Nodes Self-Similarity to Test Wireless Ad Hoc
Routing Protocols

Cyril Grepet, Stephane Maag
{Cyril.Grepet, Stephane.Maag}@int-evry.fr

Institut National des Télécommunications
CNRS SAMOVAR
9 rue Charles Fourier
F-91011 Evry Cedex

Abstract. In this paper we present a new approach to test the con-
formance of a wireless ad hoc routing protocol. This approach is based
on a formal specification of the DSR protocol described by using the
SDL language. Test scenarios are automatically generated by a tool de-
veloped in our laboratory. A method enabling to execute them on an
implementation into a real network is illustrated. Indeed, an important
issue is to execute some generated test scenarios on a dynamic network
in which the links are routinely modified. Therefore, the concept of self-
similarity is presented to reduce the number of nodes by collapsing them
in a real network. This enables to execute the test scenarios in defining
a relationship between the network and specification topologies.

1 Introduction

A wireless mobile ad hoc network (MANET) is a collection of mobile nodes
which are able to communicate with each other without relying on predefined
infrastructures. In these networks, there is no administrative node and each node
participates in the provision of reliable operations in the network. The nodes may
move continuously leading to a volatile network topology with interconnections
between nodes that are often modified. As a consequence of this infrastructure-
less environment, each node communicates using their radio range with open
transmission medium and some of them behave as routers to establish multi-hop
connections. Due to these aspects and the limited resources of the mobile nodes,
efficient routing in ad hoc networks is a crucial and challenging problem for the
quality of the communication systems.

From these unique characteristics of ad hoc networks, many requirements
for routing protocol design are raised. Protocols can be classified mainly into
three categories: the proactive, reactive and hybrid protocols. Classes such as
hierarchical, geographical or multicasting protocols also emerge.

The techniques used by the ad hoc network experts to design and ensure
the quality of their protocols essentially rely on descriptions for simulations
and/or emulations. These methods provide an idea of the real behavior of the

implemented protocol in a node. However, the testing coverage is rather low and
is only restricted to the simulation context.

Formal description techniques and their testing tools are rarely applied in
such kind of networks. The main reason is the difficulty to take into account
the MANET protocol characteristics and the mobility of nodes in the test se-
quences generation and their execution. Therefore, our work focuses on a new
testing technique to check the conformance of these ad hoc routing protocols.
We present in this paper a formal specification of the Dynamic Source Routing
(DSR) protocol from which we may generate some test scenarios. Nevertheless,
the execution of these scenarios is currently an issue. Indeed there is often a
gap between the dynamic topology designed in a specification and the one of a
real case study. Therefore, we illustrate in this paper the concept of Node self-
similarity in order to execute generated test scenarios on a real wireless ad hoc
routing protocol taking into account the network topologies.

In the Section 2, we present the related works dealing with formal methods
enabling to test ad hoc routing protocols. In Section 3, our DSR formal model is
described and the conformance testing approach is depicted. Then, in Section 4,
the concept of self-similarity to combine real nodes is illustrated and in Section
5 an example is developed. Finally we conclude the paper.

2 Related works

Conformance testing for ad hoc routing protocols is crucial to the reliability of
those networks. Paradoxically, few works currently exist on the formal specifica-
tions to analyse routing protocol testing [1]. The majority of these works rely on
non-formal models provided as input to simulators such as NS-2 [2] or OpNet
[3]- However, as is often noted, the simulation and emulation techniques do not
replace a real case study [4]. Indeed, normal or ideal behaviors obtained by sim-
ulation may be proved erroneous in the real case. This is why formal description
techniques are required to test this kind of protocols.

In [5] and [6], two routing protocols are validated using a testbed and analysing
the network performances. But many constraints are applied and no formal
model is used. In [7], a formal validation model named RNS (Relay Node Set) is
studied. It is well suited to the conformance testing but denotes two drawbacks.
First, only experts of the proposed languages may establish the tests which does
not facilitate the test of other protocols. Secondly, only metrics of the protocol
may be tested (overhead control, power consumption, etc.) and no basic func-
tionalities (reception of a RteReply, etc.). Moreover, interactions between nodes
may not be tested with this method.

A formal model using Distributed Abstract Machines allows to specify the LTLS
protocol [8]. Nevertheless, the specifications are not executable and no functional
analysis of the protocol is realized. In addition, the authors do not consider the
testing process of an implementation from these models. Even if the syntax and
the semantic are interesting, this formal description is still unusable for the con-
formance testing.

The game theory is also used in order to specify and analyse ad hoc routing pro-
tocols [9]. But two main inconveniences appear. First, non determinism is not
allowed in this model and random behavior of nodes is not specified. Secondly
the inherent constraints of this kind of networks are not considered. Indeed, a
very strong assumption in this work is that every node needs to have a global
knowledge of the network topology which is unusual in real case studies.

In our work we propose a new approach relying on well-known formal meth-
ods in order to enable conformance testing of ad hoc routing protocols.

3 Conformance testing of an ad hoc routing protocol

Testing techniques can be divided in two categories : active testing which relies
on stimulation and observation of an implementation, and passive testing which
only observes the system without interactions [10], [11], [12]. Our research fo-
cuses on active testing of ad hoc routing protocols.

Conformance testing usually relies on the comparison between the behavior
of an implementation and the formal specification of a given protocol i.e a con-
formed implementation has to behave as its specification.

The conformance testing procedure follows these steps :

- Step 1. Define a testing architecture with respect to the characteristics of the
system under test and its possible implementations. This step could impact on
each following step and has to be defined according to the context.

- Step 2. Make some assumptions that are sometimes required to enable the
test.

- Step 3. Construct a precise formal specification of the system to be tested.
This specification takes into account the system functionalities as well as the
data specific to the test environment (test architecture, test interface, etc.).

- Step 4. Select the appropriate tests. This step corresponds to the definition of
the test purposes. A test purpose can be a specific property of the system such
as tasks or assignments with regard to values of variables, or the behavior of a
specific component of the system taking into account the current values of the
variables.

- Step 5. Generate the test scenarios. The test purposes are used as a guide by
an algorithm based on simulation to produce the test scenarios. As a result, our
algorithm computes a test scenario that can be applied to the implementation
under test to verify the test purpose. A scenario is a sequence of interactions
(between the system and the environment) that includes the interactions that
represent a test purpose.

- Step 6. Format the test scenarios i.e to produce test scenarios in some accepted
formalism as Message Sequence Charts (MSC), a formalism widely used in in-
dustry to describe message exchanges, or in Testing and Test Control Notation
(TTCN), the ITU-TS standard language used for test specification.

Problematic The main goal tackled in this paper is to provide a reliable method
to test a routing protocol in a network in which we do not control neither the
number of nodes nor the mobility scenario. Therefore, three main and relevant
problems may be defined.

Mobility representation : The mobility in ad hoc networks implies that a spec-
ification has to represent more than one node communicating with each other.
Thus the specification has to allow the creation or the suppression of a link
between a pair of nodes in order to represent their mobility.

Test sequences generation : Another objective is to try to maximize the automa-
tion of the test sequences generation from classical tools avoiding the well-known
state space explosion problem.

Test execution : The mobility of nodes and the hazard of radio communications
can lead to many inconclusive verdicts or even to prevent the test. Moreover,
the testing architecture to be used is also subject to the same problems. This
problematic has to be study in order to provide a reliable verdict to the imple-
mentation conformity.

In the remaining of the paper we present our solutions to these problems
with respect to the six steps aforementioned.

3.1 Testing architecture

Some testing architectures are proposed by the ISO standard [13]. The coordi-
nated, remote and distributed test architectures need reliable communications
between the implementation under test (IUT) and the other components of the
test. Due to the nodes mobility and in order to provide a general approach, we
can not ensure that both sites can always communicate with each other. Due to
the inherent constraints of ad hoc networks, a local testing architecture is cho-
sen. We describe the different components of our architecture as follows. First,
in order to observe packets, we need some Points of Observation (PO), whereas
to observe and control these packets (if the IUT allows it (white/grey/black box
testing)) we need Points of Control and Observation (PCO). These points are
connected with the upper and lower testers (UT and LT) which are controlled
by the test coordination procedure (T'CP). The PO/PCO connected to UT
aim to control the packets between the JUT and the upper layer (IP for ex-
ample) whereas those connected to LT aim to control communications between
the TUT and the lower layer (the link layer for instance). Each time one of the
testers observes a packet, the T'C'P checks if it is the one expected regarding the
specification. The testing architecture is depicted in Figure 1.

This architecture enables to observe and to control the message exchanges
between the implementation and the strict upper and lower layers. In our case
study (see section 5) the IUT is a DSR implementation. The UT controls the
packet between DSR implementation and IP layer whereas the LT controls the
communication between DSR implementation and the link layer.

NODE UNDER TEST

Upper Layer (IP)

ut PCO/PO 1

T

Test
coord.
proc.

PCO/PO 2
LT

Lower Layer (Link Layer,

Fig. 1. Local test architecture applied on TUT.

3.2 Testing assumptions

In order to execute test sequences in a real network and to provide reliable
verdicts, some testing assumptions are required. First, we make the classical
assumption that the implementation could be tested, i.e we can install some
Points of Control (PCO) or Points of Observation (PO) (see section 3.1) into
the IUT. The specific constraints of ad hoc networks imply that we have to make
some assumptions to take into account the mobility of the nodes. Six hypothesis
are defined :

1.

Ezisting destination nodes : Each destination node (D) of the packets used
by our test scenarios exists and is or will be connected by the network to the
IUT.

Connectivity of node D : We assume that in a reasonable time, one or more
paths will enable to execute the test scenarios between IUT and D.
Stability of routes : The routes which allow IUT and D to communicate with
each other will remain stable during the execution of the test scenarios. This
assumption is necessary to realize conformance testing and relies on the fact
that an ad hoc network is created in order to allow communication for a
community. If the communications are reliable enough for this purpose, we
can suppose that the routes will allow to execute the test scenarios.

Replay : Despite the connectivity and stability assumptions, the test could
sometimes fail or be inconclusive due to the radio or topological hazards.
Thus, to avoid wrong decisions, we have to replay test scenarios before giving
the verdict.

Fail : If the test is too many times "inconclusive" then we may consider that
the test has failed. The testing replay number has to be decided according
to the implementation and the test context.

Implementation choices: We assume that the implementation under test has
the same options as the context. Capability testing techniques can be ap-

plied to check that aspect [14]. This assumption is necessary in conformance
testing as well as in interoperability testing to prevent wrong decisions.

These assumptions allow to ensure a reliable testing environment by reducing
wrong final verdicts.

3.3 Formal Specification

The third step is to formally describe the system to be tested. It is necessary
to choose a formal model to reach this objective. We select the Extended Finite
State Machines (EFSMs) [14] that are well adapted to describe communication
protocols.

Definition 1. An EFSM M is defined as : M = (1,0,S,7,T)

with I, 0, S, @ and T respectively a set of input symbols, a set of output symbols,
a set of states, a vector of variables and a set of transitions. FEach transitiont € T
is a 6-tuple defined as : t=(s, qs, s, 01, Py, Ay) where

s¢ 18 the current state,

— q; s the next state,

- it is an input symbol,

- 04 15 an output symbol,

- P, () a predicate on the values of the variables,
— A; () an action on the variables.

The language selected to provide the specification is the Specification and
Description Language (SDL) standardized by ITU-T [15]. This is a widely used
language to specify communicating systems and protocols, based on the semantic
model of EFSM. Its goal is to specify the behavior of a system from the repre-
sentation of its functional aspects. It allows to describe the architecture of the
system i.e the connection and organization of the elements (blocks, processes,
etc.) with the environment and between them. The behaviors of the entities in
terms of their interactions with the environment and among themselves may
also be designed. These interactions are described by tasks, transitions between
states, and are based on the EFSMs.

All along our work, we assume that the conformance testing of a routing
protocol could be performed in an unknown network topology. SDL allows to
describe network topologies by using node instances, although it is impossible to
guarantee that the topology of the real network will match the one of the speci-
fication. In that way, this work aims to reduce the number of nodes required to
generate the test sequences and also to take into account their eventual mobility,
according to the test objectives. The minimization of the specification helps to
avoid the state space explosion problem. Nevertheless it is necessary to map it
with the implementation in a real network.

This is the subject of our next section.

4 Self-similarity of nodes

In this section we present the self-similarity of nodes used to reduce the number
of nodes in the specification. Furthermore it allows the resulting test sequences
to be executed on large class of real topologies. This approach takes into account
the strong constraint of mobility in MANETs adapting the known self-similarity
to this specific context as it is presented hereafter.

4.1 Definition of self-similarity

Node self-similarity is inspired by [16] where fixed nodes in a wired network are
merged in one single node with the main assumption that the communications
are reliable between the combined nodes. In our work, we deal with wireless ad
hoc nodes and unreliable links. We take into account these inherent constraints
in the remaining of this work. First we have to define the combination of EFSMs.

Definition 2. Let {N;}icp where E € [1..n] and n € N be a collection of model
that can be described as EFSMs. We note Ny o...o N, the combination of all N;
defined as :

O(N) = Uiep O(Ni)

I(N) = UieE I(N;) — UieE O(N;)

S(N) = HiepS(V:)

7 (N) = e (N)

T(N) = (5,5 €,0, (), A(T)) if (51,50 ¢,0, P(T), Ai(T)) € T(V:)

where Pi(T) = Pi(z;), A7) = Ai(7;), e € I(N;) and o € O(N;)

Let & C O(N), we define ActHides(N) as the obtained EFSM from N where
each action of © becomes an internal one. This application transforms the com-
munications between the different components of N into non-observable actions.

Thus we can define the self-similarity of two nodes as :

Definition 3. Let two possible actions for a node be send(Message,n, m) and
receive(Message,n’,m’) where n (respectively m') the observed node, m (re-
spectively n') the destination of the packet (respectively sender), and Message
the whole possible contents of a packet. Let N be a node specification. We note
Tr(N) the set of observable traces, a trace being an input/output sequence. Be-
side, Tr(N) is a finite set , indeed the variable domains of the EFSM are discrete
and finite (as most of the communication protocols).

Some N;cy are self-similar if :

Tr(ActHideg(Ny o Na)) C Tr(N),

where & = {send(Message, N1, N2), send(Message, No, N1),
receive(Message, N1, Na), receive(Message, No, N1)}

The self-similarity approach is easily applied in a wired network but due
to mobility and the unreliable communications in a MANET, it can not be
performed directly. The combination of mobile nodes is impossible, indeed the
trace property could not exist if for example two consecutive nodes on a route

can not communicate each other anymore.
Therefore, we use the self-similarity with three restrictions :

1. The self-similarity is applied from the point of view of a single node which
is the TUT.

2. The self-similarity is applied each time a packet of the test sequences is
received or sent in order to simplify the possible topologies known by the
IUT.

3. The self-similarity is applied only for a specific communication on a defined
route (not considering all communications in the network) between the IUT
and another node.

The main idea, by reducing the number of nodes in the specification, is to identify
all the different possible node behaviours according to the test purposes to define
a minimal topology required and sufficient to generate test sequences for each
test purpose. In order to illustrate our approach we choose the Dynamic Source
Routing (DSR) protocol as a real case study.

5 A case study : DSR

5.1 Dynamic Source Routing protocol

Dynamic Source Routing (DSR) is a reactive protocol that discovers and main-
tains routes between nodes on demand [17]. It relies on two main mechanisms,
Route Discovery and Route Maintenance. In order to discover a route between
two nodes, DSR floods the network with a Route Request packet. This packet
is forwarded only once by each node after concatenating its own address to the
path. When the targeted node receives the Route Request, it piggybacks a Route
Reply to the sender and a route is established. Each time a packet follows an
established route, each node has to ensure that the link is reliable between itself
and the next node. DSR provides three successive steps to perform this mainte-
nance: link layer acknowledgment, passive acknowledgment, and network layer
acknowledgment. If a route is broken, the node which detects the failure sends
by piggybacking a Route Error packet to the original sender.

5.2 DSR formal model

DSR is specified using SDL and the formal model describes the DSR. draft 10
with the Flow State Extension (our specification is detailed in [18]). We do not
specify all the possible features. Only some basic features for Route Maintenance,
Route Discovery as the Cached Route Reply and all the main structures required
by DSR (as the Route Cache or the Send Buffer) are described.

In order to represent the different links between nodes, we use a special block,
called Transmission that contains a matrix where we define the connectivity in
the networks. The matrix could be easily updated by sending information to

create or remove a link. It means that we may modify dynamically the topology
of the network in the purpose of representing the node mobility by changing
their neighborhood. Details are given in [18]. Besides, we do not specify how to
support multiple interfaces or security concepts.

5.3 Specification reduction using nodes self-similarity

First, a node may behave as a source S, a router N; or a destination D. A route
is defined as a succession of S, N; where ¢ € [1..n] and D (Figure 2). We consider
the nodes in the route from the point of view of .S which is the IUT. Two possible
cases arise during a communication between nodes on a particular route: either
the communication between two successive nodes N; and ;41 succeeds, or it
fails. We consider a communication as a success if a packet received by N; is
forwarded to N;y; and forwarded after to N, o without provoking a RteError
regardless of the meaning used for the acknowledgment. In the following N,
illustrates the abstract node defined as :

N — Ny where Ny is the neutral element.
° " | N:oNgt1 where N, € {No} U™, {N:}.

Ng represents a node that only forwards the packets without modifying anything
in the packet.

S N1 N2 N3 D
>---0O---0---0---0

Fig. 2. A simple route between S and D.

The process of nodes self-similarity may be illustrated as follows:

— Transmission success : If a transmission between N; and N; i succeeds, we
combine these two nodes in a new node N,. The communications between
N; and N,y are considered as N, internal actions. If the communication
between N, and N, ;s succeeds, we iterate the process and so on. Thus, in
case that the packet from S reaches D without causing a RteError, we may
combine all the intermediate nodes as illustrated in Figure 3.

Fig. 3. Combination by self-similarity when all communications succeed.

— Transmission failure : If a communication fails between N; and N,iq, it
means that all the previous communications have succeeded. So the nodes
between N; and N, are combined. Finally, all the nodes after N, 1, including
D have the same behavior for an observer placed on the IUT. We therefore
combine all the nodes from N;; to D into a new node D (Figure 4).

Fig. 4. Combination by self-similarity when a communication fails.

We can note two exceptions : if the failure occurs between S and Ny or S
and D when a direct link exists.

However, from the point of view of S and with respect to our test sequences,
the length of the main route does not matter. Indeed, a direct connection
or a multi-hop route (except for a route sorting in the RouteCache) are
observationnaly equivalent to S. Therefore, we handle the exceptions as it
follows.

e If a direct link between S and D is broken, we introduce N, = Ny as a
node on the route matching our specification described in section ??

e if the broken link takes place between S and N7, we have combined all
the N; and D in a new node D. Thus this leads to a similar situation
than in the first case, we also introduce N, = Ng between S and the
combined node D

The topology is reduced by using self-similarity in each case for the DSR
protocol. The nodes self-similarity allows to represent a large class of topologies
with a small number of nodes and to execute test sequences regardless of the
number of intermediate nodes. Thereby we can reduce the number of nodes used
in our specification in order to generate test scenarios which is an important
issue in the testing activities especially for wireless networks.

5.4 Test scenarios equivalence

In order to generate adjustable test scenarios to a large class of topology taking
into account the nodes mobility, we minimize our specification. Due to nodes self-
similarity that allows to reduce a route between two nodes in a two-hop one, we
can keep only the smallest number of nodes required to generate a test sequence
according to specific test objectives. To test functional properties of DSR, no
test objectives requiring more than two routes in the network were found out.
Then, our specification can be reduced into four nodes, S, Ny, N1 and D which
compose two routes [S, No, D] and [S, N1, D] as represented in Figure 5.
Despite nodes self-similarity allows to reduce the length of route, the specifi-
cation describes only two routes and the real network could have more than two

PO:{S,NO,D} N\ /
P1:{S, N1, D}
N /

Fig. 5. Specification topology.

between the IUT and D. The main idea is therefore to create a relation between
the specification and the implementation by two sets PO and P1 defined as:

Definition 4. Definition of sets

Let Sspec and Dspe. be respectively the representations of S and D in the speci-
fication Spec and Sipmp, Dimp their representations in the implementation Imp.
Let (py(z) | (x,n) € N) be the n'" route chosen by Sim,p to reach Dy, and com-
posed by x nodes.

— In Spec :
® Plspec = {(Sspem NO, Dspec)}
L4 P]-spec = {(Sspeca N]-; Dspec)}
- InImp :

o pu(x) € P(n mod 2)imp i.e all the route with 0 or an even subscript
will be in the set POy, and those with an odd subscript will be in the
set Plyp,y. Thus, if there’s a RouteError we preseve the route alternance
between the set.

All along the test execution, the Test Coordination Procedure (T'CP, see
section 3.1) will preserve a relation between POspe. and P0;y,,, and also between
Plgpec and Plyy,,. For instance, if the routing metric is "minimal hop count"
(assumed in the rest of the paper), TCP will affect in PO0,,,, the shortest path
as po(z), in Pliy,, the second as pi1(y), in POy, the third as p2(z) and so on
with x < y < z < ...etc. Both sets save the theoretical RouteCache in the TCP.
Here "theoretical" is used because the RouteCache could eventually be filled in
an other way during the RouteDiscovery mechanism. This problem will not be
discussed in this paper because we focus here our study on functional properties.
With respect to Spec, PO,y and Pl;y,, match possible routes described in the
specification. For instance, if a test sequence implies that PO,y disappears : the

TCP will detect the RouteError packet as an input, will erase the first element
of PO,y i.€ po(z) and will select p1 (y) € Plim, as the new route that JUT must
use.

We have to underline the fact that a node N could belong to several routes (a
GratuitousRouteReply sent to S by the node involved into different routes). In
this case, with respect to our sets, we have to duplicate this node nbr times
where nbr is the number of routes containing N in the network representation
of the T'C'P. Thus we create nbr routes in order to apply nodes self-similarity to
each one and to split up these routes into our two sets POy, and Pl;y,, (Figure
6).

=
_ ~
S - \\
g***%: ****** =
1 ~ _ //D
2
lter
5" 0=
- 3 ~
S - 1 ~
~
- P
~ -~ D
~ 1bis -

Fig. 6. Self-Similarity of a node involved in different routes.

5.5 Experiment context

Our approach is applied on a experimentation through the DSR-UU implemen-
tation [19]. The test sequences are provided by one of our tools TESTGEN-SDL
[20] and some test purposes. Direct emulation is used. It allows to use a real
implementation of a protocol stack with a simulator to represent the mobility
and to manage the communications.

The direct emulation is performed on a focal machine with the following char-
acteristics :

Pentium@©M 1,6 GHz

— 512 Mo Ram

— Fedora-2.6.15 kernel with skas patch
— TUN/TAP interfaces activated

VM Host Machine

TCP/UDP

IP/IDSR

ETHERNET

T connect to TAP
' 1
' h

'

Fig. 7. Direct emulation and testing architecture

We use User Mode Linuz [21] to create virtual machines with existing pre-
pared kernel and file system [22]. DSR-UU was added in the kernel.
NS-2 patched for emulation was performed to manage mobility and wireless com-
munication between the virtual machines. We may note that a maximum of six
virtual nodes is possible on a same focal machines. If we want a larger collection
of nodes, it is necessary to distribute the virtual machines on more than one
focal computer. The proposed emulation and testing architecture are depicted
in Figure 7.

5.6 Sets management for unexpected messages

In case of a broken link or detected unexpected RouteError from a node belong-
ing to multiple routes, or unexpected RouteError, an inconclusive verdict could
be obtained. The experimentations have shown that despite our assumptions,
the number of inconclusive verdicts is important depending on the mobility.
Thus, we automatize an error recovery for this kind of messages. An algorithm
is defined to maintain the relation between P0;,,, and P1;,,, with the routes of
Spec taking into account unexpected RouteError packets. A received RouteError
could be characterized by two criterias :

1. expected/unexpected packet

2. the failure is/is not on the route used by the test scenario

Global Set Management Algorithm receiving a RouteError

Let Pinp = POimp U Plip, (Wr.t spec). Let P be a pointer in the TCP
selecting the set containing the route of the test scenario and P its complement.
Let p be a pointer in the TCP on the first element of P.
Let Ir be a broken link built from the address couple (i,j) of identified nodes
carried by the RouteError packet.
Let a = 1 if the RouteError is expected else 0

1. If lrepet a=1 then
(a) Pymp = Pymp \ {pn(2)[lr € pa(2)}.
(b) if P = PO0;;, then index each route by n € [1..m] else n € [0..m — 1],
with m the number of known routes.
(¢) To bu11d sets POimp and Pljp,y.
(d
(e
(f To continue the test if it is possible.(*)
2. If Ir € p and a = 0 then
(a‘) Pimp := Pymp \ {Pn($)|l7" € pn(z)}.
(b) if P = PO0;,;, then index each route by n € [0..m — 1] else n € [1..m],
with m the number of known routes.
(c) To bu11d sets PO;mp and Pl;y,y.
(d) P
(e) p ()-
() To restart the test one step before(¥*)
3. If Ir ¢ p and a then
(a) Pymp = Pymp \ {pn(2)[lr € pa(2)}.
(b) if P = PO0;;;, then index each route by n € [0..m — 1] else n € [1..m],
with m the number of known routes.
(¢) To build POy, and Plyy,,.
(d) P:=P.
(e) p:=p.
(f)

)
) P
) p () the first element of P.
)

To continue the test.

(*) i.e the previous SourceRoute sent. If the test scenario needs a route to send
a message and P;,, = &, an inconclusive verdict will be obtained.

6 Conclusion

In this paper we present a new approach to test the conformance of a wireless
ad hoc routing protocol, namely DSR. This approach is based on a formal speci-
fication of the protocol described in SDL. This work has as a main advantage to
formally test such kind of protocols and to take into account the nodes mobility
and the network volatility aspect as well. Test scenarios are automatically gener-
ated by a tool developed in our laboratory and a method is illustrated enabling
to execute them on a real implementation into a real network. This technique

called the nodes self-similarity allows to bridge the gap between the dynamic
topologies of a real network and the ones of the specification. This allows to
reduce the number of nodes in a specification in order to generate the sequences
and then avoiding the eventual state space explosion. The main advantage of
this method is the possibility to execute a test sequence generated from a usable
specification on an implementation running in a real mobile ad hoc network. An
algorithm is depicted in order to illustrate the relationship during the testing
process between the tester, the specification and the IUT. Finally, an applica-
tion with an emulator is illustrated in which only four nodes are necessary to
generate some test scenarios.

References

1. Obradovic, D.: Formal Analysis of Routing Protocols. PhD thesis, University of
Pennsylvania (2002)

2. NS: The network simulator. http://www.isi.edu/nsnam/ns (2004)

3. OPNet: The opnet modeler. http://www.opnet.com/products/modeler /home.html
(2005)

4. Bhargavan, K., Gunter, C., Lee, I., Sokolsky, O., Kim, M., Obradovic, D.,
Viswanathan, M.: Verisim: Formal analysis of network simulations. IEEE Trans.
Softw. Eng. 28(2) (2002) 129-145

5. Yi, Y., Park, J.S., Lee, S., Lee, Y., Gerla, M.: Implementation and validation of
multicast-enabled landmark ad-hoc routing (m-lanmar) protocol. In: IEEE MIL-
CON’03. (2003)

6. Bae, S., Lee, S.J., Gerla, M.: Multicast protocol implementation and validation in
an ad hoc network testbed. In: Proc. IEEE ICC. (2001) 3196-3200

7. Lin, T., Midkiff, S., Park, J.: A framework for wireless ad hoc routing protocols. In:
Proc. of IEEE Wireless Communications and Networking Conf. (WCNC). (2003)

8. Glasser, U., Gu, Q.P.: Formal Description and Analysis of a Distributed Location
Service for Mobile Ad Hoc Networks. Frazer Univ. (2003)

9. Zakkiudin, I.: Towards a game theoretic understanding of ad-hoc routing. In:
ENTCS. Volume 119. ENTCS (2005) 67-92

10. Lee, D., Chen, D., Hao, R., Miller, R., Wu, J., Yin, X.: A formal approach for
passive testing of protocol data portions. In: Proceedings of the IEEE International
Conference on Network Protocols, ICNP’02 (2002)

11. Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Network protocol system
passive testing for fault management - a backward checking approach. In: Lecture
Notes on Computer Science. Volume 3235., Springer (2004) 150-166

12. Arnedo, J., Cavalli, A., Nunez, M.: Fast testing of critical properties through pas-
sive testing. In: Lecture Notes on Computer Science. Number 2644/2003, Springer
(2003) 295-310

13. ISO: information technology - Open Systems Interconnections - Conformance test-
ing methodology and framework. (1992)

14. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. IEEE Transactions on Computers 84 (1996) 1090-1123

15. ITU-T: Recommandation Z.100: CCITT Specification and Description Language
(SDL). Technical report, ITU-T (1999)

16.

17.

18.

19.

20.

21.
22.

Djouvas, C., Griffeth, N., Lynch, N.: Using self-similarity for effecient network
testing. Technical report, Lehman College (2005)

Johnson, D., Maltz, D., Hu, Y.C.: The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (DSR) - Experimental RFC. IETF MANET Working
Group, http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt. (2004)
Maag, S., Grepet, C., Cavalli, A.: Un Modéle de Validation pour le Protocole de
Routage DSR. In Hermes, ed.: CFIP 2005. (2005) 85-100 Bordeaux, France.
Nordstrom, E.: Dsr-uu v0.1. (http://core.it.uu.se/core/index.php/DSR-UU) Up-
psala University.

Cavalli, A., Lee, D., Rinderknecht, C., Zaidi, F.: Hit-or-jump: An algorithm for
embedded testing with application to IN services. In Wu, J., Chanson, S., Gao, Q.,
eds.: Formal Method for Protocol Engineering and Distributed Systems, FORTE
XII/PSTV XIX’99. Volume 156 of IFIP Conference Proceedings., Beijing, China,
Kluwer (1999)

Dike, J.: user-mode-linux. (http://user-mode-linux.sourceforge.net/)

Wehbi, B.: Dynamic remote access solution to a hot-zone. Master’s thesis, Uni-
versité Pierre et Marie Curie (2005)

