Model-based Testing of
Service Infrastructure Components*

Laszl6 Gonczy!, Reiko Heckel? and Déaniel Varré!

! Department of Measurement and Information Systems
Budapest University of Technology and Economics
Budapest, Magyar tudésok krt. 2. H-1117, Budapest- Hungary
{gonczy,varro}@mit.bme.hu
2 Department of Computer Science
University of Leicester
University Road, LE1 7TRH, Leicester - United Kingdom
reiko@mcs.le.ac.uk

Abstract. We present a methodology for testing service infrastructure
components described in a high-level (UML-like) language. The tech-
nique of graph transformation is used to precisely capture the dynamic
aspect of the protocols which is the basis of state space generation.
Then we use model checking techniques to find adequate test sequences
for a given requirement. To illustrate our approach, we present the case
study of a fault tolerant service broker which implements a well-known
dependability pattern at the level of services. Finally, a compact Petri
Net representation is derived by workflow mining techniques to generate
faithful test cases in a non-deterministic, distributed environment.
Note that our methodology is applicable at the architectural level rather
than for testing individual service instances only.

Keywords: Model-based testing, Graph Transformation, Model Check-
ing, Fault-Tolerant Services

1 Introduction

Beyond the usual characteristics of distributed systems, like asynchrony and
communication over potentially lossy channels, service-oriented systems are char-
acterised by a high degree of dynamic reconfiguration. Middleware protocols for
such systems, therefore, have to specify not only the communication behaviour
exhibited by the components involved, but also the potential creation and dele-
tion of their connections, or indeed the components themselves.

This additional focus on structural changes requires an approach to pro-
tocol specification which allows to describe (i) the class of configurations the
components involved can assume, (ii) their interaction, and (iii) changes to the
configuration through actions of either the components under consideration or

* This work was partially supported by European Research Training Network Segra Vis
(on Syntactic and Semantic Integration of Visual Modelling Techniques) and the
SENSORIA European FP6 project (IST-3-016004).

the environment. In general, such a model (however it is specified) will have an
infinite state space, which makes full automatic verification more problematic.
What is more, to verify the implementation of such protocols, the components
implementing them will have to be tested against their specifications.

In this paper we address the testing of service infrastructure components
against their specifications. By service infrastructure components we refer to
services that are not part a specific application, but play a dedicated role in the
service middleware. A typical example are services acting as proxies for imple-
menting fault-tolerance mechanisms, e.g., by managing redundancy, forwarding
requests to one of a number of available services chosen based on their per-
formance. In our approach, service infrastructure reconfiguration protocols are
specified by dynamic metamodelling [9], a combination of static metamodelling
for describing structures as instances of class diagrams, with graph transfor-
mation rules for modelling changes to these structures. Using a UML-inspired
notation for rules, specifications can be understood at an intuitive level while,
at the same time, a formal semantics, theory, and tools are available to support
verification.

We make use of that background through the state space generation tool
Groove [25] for deriving (a bounded subset of) the transition system described
by the metamodel and graph transformation rules. This transition system is em-
ployed to generate test sequences (i.e. desirable actions and their ordering) by
model checking for a specific test requirement expressed as a reachability prop-
erty. Unfortunately, the direct adaptation of derived test sequences as test cases
in a SOA environment is problematic due to (i) internal (non-observable) steps
in a test sequence, (ii) the distributed test environment where the interleaving
of independent actions is possible, and (iii) not all steps of test execution are
controllable.

For this purpose, we propose a technique to synthesize a compact Petri net
representation for the possible interactions between the service under test and
the test environment by using workflow mining techniques [1]. Concrete test
cases can be defined by a sequence of controllable actions in this Petri net, while
the test oracle accepts an observable action if the corresponding step can be
executed in the Petri net.

The paper is organised as follows. Section 2 presents the structural meta-
model for our case study and its extension by graph transformation rules. Sec-
tion 3 discusses the specification of requirements for test cases and the generation
of test sequences using model checking. Section 4 presents the architecture of the
test environment and the derivation of test cases. Section 5 describes related work
while Section 6 concludes the paper and discussed future research.

2 Modelling a Solution for Fault-Tolerant Service
Infrastructure

As running example, we first introduce the dynamic metamodel of a service
broker implementing a pattern for fault-tolerant services. The broker acts as a

prozxy for service clients, maintaining a list of available services and forwarding
clients’ requests to individual service variants. The replies of these variants will
be validated by a separate checker before being forwarded to the caller.

During the broker’s lifetime services may be created or disappear, or may
be temporarily unavailable due to loss of connection. Traditionally in the field
of fault-tolerant systems, reconfiguration is captured by semi-formal design pat-
terns. To provide a foundation for test generation, we propose a formal model
which generalises these patterns while retaining the intuitive nature of semi-
formal descriptions.

2.1 Structural Model

Our approach is based on metamodelling. A metamodel describes the ontology of
a domain in the form of UML class diagrams. Domain concepts are denoted by
classes with attributes defining their properties. Inheritance specifies subclass
relations while associations define binary relations between classes. Multiplic-
ities of association ends (at-most-one by default, or arbitrary denoted by an
asterisk) restrict the connectivity along -instances of- an association. The for-
mal interpretation of such a metamodel is a type graph [7], i.e., a graph whose
nodes and edges represent types. Instances of the metamodel are formalised as
corresponding instance graphs.

Operation Port ServiceD: ipti
name:String type:PortType
— input:Message name:String
output:Message
AdjudicatorResponse description
knows .
Response |—f Pt={l
FTService | ———f Service
next
anawerfor ﬂ» endpoint:URL 1
resp2chec
k *
adjudicator
T
q
Checker

H Request]
reqg2check

receives

Fig. 1. Metamodel for Fault-Tolerant Services

The metamodel for fault-tolerant services is shown in Fig. 1. The FTService
(also known as broker or dispatcher) is realised as a service, too. It is respon-
sible for forwarding incoming requests to service components with the required
functionality, designated by the knows association. The number of service com-
ponents receiving the same request is determined by the fault-tolerance strategy
applied. Responses to a particular request are sent back to the FTService, which
sends them to a Checker service (also known as adjudicator).

The Checker service can be provided by a third-party component or by a
local service running on the same machine. An AdjudicatorRequest sent to this

service is composed of the original request of the client and the response of
the variant service. The Checker evaluates the incoming request and decides
about its acceptance. As this step is highly application- or domain-dependent,
we do not intend to give a general description here. Usually a simple comparison
between the expected result, an approximate value, often determined offline,
and the response of the variant service is sufficient. If there are multiple answers,
another possibility is to compare the different values. The answer of the checker is
wrapped in an AdjudicatorResponse and sent back to the FTService. If the answer
is acceptable, it is forwarded to the client. In case of an erroneous answer, the
next action is chosen according to the applied fault-tolerance algorithm and the
number of available variants.

The metamodel presents an overview of the structure of the fault-tolerance
pattern, but it does not specify the protocol executed by the component. This
is described in the following section by graph transformation rules. In partic-
ular, we will model the Recovery Block pattern [24], where requests are sent
to one variant at a time: the “best” one available according to some metrics
gathered over time. This requires to maintain a list of components in the or-
der of preference. More sophisticated strategies (such as load balancing between
components by permuting the available components, etc.) are also possible. To
mention other FT modeling solutions, OMG introduced an UML profile for QoS
and FT [27], however, our solution uses a metamodel specially tailored to needs
of SOA and patterns are modeled in more details (which is obviuosly needed for
test generation).

2.2 Behavioural Rules

This section describes how the dynamic behaviour of service infrastructure com-
ponent is specified in a formally verifiable way by graph transformation rules.
The theory of graph transformation is described in detail e.g. in [7]. Here we
only summarise the background.

A graph transformation rule consists of a Left Hand Side (LHS), a Right Hand
Side (RHS) and (optionally) a Negative Application Condition (NAC), defined
as instances of the type graph representing the metamodel. The LHS is a graph
pattern consisting of the mandatory elements which prescribes a precondition for
the application of the rule. The RHS is a graph pattern containing all elements
which should be present after the application. Elements in RHS N LHS are
left unchanged by the execution of the transformation, elements in LHS \ RHS
are deleted while elements in RHS \ LHS are newly created by the rule. The
negative condition prevents the rule from being applied in a situation where
undesirable elements are present in the graph. Formally, we follow the Single
Pushout (SPO) Approach with negative application conditions.

A graph grammar (GG) consists of a start graph and a set of graph trans-
formation rules. A graph transition system is a labelled transition system whose
states are all the graphs reachable from the start graph by the application of
rules, and whose transitions are given by rule applications labelled rule names.

We use the tool Groove [25] for creating graph transformation systems and
generating their transition systems [25]. The “traditional” representation of rules
separates LHS from RHS and shows the negative condition as part of the left-
hand side (crossed out). The compact representation of Groove, on the other
hand, uses a single graph only, with tags on the nodes and arcs to distinguish
newly created elements deleted elements and elements that must not be present,
forming part of a negative application condition.

o Fig. 2 shows the compact representa-
F b tion of a sample transformation rule. This
answprtor __ rule expresses the behaviour of the proxy

= AdjudicatorResponse .. .
answerfor—|Message. when a decision has arrived from the ad-
rSceives sontesy judicator, reporting that the response of
sentBy a particular service variant has passed the
sentlo acceptance check. In this case, the proxy
FiService la¢ will send the response of the variant back

to the client. In this simplified model, we

Fig. 2. Compact representation abstract from changes to the original mes-

sages, however, in a real life system, technical changes can be performed on the
reply (e.g., the sender of the message can be substituted).

Altogether we have identified four classes of transformation rules according
to the nature of the behaviour they describe:

Reconfiguration rules determine the behaviour of the service under test. In our
case, these are the rules which identify the actions of the FT proxy (forwarding
requests to variant, register a new variant, etc.).

Environmental rules describe the dynamic behaviour of the other components
in the infrastructure, still at a high level of abstraction (ignoring implementation-
dependent steps). In our case, rules for service variant and checker components
will belong to this set. The main difference between these and the reconfigura-
tion rules is that these are possible ”intervention points” where the concrete test
case may affect the system since they relate to the behaviour of the tester com-
ponent(s). However, if the System Under Test (SUT) changes (e.g., the checker
component is the subject of testing), then the classification of rules may change.

Platform-dependent implement low-level operations, such as sending a SOAP
message. They are needed to create a connection between the behaviour of dif-
ferent infrastructure components, e.g. to model that a message can be received
by the target component only after the source has sent it. They also provide
flexibility as other middleware-related aspects can easily be integrated. For in-
stance, if one would like to extend the model by logging or reliable messaging
features (e.g. creating acknowledgements for each messages), these extensions
can be separated from the main component’s high level logic. An example for
such an extension was described in [13].

Test-related rules express actions which influence the tests but happen outside
the system, including fault injection rules. In the case study, rules describing
actions of the client are considered to be clearly test-related. In our fault model
we consider external service faults representing an incorrect response which will

fail the acceptance check. The checker component is considered to be always
correct, but the model is extendable to deal with a possibly unavailable/wrong
checker.

The rules of the example are listed in Fig. 3 with their classification and
a brief description. The rule classification has an impact on the test case gen-
eration, as rules of the above classes will affect test cases in different ways, as
described in Sect. 3.

Rule name
Reconfiguration rules

Description

callddudicator - . . .)
4 The proxy calls the adjudicator when it receives an answer from a service variant.
callFirstV ariant)) o)
The proxy forwards the request of the client to the first service variant in the list.
califlexdV ariant)) .)
The proxy forwards the request of the client to the next available service variant.
) Since there are no further variants, and no acceptable response was given to the
createFaiurelessage) L . ;
client request, the proxy indicates a failure to the client.
createPraxyResponse Ag the response of the variant was correct, the proxy forwards it to the client.

Asg there are no available service variant for a particular request type, the proxy
createhloSenviceFailurelessage |returns with a special failure.

register arant

The proxy registers a varant to the service list.

ragisterFirstl ariant The proxy registers the first variant to the serice list.
Envirommental rules
createResponss A service variant creates a response.
newSubscrption A gerice variant send a subscription request to the proxy.

makelegativelecision

The checker component rejects a variant response.

makePositiveDecision

The checker component accepts a variant response.

Platform-dependent rules

sendMessage A message is sent by the middleware.
receivellessage A message is received by the middleware.
Test-related rules
newRequest The client creates a request.

receivednawer

The client receives the answer of the proxy.

Fig. 3. Rules of the fault-tolerant proxy case study

3 Generation of Execution Sequences by Model Checking

This section describes the use of state space generation and model checking to
derive executable test cases for the service broker. An architectural overview of
our approach is presented in Fig. 4. Conceptually, we follow the principles of
[4] to generate test cases as counterexamples for a given property using model
checking. The properties are derived from test requirements specifying sequences
of transformation steps to be used as test cases.

Given the counterexamples in form of rule sequences, we build a struc-
ture representing the possible combination of test sequences. This way non-
determinism introduced by distributed computing is included in our model, and
the test oracle will be able to treat all possible branches (with the restriction
that we will manage only test cases given as a result of the model checking).

For representing test cases we use the formalism of Petri Nets. We use critical
pair analysis of the GT rules to find non-determinism in the system. Once we
have the rule dependencies and test cases, the a-algorithm of [1] is performed to
synthesize a complex Petri Net. Finally we reduce this Petri Net by filtering the
rules which are neither observable nor controllable and therefore are not needed
for the test oracle. Rules corresponding to middleware behavior and internal
operations of the SUT are typically erased from the net.

i Transformation :
Behavioural N Statespace of Model checking
(g;g’g\:r;) [v | tool (TSA)
1 \j @
i
H i f Rule Test
! Conflict analysis [:‘>
dy v dependencies
Infrastructural & %
component(s)
- »a-algorithm”
i
1 1
h
h

< @
Combined
<::| Test oracle <::| <:| representation of
test cases

Fig. 4. High-level architectural view of the testing framework

3.1 Test Requirements

The test requirements we express can prescribe a desired action, following a spec-
ified sequence as a precondition. More formally in EBNF, our simple property
language is defined as follows.

<requirement> ::= <sequence> => <rule>
<sequence> ::= <rule> | <rule>.<sequence>

Here, arrow (=>) means implication, dot (.) concatenation, while | and ::=
are the usual EBNF (meta) operators. Note that although the conclusion of a
requirement consists of the application of a single rule, a choice between multiple
actions can be modelled by describing requirements for several test cases.

To illustrate our approach, we describe test case generation for a sample
requirement: If a variant response passed the acceptance test, the proxy will for-
ward it to the client. In terms of graph transformation, this translates to the
following rule sequence, using the rule names of Fig. 3.

callAdjudicator.makePositiveDecision => createProxyResponse

Typical requirements correspond to forbidden behavior (such as, ”If there is
a variant which has not been asked, no failure message can be sent to the client”)

and required actions, e.g., “If a checker accepts a result, the prory must forward
it to the client”.

The rules used in requirements will typically belong to the classes of reconfig-
uration, environmental, or test-related rules, expressing high-level functionality
observable at the application level. Platform-dependent steps are normally ne-
glected, which results in reusable requirement patterns. For example, message-
based communication could be replaced by remote procedure calls without af-
fecting these requirements.

3.2 State Space Generation and Model Checking

Given the transformation rules described in Sect. 2.2 and an initial configuration
(e.g., a proxy, a number of service variants not registered with the proxy and
a client) one can generate the entire state space of the graph transition system
using the GROOVE tool [25]. Groove performs a bounded state space generation
by applying graph transformation rules in all possible ways to the start graph,
up to a given search depth. Unfortunately, the implementation of model checking
of temporal logic formulae is still in an early stage for GROOVE, therefore we
use a separate model checking tool.

We transfer both the graph transition system generated by Groove and the
requirements into the Labelled Transition System Analyzer (LTSA) tool [18].
For model checking, LTSA composes an automaton from the LTS of the original
system and the property automaton of the requirement. The analysis will find a
violation trace if the property automaton reaches an error state.

Thus, a requirement has to be translated into a property automaton with
the obvious modification that the ”required action” is considered as an error
state. Moreover, a separate automaton is derived from the state space of the
graph transformation system generated by Groove. In the process, all infor-
mation about the internal structure of states and transformation steps is lost.
Therefore, we have to restrict our execution path retrieved by the LTSA analysis
to handle one request at a time. However, this does not prevent to apply our test
generation technique of Sec. 4 to be used for concurrent messages.

SENDCORRECTANSWER call& djudicator createPositiveDecision

call& djudicato

createProxyResponse

Fig. 5. Requirement expressing the behavior of the proxy

Given such an input, the LTSA tool is able to find low-level rule sequences
in the state space of the system which ”violate” the property automaton derived
from the original requirement by negating the required action. These sequences
will serve as the basis for deriving the actual test cases.

As an example, we examine the rule set (of Fig. 3) for a sample configuration
consisting of one client, one proxy, one checker and three service variants. The
formulation of our sample requirement as a property automaton is given in Fig. 5.
The sequence which is found as a “counterexample” for this property is shown
in the following example. (We modified the output format of LTSA to make the
sequence more readable.)

newSubscription => sendMessage => receiveMessage =>
registerFirstVariant => newRequest => sendMessage =>
receiveMessage => callFirstVariant => sendMessage =>
receiveMessage => createResponse => sendMessage =>
receiveMessage => callAdjudicator => sendMessage =>
receiveMessage => createPositiveDecision => sendMessage
=> receiveMessage => createProxyResponse

This corresponds to a sequence describing the desired functionality of the
system, and it will serve as the basis for a test cases for this requirement. This
sequence is one of the shortest possible rule sequences since the execution of
some of the steps can be carried out in parallel (e.g. the subscription of a variant
and the creation of a client request). That means, although the test case could
contain concurrent steps, the model checker will return only a sequence.

Note that although we focus on the generation of test sequences, the same
technique can also be used to verify the dynamic behaviour of the model as
described in [13]. In this case the output of the model checker represents a
decision about whether the system meets a particular requirement. If not, a
sequence of events is provided that violates the requirement.

In our case, if the analysis results in a positive decision about the negated
requirement, the original requirement is not satisfied by the rules of the model.
This provides, almost as a side effect, with a verification of the model (e.g. as
described in [13]) possibly leading to a re-design of the rules according to the
results of the test case generation.

4 Derivation of Test Cases

At this point, execution sequences derived by the LTSA model checker are avail-
able. However, their direct adaptation for test cases in a SOA environment is not
at all straightforward as (i) certain steps in the execution sequence are internal
to the proxy thus they are not observable, (ii) the tests need to be executed
in a distributed environment where the interleaving of independent actions is
possible, and (iii) we cannot deterministically control all steps of test execution
(non-deterministic testing [22]).

For the first problem, many existing approaches [22, 5] typically use an ab-
stract representation of the test case which only includes controllable and ob-
servable actions. For the second problem, one may ask the model checker to
derive all possible execution paths which satisfies a given requirement [14]. How-
ever, this results in a huge set of test sequences, i.e. a different sequence for each

interleaving, which can be infeasible in practice. For the third problem, a test
oracle needs to be derived which identifies if one of the correct execution paths
were executed by the FT proxy (i.e. service under test, SUT) for a given input.

After discussing the architecture of the test environment, we propose a tech-
nique to synthesize a compact Petri net representation for the possible interac-
tion between the FT proxy and the test environment by using workflow mining
techniques [1]. Concrete test cases can be defined by a sequence of controllable
actions in this Petri net, while the test oracle accepts an observable action if the
corresponding step can be executed in the Petri net.

4.1 A distributed test architecture

The component architecture of the test framework is shown in Fig. 6 with the
interfaces of messages arriving to each component and potential interactions
between the components.

=] TestClient - = |Proxy
2 newRequest [) Tl N i, caladjudicator (1)
= |Variant | 3 callFirstvariant ()
ok S 5 calNextVariant ()
%”_EWS“bS’:' iption) < 3 createProxyResponse ()
& createResponse () __| 4 createNoServiceFailreMsg ()
: £ -7 | g createFaiureMsg ()
= |Checker } {2 registerFirstVariant ()

= |TestCoordinator |<------- [, malePositiveDedision []| 4 redistervariant ()
g2 makeNegativeDecision ()

Fig. 6. Architecture of test components

Since in a service-oriented architecture the server will be unaware of the
client implementation and communicate only via messages, thus the TestClient
does not have to implement any method of the FT proxy (SUT).

Methods of Variant and Checker will be forwarded to the TestCoordinator,
thus the test coordinator implements the interfaces of all the other components
in the test environment. Operations on these interfaces will be interaction points
or controllable and observable actions (see later in Sec. 4.2). This way, no mod-
ifications are made to the SUT (the FT proxy) for testing purposes as services
implementing other infrastructural elements can replace the interfaces of the
coordinator.

The execution of a test case requires to make certain decisions available as
test configuration parameters, which are application-dependent during normal
operation. For instance, decisions like the result of an acceptance test or the
availability of a variant will be influenced by pre-defined test parameters for
each decision in the test. For instance, if multiple variants will be asked by the
proxy, each of them will ask the coordinator whether to answer the request.

In the paper, we assume that tests components are stand-alone services in
a distributed SOA environment, but no further implementation details are pro-
vided to better concentrate on presenting the test generation approach itself.

4.2 Creating the test suite

In the field of model based testing, generating executable test sets from abstract
test sequences is a well-known problem. Actions in a sequence can be controllable,
observable or hidden. These categories respectively correspond to decision points
to set up a certain test case (controllable), automatically executed actions within
the test framework (observable) and actions inside the SUT (hidden).

In our case, a rule sequence produced by the model checker may contain many
rules to be executed automatically, without any test-case specific intervention.
Reconfiguration rules (like registerVariant) are obviously part of the SUT, i.e.,
the FT proxy. Platform-dependent rules can be observable or hidden, depending
on whether they are executed in the SUT or in the tester. However, as the mid-
dleware rules are not directly affected during testing, we consider them hidden.
Hence, only controllable test and environmental rules will included in a test case.

Our goal is to build a combined representation of multiple test cases and
test oracles in the form of Petri nets. Petri Nets (PN) are a special class of
bipartite graphs used to formally model and analyze concurrent systems with a
wide range of available tool support. The reader is referred, for instance, to [23]
for the theory and application of PN.

For this purpose, we combine critical pair analysis of graph transformation
rules with the a-algorithm used for workflow mining in [1]. The former technique
aims at statically detecting conflicts and causal dependency between graph trans-
formation rules, while the latter method is used for building instances of a special
class of Petri Nets (called Workflow Nets) from workflow logs.

Step 1: Partial ordering of an execution path. First, we build a Petri
Net of each individual test case which makes concurrent behaviour explicit by
de-sequencing (totally ordered) actions in the execution path derived by the
model checker into a partially ordered transitions in the PN.

In order to detect concurrent actions, we use basic concepts of graph trans-
formation theory. Two rules are in conflict with each other, if the execution of
a rule does disables the execution of the other rule (otherwise, they are parallel
independent). A rule is causally dependent on another rule, if the first rule en-
ables the other (e.g. by creating new matchings for it), otherwise, they are called
sequentially independent.

A partial ordering between actions can be derived by performing critical pair
analysis[19] of our rules, which is a well-known static analysis technique in the
field of graph transformation to detect potential conflicts and causalities of graph
transformation rules. Critical pair analysis is able to show minimal conflicting
(or causal dependent) situations between two graph transformation rules. These
suspicious situations can be inspected by the user to decide if they arise in a
certain application or not.

In our case, a critical pair analysis will detect some trivial conflicts due to
the semantics of Groove which always explicitly requires a NAC to prevent the
system from getting to an infinite loop. After eliminating such trivial dependen-
cies, the result of the analysis for an execution sequence will reveal those parts
of the sequence which can be executed concurrently. These will correspond to

the behavior of distributed components and the middleware, the order of which
cannot be determined. Fig. 7 shows a partially ordered version of rule sequence
in Sect. 3.2 as a PN where controllable and observable actions are highlighted.

| (I |
LA AN

registerFirstVariant

(initialization|

callFirstVariant makePositive {recsiveResult.

Decision

ser

ControllableAction

Fig. 7. Petri Net representing a test case

Step 2: Constructing workflow nets from partially ordered paths.
Using the method of [1] the system model is reconstructed by workflow mining
techniques from individual observations (cases). Our problem is very similar: we
have to create an abstract model of observable and controllable actions, which
explicitly contains concurrent behavior and potential non-determinism.

This workflow mining technique groups relations between pairs of actions
into the following categories: potential parallelism, direct causality, precedence
and concurrency. These relations can be derived from the critical pair analysis
in the previous step. We also have the restriction that the net will be of class
Free Choice Net. The only difference is that we do not expect the final model to
be a valid WF-Net. The result of the algorithm is shown in Fig. 8.

registerFi i makePositive
Decision

(initialization]

ControllableAction

Nossuibistan

createNoService
Failure

Fig. 8. The Petri Net created after the combination of test sequences

Step 3: Reduction of an observable Petri net. The net is then reduced
using standard PN reduction rules described for instance in [23]. The main prin-
ciple of the reduction is that we erase all sequences and parallel constructs which
do not contain any controllable or observable actions, since these correspond to
internal behavior of SUT (this case, the proxy) and therefore will not affect the
tester. The result of the reduction is shown in Fig. 9. The resulting abstract PN

can be used as a combined test suite and test oracle for a set of given require-
ments.

ControllableAction

N

makePositive WM

Decision

newSubscription

makeNegative
Decision

receivefalute

newRequest

o

Fig. 9. The Abstract Petri Net created after reduction

4.3 Discussion

Our approach relies on a combination of various formal techniques. Now we
discuss the role of each individual technique in the overall approach.

Why to combine two model checkers? At this point, the official Groove re-
lease does not yet support model checking facilities, only state space generation.
However, this feature of the tool is strong enough because dynamically chang-
ing models are supported. Therefore, we project the state space generated by
Groove into the LTSA tool to derive actual execution sequences for a given test
criterion (this is practically renaming an LTS structure).

Why to use a Petri Net representation for a test case? The final Petri net
representation offers two advantages: (i) a compact representation of test case
with explicit concurrency and without interleavings (which is not the case of the
original GTS state space) (ii) mining techniques are available to derive the PN.

Direct bridging of graph transformation and Petri nets. There are existing
approaches to generate a Petri net representation of a graph transformation
system on various levels of abstraction [2, 28]. In the future, we plan to investigate
more on their applicability in a testing environment. However, we believe that
the Petri net representation of a test case is more simple compared to them.

5 Related Work

The modelling technique in our paper is conceptually derived from [3] where
SOA-specific reconfigurations where first defined by a combination of graph
transformation and metamodelling techniques.

Graph transformation is used as a specification technique for dynamic ar-
chitectural reconfigurations in [10] using the algebraic framework CommUnity.

Executable visual contracts derived from graph transformation rules are facili-
tated in [20] where JML code is generated for the run-time checking of (manual)
service implementations. In [6] the same contracts are used for specification
matching. Graph transformation rules guided the model-based discovery of web
services in [15].

The specification and analysis of fault behaviors have been carried out in
[8] using graph grammars. While this approach is not directly related to SOA,
it uses similar techniques for modeling the behaviour of the system, and also
applies model checking techniques for verifying the behavioural specification.
However, the behaviour of SOA components typically induces an infinite state
space, such a full verification is problematic.

In [16], one of the authors applies graph transformation-based modelling for
conformance testing. The novel contribution of the current paper is that (i) we
use model checking to generate test sequences, which leads to a higher level of
automation (ii) our models focus on changes at the architectural level rather
than on the data state transformation with a single service.

The work presented in [17] aims at test generation for processes described
in OWL-S. Our work is different as our test cases are derived from high-level
formal specification of the dynamic behaviour, rather than being abstracted from
its implementation. The same applies to [12] where the SPIN model checker is
used to generate test cases for BPEL workflows. Authors of [21] also use SPIN
to create test sequences to meet coverage criteria. Categories of actions and
formalisms for describing test cases are defined among others in [22] and [5].
However, synthesis of test cases is still an open issue. We already discussed the
work described in [22] and [5].

LTSA [18] has already been applied successfully in a SOA context for the
formal analysis of business processes given in the form of BPEL specifications in
[11]. However, the direct adaptation of this approach is problematic, since the
inherent dynamism in the reconfiguration behaviour of the service infrastructure
is difficult to be captured in BPEL.

A de-facto industrial standard in the telecommunications domain for a highly
available service middleware is the Application Interface Specification (AIS) of
SA Forum [26]. Our future work includes the application of our approach to
testing of components of the AIS infrastructure.

6 Conclusions and Future Work

We proposed a model-based approach for generating test cases for service infras-
tructure components exemplified by testing a fault-tolerant proxy. The reconfig-
uration behaviour of the service infrastructure was captured by a combination of
static metamodels and graph transformation rules. The (bounded) state space of
the service infrastructure was derived by the Groove tool [25], and post-processed
by the LTSA model checker to derive an execution sequence for a given require-
ment. In order to generated faithful test cases to be executed in a distributed
service environment, a compact Petri net representation was derived by workflow

mining techniques. At the final step, this Petri net was reduced by abstracting
from internal actions.

The scalability of our method is at the moment mainly limited by the states-
pace generation feature of Groove which is the range of 100 thousand states;
however, these states represent a dynamically changing structure (vs. a BDD
with predefined state variables). The quality of our generated test cases strongly
corresponds to the requirements which are under investigation (as usual in
requirement-based testing).

In the paper, we limited our tests to configurations with one proxy and one
service type only. That means, all variants implement the same service. This,
however, is only a limitation for illustration purposes, since the rules can easily
be extended to model a proxy maintaining multiple variant lists, one for each
type of service. Multiple requests can also be tested by starting a correspond-
ing Petri net for observing each request. On the other hand, in case of more
sophisticated requirements information about the structure of the graphs needs
to be expressed. This is currently is not supported by the state space generation
and model-checking tools we use. Future developments in model checking for
graph transformation systems are likely to ameliorate this problem. Our long-
term purpose is to develop a methodology for testing automatically generated
components, modelled by a visual notation that enables (semi-) automatic code
generation.

References

1. van der Aalst, W.,Weijters, T. and Maruster, L..: Workflow mining: discovering pro-
cess models from event logs. In IEEE Trans. on Knowledge and Data Engineering,
Vol.16. No.9., 2004.

2. Baldan, P., B. Knig and I. Strmer: Generating Test Cases for Code Generators by
Unfolding Graph Transformation Systems. In Proc. of ICGT 2004, pp. 194-209,
2004.

3. Baresi, L., R. Heckel, S. Thone and D. Varré: Style-Based Modeling and Refinement
of Service-Oriented Architectures. Journal of Software and Systems Modelling, Vol.
5(2), pp. 187-207, June 2006.

4. D. Beyer, A. J. Chlipala, and R. Majumadr: Generating Tests from Counterexam-
ples. In Proc. 26th Intern. Conf. on Software Engineering, 2004, pp. 326-335.

5. Campbell, C., W.Grieskamp and L. Nachmanson:Model-Based Testing of Object-
Oriented Reactive Systems with Spec Explorer. Technical Report MSR-TR-2005-
59, Microsoft Research, 2005.

6. A. Cherchago and R. Heckel:Specification Matching of Web Services Using Con-
ditional Graph Transformation Rules. In Proc. of Intern. Conference on Graph
Transformations, 2004, LNCS Vol.3256, Springer, pp. 304-318.

7. A. Corradini, Montanari, H., Rossi, F.:Graph Processes. Special Issue of Funda-
menta Informaticae, Vol. 26(3-4), pages 241-266. 1996.

8. Dotti,F.L., L.Ribeiro, and O.M. dos Santos: Specification and analysis of fault
behaviours using graph grammars. In AGTIVE 2003, Charlottesville, VA, USA,
Vol. 3062 of LNCS, pp. 120-133. Springer, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Engels, G., J. Hausmann, R. Heckel and S. Sauer: Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Proc. UML 2000, York, UK, LNCS 1939 (2000), pp. 323-337.

M. Wermelinger and J. L. Fiadeiro:A graph transformation approach to software
architecture reconfiguration. Science of Comp. Progr., 44(2):133-155, 2002.
Foster,H., S.Uchitel, J.Magee, and J.Kramer: Model-based verification of web ser-
vice compositions. In 18th IEEE Intern. Conf. on Automated Software Engineering
(ASE 2003), Montreal, Canada, pp. 152-163. IEEE, 2003.

Garca-Fanjul, J., J. Tuya, C. de la Riva: Generating Test Cases Specifications for
BPEL Compositions of Web Services Using SPIN. In Proc. Intern. Workshop on
Web Service Modeling and Testing (WS-MATE 2006). pp. 83-85..

L. Génczy, M. Kovécs and D. Varré: Modeling and verification of reliable messaging
by graph transformation systems. In Proc. of the Workshop on Graph Transfor-
mation for Verification and Concurrency (GT-VC2006). Elsevier, 2006.
Hamon,G., L. de Moura and J. Rushby:Generating Efficient Test Sets with a Model
Checker. in Proc. of SEFM 04, Beijing, China, September 2004

Hausmann, J.H., Heckel, R., Lohmann, M.:Model-based Discovery of Web Services.
In IEEE Intern. Conf. on Web Services (ICWS), June 6-9, 2004, USA,

Heckel, R. and L. Mariani: Automated Conformance Testing of Web Services. In
Proc. 8th Intern. Conf. on Fundamental Approaches to Sofware Engineering (FASE
2005), vol. 3442 of LNCS, Springer, pp. 34-48.

Huang., H. ;,W-T Tsai, R. Paul and Y. Chen: Automated Model Checking and
Testing for Composite Web Services. In Proc. of 8th IEEE Intern. Symp. on Object-
Oriented Real-Time System Computing (ISORC’05), 2005, pp 300-307.

Labelled Transition System Analyser (Version 2.2) http://www-dse.doc.ic.ac.
uk/concurrency/ltsa-v2/index.html

Lambers,L., H. Ehrig and F. Orejas: Conflict Detection for Graph Transformation
with Negative Application Conditions. In Proc. of ICGT2006, pp. 61-76, 2006.
Lohmann, M., S. Sauer, G. Engels:Executable Visual Contracts. In Proc. IEEE
Symposium on Visual Languages and Human Centric Computing (VL/HCC 05),
pp. 63-70, 2005.

Micskei, Z. and I. Majzik: Model-based Automatic Test Generation for Event-
Driven Embedded Systems using Model Checkers. In Proc. ofInt’l Conf. on De-
pendability of Computer Systems (DEPCOS-RELCOMEX’06),pp. 191-198,2006.
Muccini, H.: Software Architecture for Testing, Coordination and Views Model
Checking. PhD Thesis, 2002.

Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc. of IEEE,
Vol.77. No.4. 1989.

Randell, B. and J. Xu: The Evolution of the Recovery Block Concept, in Software
Fault Tolerance (M. Lyu, Ed.), Trends in Software, pp.1-22, J. Wiley, 1994.
Rensink, A.: The GROOVE simulator: A tool for state space generation. In Proc.
of Application of Graph Transformations with Industrial Relevance (AGTIVE’03),
LNCS Vol. 3062, Springer, pp. 479-485., 2003.

SA Forum: Application Interface Specification. http://www.saforum.org.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and mechanisms.

Varré, D., Sz. Varr-Gyapay, H. Ehrig, U. Prange and G. Taentzer: Termination
Analysis of Model Transformations by Petri Nets. In Proc. of ICGT2006, pp. 260-
274, 2006.

