends out a timeout message after 10 seconds, it can be that the testing
harness actually sees the message only after 10.1 seconds due to some slowness in
the testing environment. In the same way the inputs to the sut can get delayed.
This is so important that the user interface for Conformiq Qtronic provides a
widget for setting the maximum allowed communication latency. This widget
actually controls the time bound of a bidirectional queue object that the tool
adds implicitly “in front of” the provided system model.

Multilanguage Support

Even though qml is the default modeling language provided with Con-
formiq Qtronic, the tool supports also other languages. This multi-language
support is implemented internally by translating all user-level models into an
intermediate process notation. This notation, which we call CQλ, is actually a
variant of Scheme [4], a lexically scoped dialect of the lisp language family [36].
For an example, see Fig. 3.

Challenge:
Compiling models into an intermediate language

So, all qml models are translated eventually into lisp programs. Our pipeline for
doing this consists of the following components: (1) a model and metamodel [37]
loading front-end based on the ECore specification [38] and xmi [39]; (2) an in-
memory model repository [40, 41]; (3) a parsing framework for textual languages
that supports fully ambiguous grammars [42, 43]; and (4) a graph-rewriting [44–
46] based framework for model transformation [40].

First, a qml model consisting of uml statecharts and textual program blocks
is loaded into the model repository via the model loading front-end. At the same
time, two metamodels are loaded: one for qml and one for CQλ. Originally, the
textual program blocks appear in the repository as opaque strings. The next
step is to parse them and to replace the strings with the corresponding syntax
trees (for which there is support in the qml metamodel). Macro expansion, type
checking and type inference happen at this stage. Then the graph rewriter is
invoked with a specific rule set, which is iterated until a fixpoint; this causes
the model to be gradually transformed from an instance of the qml metamodel
to an instance of the CQλ metamodel. Eventually, the resulting CQλ model is



(define-input-port input)

(define-output-port output)

(define main

(lambda ()

(let* ((msg (ref (handshake input #f) 1))

(_ (handshake (tuple output msg) #f)))

(main))))

Fig. 3. A minimalistic CQλ program that defines an “echo” system: every message
sent to the port input must be echoed back immediately through the port output.

replace "Timer trigger" {

} where {

Transition t;

TimeoutTrigger trigger;

t.trigger == trigger;

t.trigger_cql == nil;

} with {

t.trigger_cql := ‘(tuple ,CQL_Symbol("__after__") ,trigger.timeout);

};

Fig. 4. A simple graph rewriting rule that generates the CQλ counterpart for a timeout
trigger in an uml statechart.

linearized into a textual CQλ program and a fixed CQλ library pasted in. [47, 48]
A simple example of a rewriting rule is shown in Fig. 4.

It is important to be able to map the translated CQλ program back to the
original user-level model in order to support traceability. There is specific support
for this in the CQλ language: program blocks can be linked both lexically as well
as dynamically to the user-level model.

Test Generation

So how does Conformiq Qtronic generate tests? The core algorithm is an enu-
merator for simulated executions of the given model. What makes this difficult
is that this enumerator needs to be able to simulate an open model, i.e. a model
that communicates an environment that has not been specified. Basically the
enumerator assumes that a fully nondeterministic environment has been linked
with the open model. This creates infinitely wide nondeterministic branches in
the state space, because the hypothetical environment could send e.g. any integer
whatsover to the system (Conformiq Qtronic supports as a datatype the full set
Z). Another set of nondeterministic branches is caused by the internal choices in
the model itself, and these can be also infinitely wide (the model generates a free
integer value). So the trick is how to handle a state space with infinitely many
states and an infinite branching factor. This we do with symbolic execution and
I get back to this shortly.



Challenge:
Supporting known testing heuristics

In order to be able to support different testing heuristics, such as transition or
state coverage or boundary value analysis [1], Conformiq Qtronic has a built-in
capability to include coverage checkpoints in the intermediate CQλ-level mod-
els. Similar constructs have been called also e.g. coverage items in the litera-
ture. [49] A coverage checkpoint is marked in a lisp model by a call to the built-in
checkpoint procedure. This means that the generation of coverage checkpoints
can be fully controlled in the model transformation stage. Indeed, all the var-
ious user-level testing heuristics such as transition coverage or boundary value
analysis have been implemented in the model transformator via this generic
checkpoint facility.

Let us give the set of all possible traces, i.e. sequences of messages, the name
T, the set of all coverage checkpoints the name C, and denote the set of booleans
by B. The state space enumerator can be seen as an oracle that implements the
following functions:

valid : T → B
coverage : T → 2C

plan : T× 2C → T

The function valid tells whether a given trace is something that the model
could produce or not, so it embodies a (bounded) model checker. The next
function coverage calculates the set of checkpoints that must have been passed
on every execution of the model that produces the given trace. Finally, plan
calculates an extension (suffix) for a valid trace that can be produced by the
model, attempting to find such an extension that it would cause a checkpoint
that is not included in the given set to be passed.

Given these oracles, a simplified version of the online mode of Con-
formiq Qtronic can be described by the following algorithm. Initialize a vari-
able C—which will contain checkpoints—with the empty set. Initialize another
variable t—which will contain a trace—with the empty trace. Then repeat ad
infinitum: If valid(t) = false, signal ‘FAIL’ and stop testing. Otherwise, update
C to C ∪ coverage(t). Then calculate t′ = plan(t, C). If the next event in t′ is an
input to the system under test, wait until the time of the event and then send
it. Otherwise just wait for some time. In any case, if a message is received from
the sut during waiting, update t accordingly; if not, update t with the message
potentially sent, and in any case with the current wallclock reading.

Offline script generation is even easier. Because the model must be determin-
istic modulo inputs, anything returned by plan works as a test case. The basic
idea is to find a set T of traces such that |T | is small and

⋃
t∈T coverage(t) is

large.
In practice, the oracles valid, coverage and others are built around a symbolic

executor for CQλ. Symbolic execution is well known and has been applied for test



generation and program verification. [50–52] Usually implementing it requires
some form of constraint solving [53, 54], and so Conformiq Qtronic also sports a
constraint solver under the hood. Maybe interestingly, the data domain for our
solver is the least D such that

Q ∪ B ∪ S ∪D0 ∪D1 ∪ · · · = D

where S denotes the infinite set of symbols (opaque, enumerated values). In
words, any constraint variable in a constraint problem within Conformiq Qtronic
can a priori assume a numeric, boolean or symbol value, or a tuple of an arbi-
trary size containing such values and other tuples recursively. In particular, we
present strings (e.g. strings of Unicode [55] characters) as tuples of integers, and
value records (structs) as tuples containing the values of the fields. This weakly
typed structure of the constraint solver reflects the dynamic typing in the CQλ
language.

Challenge:
Implementing constraint solver over infinite domains

The constraint solver for Conformiq Qtronic has been developed in-house in
C++ because it is tightly integrated with the symbolic executor itself. For ex-
ample, our symbolic executor has a garbage collector [56] for the lisp heap,
and when symbolic data gets garbage collected (references to constraint vari-
ables), the solver attempts to eliminate the variables from the constraint sys-
tem by bucket elimination [57]. Handling infinite data domains provides a big
challenge, because many of the state-of-the-art methods for solving difficult con-
straint problems assume finite-domain problems, and we do active research on
this area on daily basis.

Scalability

At least in the form implemented in Conformiq Qtronic, model-based testing is
a computationally intensive task.

Challenge:
Practical time and space complexity

In practice, both time and memory space are important resource factors for us.
Certainly, we work continuously to incrementally improve the time and mem-
ory characteristics of Conformiq Qtronic, but we employ also some categorical
solutions.

The performance of Conformiq Qtronic (as for most other software applica-
tions) becomes unacceptable when it runs out of physical memory and begins
swap trashing. To prevent this, Conformiq Qtronic swaps proactively most of
the runtime objects—like parts of the symbolic state space—on hard disk. Our
architectural solution for this is based on a variant of reference counting [56].

One challenge in the near future is to scale Conformiq Qtronic from single-
workstation application to ad hoc grids [58] or clusters. Simply, we want to



provide the option to run the core algorithms in parallel on all free cpus in an
internal network, such as all the idling Windows and Linux workstations within
an office.

Post Scriptum

According to John A. Wheeler,

We live on an island surrounded by a sea of ignorance. As our island of
knowledge grows, so does the shore of our ignorance.

How true is this of model-based testing also! When we started the Con-
formiq Qtronic journey in early 2003—one hundred years after Wheeler’s famous
quote—we had a few fundamental questions that we had to solve. Today, our
questions have changed in nature but only increased in number! Here are some
of those which we have encountered:

—Is it possible to automatically explain the “logic behind” computer-
generated test cases to a human engineer?

—Can computer-generated test cases be grouped and catalogued intelli-
gently?

—Is it possible to generate offline test scripts that handle infinite-valued
nondeterminism without resorting to full constraint solving during test script
execution?

—What forms of precomputation (e.g. forms of abstract interpretation [28,
59, 60]) can be used to reduce the runtime computational burden of online test-
ing?

—Are the better modeling formalisms for system modeling for model-based
testing than general modeling languages?

—How can well-researched finite-domain constraint solving techniques (like
nonchronological backtracking or conflict set learning) be used to the full extent
in the context of infinite-domain problems?
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