
Component Testing is Not Enough - 
A Study of Software Faults in Telecom Middleware 

Sigrid Eldh1,2, Sasikumar Punnekkat 2, Hans Hansson2, Peter Jönsson3  
  Ericsson AB1, Mälardalens University2, Combitech3 

Ericsson AB, Kistagången 26, Stockholm, Sweden 
sigrid.eldh@ericsson.com  

Abstract: The interrelationship between software faults and failures is quite 
intricate and obtaining a meaningful characterization of it would definitely help 
the testing community in deciding on efficient and effective test strategies. 
Towards this objective, we have investigated and classified failures observed in 
a large complex telecommunication industry middleware system during 2003- 
2006. In this paper, we describe the process used in our study for tracking faults 
from failures along with the details of failure data. We present the distribution 
and frequency of the failures along with some interesting findings unravelled 
while analyzing the origins of these failures.  Firstly, though “simple” faults 
happen, together they account for only less than 10%. The majority of faults 
come from either missing code or path, or superfluous code, which are all faults 
that manifest themselves for the first time at integration/system level; not at 
component level. These faults are more frequent in the early versions of the 
software, and could very well be attributed to the difficulties in comprehending 
and specifying the context (and adjacent code) and its dependencies well 
enough, in a large complex system with time to market pressures. This exposes 
the limitations of component testing in such complex systems and underlines 
the need for allocating more resources for higher level integration and system 
testing. 
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1   Introduction 

We have investigated a number of failures in a part of a subsystem of a large 
complex middleware system at Ericsson. Based on this investigation, this paper 
identifies classes of failures, presents their frequencies, and isolates the failure classes 
that are caused by software faults. Our overall motivation and planned future work is 
to create a controlled experiment by re-injecting known faults of different types in the 
code, to be able to learn more about efficiency and effectiveness of various test 
techniques [1]. We initially planned to use published information on commonly 
prevalent software faults, fault classes and their frequencies, but were unable to find 
sufficient information from existing literature. Since failures are related to software 
faults in complex and intricate manners, we believe that a realistic characterization of 
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their correlation will be helpful in determining effective as well as cost-efficient 
testing strategies. Our objective is to understand how faults and failures manifest 
themselves, especially in the context of ‘real’ faults that occurred in commercial or 
industrial systems.  

Most software industries do not pay enough attention to understand the typical 
faults that exists in their software. These industries collect every anomaly and 
complaint, from both verification teams and customers, but seldom faults and failures 
found by designers. Hence, failures are collected from the later stages in the software 
process, saved in databases, classified based on priority, status of management (e.g. 
analyzed, fixed, tested, approved) and classified based on organization or software 
sub-system where the actual fault is believed to exist. Occasionally deeper analysis 
and classifications are done and root cause analysis (RCA) are performed, especially 
when major incidents involving customer complaints occur. Most classifications [8, 9, 
30, 35] end prematurely by defining the failure on too high level to understand what 
software fault caused the failure. We suspect that this is the case in most industry and 
commercially available software, with the exception of safety critical software.. 

In this study, we consider the software in a typical telecom system. We have not 
looked at all the reported failures for the entire node, but focused on one particular 
part of the software, which we consider to be a typical representative of telecom 
middleware. From 4769 reported failures, we have selected a sample of 362 failures, 
which can be considered to be important since they were all corrected. This data has 
been collected during a period of three years based on 65 different designers and 
software integrators across the world. We chose these failures since their labels in the 
configuration management system made it easier to locate the corresponding software 
fault, compared to repeating the tedious troubleshooting and debugging of the system, 
which would otherwise have been required. The questions we primarily try to address 
with this case study are: 
• What are the real and important faults in software that have propagated to 

failures, and subsequently fixed? 
• What is the distribution of the failures and faults into various classes? (This 

classification will allow us to re-inject faults of the same type in the software, 
thereby providing a basis for our planned evaluation of test techniques.) 

• Is there any other specific pattern of faults and failures that would guide us into 
understanding the software process better? 

Our focus is on software faults, but our study has shown that just less than half of 
the reported failures are not a direct consequence of a software fault that can possibly 
be re-injected in the code. Instead, failures relate to a variety of problems, e.g. 
hardware, third party products, process issues, organization, and management issues. 
We decided to keep all information to give a better perspective for researchers trying 
to understand problems in the software industry, and better explain them as a part of 
our case study.   

Outline: We discuss and define the terminology used in the next section and then 
related work in section 2. Section 3 describes the set-up of our case study and data 
selection.  In section 4, we discuss our findings of the failure distribution and the 
different classes. Validation is discussed in section 5 and future work in section 6.  
We will end section 7 with the conclusions that we have derived from this case study.  



1.2   Terminology 

The related terminology in this area (fault, error, cause or reason, failure, bug, 
defect, and anomaly) is often confusing because these terms are used interchangeably 
and inconsistently by many in industry and academia; see further discussion in 
Mohaghegi et al [27]. Therefore we define the following terms with inspiration from 
earlier work from Avižienis & Laprie [10] and Thane [9], where a fault is the static 
origin in the code, that during dynamic execution propagates (in Figure 1 described as 
by a solid arrow) to an error (which is an intermediate infection of the code). If the 
error propagates into output and becomes visible during execution, it has caused a 
failure. An error or failure can both cause another fault to occur. At Ericsson, failures 
are reported as Trouble Reports (TRs). Occasionally, these TRs gives in their analysis 
section a more direct explanation of the cause of the failure, but mostly they only 
describe the symptoms. TRs are not uniquely identifying failures (i.e., several TRs 
may identify the same failure) and there is not a one to one relationship between a 
fault and a failure (i.e. different faults may lead to the same failure and some faults 
may cause multiple failures). 

Fault

Error Failure some effect 

2. Dormant,  
not yet executed 

Infected, 
intermediate 
state 
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Failure, visible 
        TR

Fix 

1. Hidden,  
non-executable 

 
Fig. 1. Terminology mapping 

A failure can in turn propagate to another part of the software and be the cause of 
another fault. One difference compared with Avižienis & Laprie is that we separate 
the actual cause of the fault from what manifests itself in the software. As an example, 
a faulty specification can lead to a fault in the software, but to find what code to re-
inject in order to represent such a fault is not clear. It might be that the fault 
specification misses to define a case not implemented in the code, which leads to 
faulty assumptions and not adding extra paths when needed. We occasionally refer to 
the term “real fault”, meaning, a fault found in a commercial or industrial system. 

2 Related Work 

Our purpose is to investigate software test techniques is described in our position 
paper [1]. We noticed that most test technique investigations used small code 
samples, often with very few faults injected [2, 4]. The faults used as the basis in test 
technique investigations are often invented and “simple” or made to prove a specific 



point [20]. This did not match our experience with faults in software for complex 
systems. Even if there exist attempts to create better faulty programs to use for test 
techniques research [3, 32, 33, 34], they still do not contain enough data from 
industry, and are relatively small compared to our complex middleware. Therefore, 
we argue that the early stages fault investigations for test technique research [5, 6, 7] 
needs to be updated. Andrews et al. [32], share a similar goal, but uses a different 
approach. They compared mutant generated faults with hand-seeded real faults, and 
concluded that the faults were different in nature, but shows statistical promise. 
Analyzing our result in contrast with theirs, it becomes evident that the type, nature of 
the fault and fault class, and its distribution is not sufficiently explored to draw strong 
conclusions about test techniques. We tried to find examples of classes and types of 
code faults to re-inject, but did not find any good list to use, instead we found several 
papers investigating real faults (and failures) classified for different purposes [8, 9, 
11, 12, 13, 14, 15, 16, 18, 20, 23, 24, 35] and not distinguishing faults from failure or 
cause.  In particular, for the more commonly used Orthogonal Defect Classification 
(ODC) [8], we concluded that the classes are classifying failures, and not faults, e.g. 
an interface failure (which is an ODC class) could be caused by several software code 
faults. Thus, these classifications are insufficient to support us in our aim. DeMillo 
and Marthur [13] have made an attempt to classify real software defects by automatic 
means.  We have used these fault and failure classifications as inspiration to our 
classification and we will discuss them in the section on future work. Rather than 
adopting, we strongly propose that different software domains have different sets of 
fault and fault distributions, depending on organizations, languages, development and 
testing methods, as well as the ways of measurement. Conclusions on test techniques 
should be based on first creating a thorough fault analysis particular to the domain, 
but with known methods. This will provide better understanding of which typical 
failures and related faults that are relevant for this particular software. We realize that 
the gap between research and industry is wide [31], but we hope to close this gap by 
doing controlled research on commercial software in an isolated environment. 

Huffman and Rothermel discuss in [29] the semantics of a fault. This is interesting 
research, since it implies that faults have a variety of impact, depending on the fault. 
Our research shows that some types of faults that affect the software are a 
combination of faults, and are definitely involving more than one file, and more than 
one entry in a file. There is a danger in inserting only single semantic faults even if 
they are dominating. Single semantic fault injection is the predominant way of 
injecting faults (and mutations). One fault can propagate into many different 
symptoms (which is one of the explanations to the high number of duplications). One 
fault might propagate and behave differently, depending on how “complicated” it is.  
Hyonsook and Elbaum [3] have with the work on SIR framework, used files from 
industry (SPACE and Siemens program [33, 34]), but also let experienced designers 
deliberately insert faults (also used by [32]). There is no way of telling if these faults 
are representative of common faults in any system, or if they are too simplistic in 
nature. Our initial reaction when analyzing failures have been that faults that 
dominate are much more complicated in nature than plain logical or computational 
faults, which do occur, but not as frequent. Ishoda [21], argues that basing research by 
capture- recapture (inserting faults, and then estimating how many of them are found) 
is not a sufficient technique for reliability (and test evaluations) analysis, and that 



correct frequency and type of faults must be known for the software in question. We 
support this argument, which also lead us to investigate our own frequency and type, 
to understand the characteristics of our particular type of software. Ostrand, Weuyker, 
and Bell [22] work in the same domain as us, large middleware systems with similar 
problems. They have not focused on the fault type in itself, but on occurrences and 
location, which is similar to our approach. Since they have classified based on their 
MR (similar to Ericsson’s TR), we also assume (but have not verified) that their data 
suffer from the same problem as our, what is reported (failure) and the connection to 
the actual fault in some code file needs a much further analysis. Yet, they report 
interesting results that seem to match our experiences: Most of the faults reside in (or 
are reported on) 20% of the software, i.e. 80% of the software is more or less fault-
free. Furthermore, their distribution seems to match ours, with over 50% of the 
failures related to missing or spurious code. A comparison with our figures shows that 
their distribution and frequency is very similar to ours, even if it is done more than 20 
years ago. We will discuss this further in our last section: Dicussions and conclusions. 

The key problem we would like to address is that there is no recent industry data 
available for research purposes. In addition, people who measure are often using too 
high level classifications [8] to be useful for our purpose. We have also studied bug 
taxonomies [12, 32], but conclude that they mix cause, fault and failure, and are 
seldom providing obvious support for re-injecting faults, even if they give valuable 
information about failures.  

Our main conclusion is that it is important to regularly collect and report findings 
of this nature from real industrial and commercially used systems to keep information 
in tune with development approaches, software and faults. We also assume that there 
is a large diversity of the frequency of faults, depending on what type of system and 
domain they reside in. We also suggest that within a domain – or type of system (e.g. 
a large complex operating system middleware with partially proprietary hardware) it 
is possible to find similar structures across the entire domain, which could indicate 
that the results are not limited to only e.g. telecommunication middleware systems.  

3 Case Study Process and Data Selection 

The process followed in our case study is described in Fig. 2. We started by 
selecting the Trouble Reports (TRs) for which a link to the corresponding code exist; 
using a script that automatically linked the fault id into the corrected code as a 
comment. Then we compared the corrected code with the original version of the code, 
to identify areas in the code where the fault could reside. This is a non-trivial task, 
since enhancements and improvements to the code are mixed with corrections. We 
then classified each Trouble Report into one of the chosen failure classes.  



 
Fig. 2 Overview of the classification process.  

The distribution of failures was then analyzed, followed by some interviews of the 
designers, with the aim to validate our findings. The component size was 
approximately 180-200 000 lines of non-commented code (measured over the three 
year period). For the entire middleware system, there were 4769 TRs reported and of 
these we have considered 1191, indicating that it is a central part of the software. 
From these reported TRs (and also, from the complete set of 4769 TRs), some of the 
TRs have been analyzed to originate from faults elsewhere, or require corrections in 
two places. We must understand that not all of the 1191 TRs lead to a correction. 
There are 181 TRs reported directly on this component’s code during this period. Our 
number is higher (362) which indicates that TRs that reside elsewhere (are reported 
on other places in the code) affects this code. The TRs within this target are all using 
a particular labeling function that makes it possible to trace the TR to the actual file 
(see Fig. 3). 
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Fig. 3 Failure (Trouble Report) – fault/fix relation, where the label points out involved files 

How this subset (of labeling) is related to the 1191 TRs we have not been able to 
pinpoint, since it would have required serious data mining, taking all change requests 
in to account and other factors. From the entire set of 362 TRs, we now withdraw all 
faults that are not software related, e.g. duplications and wrong usage, to come up 



with our set of 295 unique failures, and of them only 170 (204 adjusted1) are software 
failures. This means that approximate 14% (17% adjusted) of the reported failures 
(1191 TRs) at least are real software code faults!  

Little or no general tool-support exists to trace, categorize and get support in 
tracking down the fault causing a failure. Currently this has for non-trivial cases to be 
handled by manual work through code inspection. Manual comparisons of two 
versions of the source code is often the used method to extract the actual difference, 
but this is not enough, since enhances to the software and other modifications must be 
excluded and the fault origin or origins must be isolated.  The problem is non-trivial 
in systems with a multitude of code branches, since it amounts to know where to look 
without having to scan through a multitude of files and to separate fault corrections 
from any other code modifications, improvements and change requests. 

This is the true complication of relating a “unique” failure to a “unique” fault since 
they do not have a one to one relationship. What even more complicated our 
classification was that the original designers (and troubleshooters) were not available 
to ask of the real origin of the fault. Doing a complete trace could take us between 3 
days to two weeks, which explains why this route to identify and gather faults from 
failures is seldom taken for this type of research. With the labeling function, the 
connection between the TR-system id and the actual place in the code where the fault 
could reside could be made, and capturing the correct code became a task of analysis 
between one hour and 2 days, when done by a person not familiar with the software. 
We consider this a great improvement. 

4 Identified Failure Distributions  

This section presents the fault classification, the distribution of failures observed in 
our case study together with the distribution of the software faults over number of 
affected code files. 

4.1 Fault Classification 

In our classification we use the following classes of faults 
• Language Pitfall are faults that are specific to the programming languages used, 

e.g. pointer being null, pointer pointing to an invalid address, valid address but 
pointing at garbage. E.g. arrays is a common type of data structure accessed with 
index, and if the value falls outside the boundary of the array then the accessed 
element is unknown, or data might be modified that shouldn’t. In addition, 
overflow and underflow are categorized in this class.  

• Computational/Logical faults are faults inside a computational expression. A 
logical fault is similar to a computational fault, except that it is related to a logical 

                                                           
1 Our investigation showed that for many reported failures, the actual fault (represented by the 

corrections in the code) is not unique and failures and faults do not have a one to one 
relationship. Therefore, we have adjusted our figure, by adding all software faults that are 
contributing to the cause of a failure. 



expression.  
• Fault of omission is when a fault happens due to missing functionality, i.e. the 

code that is necessary is missing. E.g. a part, an entire statement or a block of 
statements missing can be classified as faults of omission, which means missing 
either of the following: function call, control flow path, computational or logical 
expression.  

• Spurious faults are similar to Faults of omission, but in this case there is “too 
much code”, and the correction is to remove one or several statements.  

• Function faults are faults, such as calling the function with the wrong parameter 
or calling the wrong function.   

• Data faults including faults of several types:  Primitive data faults, which include 
defining a variable to the wrong primitive data type, e.g. integer to be unsigned 
but should not have been; Composite data fault e.g. structure (in C or C++); 
initialization fault and assignment fault.   

• Resource faults are faults that deal with some kind of resource, such as memory 
or a time, therefore this class handles faults from allocation, de-allocation, race-
conditions, time issues (dead-lock) and space (memory, stack etc).  

• Static code fault class is code that does not change after compilation of software 
or after the first execution, when using an interpreted language. This code is e.g. 
source code or configuration files which the software when executing uses.  

• Third party faults are faults in software for which we do not have access to the 
source code and hence cannot correct ourselves.   

• Hardware faults and Documentation faults are self-explanatory classes, and do 
not relate to software.  

We have grouped the above into four groups, viz., code, process, configuration 
management (CM) and other. 

4.2 Fault Distribution  

The selected of 362 trouble reports, were distributed as explained in Table 1 below, 
where faults of omissions topped the list. The second largest class of Trouble Reports 
is Duplicates. One failure out of three non-software related failures reported is a 
duplicate. What is interesting is that these duplicates were not identified as duplicates 
until they were corrected in the code. This means that the TRs were individually 
decided to be fixed, and assumed to be of different fault origin, since they showed 
different behavior and were viewed as different failures. Otherwise, these failures 
would have been omitted before ordering them to be fixed. The high number of 
duplication of failures is also related to the way testing is done on this complex 
system, and also to the type of software (which most other parts of the software were 
dependent upon). This means that many failures in this particular software will be 
found and reported by several persons. Another aspect is that failure reports are 
symptoms, and they might not appear in the same way (and be explained similarly) by 
two different persons. This problem is recently remedied, by enhancing the pre-test on 
the entire system before release (much as a result of the insight gained by this case 
study).  



Table 1. Failure distribution into classes and their frequency. Second column is the adjusted 
value (when translating TR to fault classes). 

Group Fault/Failure Class Failures Code Fault adjusted 
Code Faults of omission 73 78 
Process Duplicate of TR 67 - 
Code Data fault 22 26 
CM No files associated  21 - 
Process Change requests 21 - 
Code Static code fault 20 21 
Code Spurious faults 17 17 
CM SCM 15 - 
Code Resource fault 13 13 
Code Computational/ 

     Logical fault 
11 28 

Code Function fault 11 13 
Process Fault not fixed 9 - 
CM Compile time fault 8 - 
Other Third party fault 5 - 
Other Documentation fault 4 - 
Code Language Pitfall 3 8 
Other Hardware fault 2 - 
Process Not a fault 1 - 
Code/Other Too difficult to classify 39 - 
 Sum 362 204 

 
Disregarding duplicates of failures leading to the same fault, we would focus on 

the 295 unique failures. However, the classification needs adjustment, in relation to 
how some failures are reported. For example, if a fault needs two corrections to be 
fixed, and there are duplicate TRs, there is no way of telling that one TR correction is 
assigned to one or the other fault correction, and the “duplicate” vice versa. We see 
this as a disturbance of the data, but have reported the adjustment for the fault classes 
in software. The adjusted values will if re-inserted cause failures. We have started 
further investigations to understand the nuances of how faults actually infect the 
software, and when and how visible they are.  

The next interesting class of failures was “too difficult to classify” containing 39 of 
the failures. The reason is that it is impossible to pinpoint the exact difference, since 
the entire unit or file was re-designed, and large portions of the code rewritten. This 
also makes it difficult to pinpoint if the change was only due to the failure, or due to 
other factors such as updates, expansions, new features etc. We decided that for our 
purposes is not worth the effort to sort this out, instead we just conclude that 13% of 
the unique failures lead to a major change in the system. Only 8 (of 19) classes can be 
considered in our investigation, since these are the ones directly related to software 
faults. This is only 170 of 362 reported failures (47%), or 170 out of 295 unique 
failures (58%). This means that as much as 53% can be dismissed due to problems 
that are either indirect, process or system related, or disturbance in data and that these 
failures do not uniquely originate from the software. Third party faults are software 
faults, but they cannot be traced into code, since the source code is not always 
available to us, and must be corrected by another party. Another category is how the 



system is built and integrated, including software configuration management (SCM) 
failures, compile time failures (during the build) and the category of “no files 
associated”. These failures are strongly related to the fact that a major change of build 
system and product structure happened during the period of data collection, which 
explains why it constitutes 1 out of 5 non-software related faults.  

In Table 2, we present distribution of faults together with the number of files which 
had to be updated to correct the faults.  

Table 2. Distribution of adjusted faults into number of files. 

Number of files Code fault class Faults %
1 2 3 4 5 6 7 8 9 11 25 

Faults of 
omission 

78 38.2 50 12 8 4 2 1  1    

Computational/ 
Logical fault 

28 13.7 24 2 2   

Data fault 26 12.7 20 3 1  2     
Static Code Fault 21 10.3 4 7 2 1 1 3 1 1  1 
Spurious faults 17 8.3 11 2 1 1 1 1  
Resource fault 13 6.4 8 5   
Function fault 13 6.4 11 1 1   
Language Pitfall 8 3.9 6 1 1   
Summation 204 99.9 134 32 13 8 6 5 1 2 1 1 1 

 
The failures found in the case study, can involve between 1 to 64 files. The software 
faults can be distributed between 1 to 25 files. Analyzing this data shows the majority 
(66%) are from 1 file, but e.g. that faults of omission involve more than one file for 
36%. We have not looked at the details, such as the location of the faults within the 
file, which is demands a more in depth investigation, or if the files are all “owned” by 
the same designer or not.  

Our result was not what we expected, since we have had the assumption that e.g. 
more than 4% would be language pitfalls. This is why we felt reporting these findings 
would aid others in understanding more about the nature of faults. Our most important 
findings can be summarized as follows: 
• Most of the faults were faults of omission or “missing path”, meaning, not until 

execution on higher integration and system levels the lack of code was noted and 
the failure visible. A designer could clearly not find this, and the cause is most 
likely insufficient specifications available on lower level or lack of knowledge of 
the context of the code. A related fault class is spurious faults, where too much 
code is written, which might be overlapping or creating the problem. 

• More than 34% of the corrections involve more than one file and the maximum 
of involved files for a correction is 25 files – the conclusion is that these faults 
are not possible to find on component level, and even 100% code-coverage on 
component level would not reveal the failure.  

• Faults are much more complex than simple mistakes; often complicated logic 
confuses the developer. The semantics of faults are complex. 

• Resource faults are not as complicated as e.g. static code faults when it comes to 
distribution of location. 



5 Validation and Threats 

This is a case study, which has low control over the environment, we have had 
some control over the measurements, but they were selected on the basis of possibility 
to gather (based on the labeling feature), which was random and outside our control. 
The replication is probably low of the experiment itself, but it should be possible to 
take any known failure/fault classes and do the same classification with a different 
outcome, depending on the software, process, organization and situation.  

 
The main argument favoring our study is that, all failures and thus faults are from a 

live real system, and it is representative of the faults found and fixed, even if it is a 
not so huge sample. One possible validity threat is the selection of data is created 
based on the labeling function. The obvious way to perform a study on distribution of 
failures into fault classes would be to look at all faults, by comparing the difference 
between code versions. This is not a viable approach, since in systems, fault 
corrections, changes by adding new and modified code are mixed. Secondly, we have 
only focused on one small part of the system, since the main purpose was to identify 
the faults that we could make a copy of and re-inject the faults to use in controlled 
experiments. We investigated that for every reported failure, finding the actual fault, 
which represents the correction in the code, is still not completely accurate, since 
there is not a one to one relationship and this creates a problem in how to classify a 
fault. This is why we have shown two values, one based on the failure data reported, 
and one based on the adjusted software fault correction possible to re-inject in the 
code. The selection was made out of convenience, to find and create a sample to 
reason about. The failures corrections (labels) selection came from a wide 
community, of 65 designers from many countries and collected over a long time 
period and over many versions and changes in the system (3 years). We draw the 
conclusion that this fact lessens the internal threat, since the bias of interpretation has 
less impact, but cannot be disregarded.  

Conclusion validity relates to subject selection, data collection, measurement 
reliability, and the validity of the statistical tests. These issues have been addressed in 
the design of the experiment, and we believe there is a disturbance in the data 
collection and measure reliability. We have used a nominal scale to classify our 
Trouble Reports. The classification is rather simple, which could be indicating 
problems with the internal validity. Classification into another system will yield a 
different result. Since our distribution is done with little insight of the software and no 
insight of history, process and organization and by and external party (thesis worker) 
the bias is minimized. There is no researcher bias put into the investigation, since it 
was done by a third party, and no guidance was given to what set of faults should be 
investigated, how the distribution and classification should be used or chosen. Thus, 
the researcher, who is familiar with some aspects of history, organization, process and 
software, which could indicate a bias, and a threat to the validity, have made the 
conclusions and verified the result. 

Discussing the generalization of the result, we must look at external threats. The 
faults selected are on one particular product, but the nature of the product is such that 
it could probably be representative for lots of industrial software. We cannot conclude 
that that the result is generic since the distribution is dependent on organization, 



process, quality awareness, and a lot of other factors. However, earlier studies [12] 
with similar results supports that for these types of systems the results could be 
generic and not an isolated result. We do think this is one example of a typical 
industry software fault distribution. Using our conclusions for any system might be 
pre-mature, but we suggest that this information can serve as an indication for 
complex middleware systems, operating systems, and similar large complex systems. 
All data is still available to pursue further studies. 

6 Future Work 

For natural reasons, a lot of the designer faults are found by designers themselves 
and are not registered. Depending on industry, designers are usually responsible for a 
large amount of the lower-level testing (unit, component, and lower level integration, 
and even some functional testing). Therefore, data on failures originates from 
independent test at different integration points, (levels), and from customers reports. 
We intend to investigate what faults and failures the designers themselves find.  

Since we have noticed fault classifications often become failure or cause 
classifications, we aim to do a further study and make a fault classification (bug 
taxonomy) that are more useful for fault injection purposes. We believe we have 
already hinted on a structure (defining our classes and sub-classes), but feel we need 
to investigate and possibly expand these further. We also need to provide more clear 
rules for how to classify faults, so they cannot be classified in different classes 
depending on how the fault is interpreted. The large number of existing fault 
classifications will also be juxtaposed in such a new classification.  

We would like to investigate automatic ways to classify legacy software, but that is 
not our primary concern, and we invite other researchers into a discussion about the 
feasibility of automatic classifications, as we have seen a published example of [13].  

Our primary concern is to prepare code in many different versions, with real faults 
injected. These fault-injected code samples are intended to be used for evaluating test 
techniques in a controlled manner. We aim to inject faults into a system to minimize 
bias for one test technique over another. This require us to have a clear classification 
(with relation to the test technique), and there must be a variety of faults that behave 
(propagate) and is viewed differently, if we are to determine where a test technique 
would be more efficient. Our interest to find a set of faults that through execution 
behaved in different ways, and cause different failures in the software. The faults we 
have found, isolated, classified, and understood are to be re-injected in the code for 
better comprehension of how each one of them behaves when propagating to failures, 
as opposed to debugging. Of course, the variety of faults is more interesting, and we 
are to explore mutation techniques as a complement, and study how they behave and 
how their fault semantics could look like. 

7 Discussions and Conclusions   

We now return to the questions posed in the introduction and present our findings 



based on the collected data. 
 
1. What are real and important faults in software that have propagated to failures, 

and are fixed? 
The answer is clearly that faults of omission (38,3% of software faults), together 

with spurious faults (8,3 % of all software faults), shows that faults related to unclear 
specifications dominates among the real software faults found in the considered sub-
system in a large complex middleware system. The main conclusion and contribution 
is the fact that the individual designer at component test level do not find these type of 
faults, and that they must be found at later stages in testing. It underlines how difficult 
it is for a designer to understand, define, specify and implement code in an 
environment of complexity, since not enough knowledge of context available. This is 
supported by looking at distribution of the faults over files, where 36% of these two 
classes of faults spans over more than one file.  

 
2. What is the distribution of  failures and faults into classes? 
Our observations were as follows: 
• 53% of all failures decided to be corrected are not relating to the software and are 

not possible to re-inject into the software 
• Faults of omission (lack of code) is the dominating class among the software 

faults (38.3%) 
• Computational/Logical (13.7%) and Data faults (12.7%) followed by Static Code 

faults (10.3%) are the next largest groups. 
• Language pitfalls are only contributing with 4% of the software fault distribution 
 
3. Is there any other specific pattern of the faults and failures that would guide us 

into understanding the software process better? 
• We have found that as much as 19% of all faults are duplicates that still remain to 

be corrected (even after management has taken out duplicates). This shows that 
software failures are often expressed differently and not identified as duplicates 
until code is corrected. 

• Software configuration management and build related faults together are 
contributing with as much as 15% of the failures. 

• Conventional faults in software (computational/logical and functional faults, 
language pitfalls and static code faults) are only 39.6% of the software faults in 
this complex middleware system. 

 
We think that these findings suggest where effort and cost should be placed. We 

know for a fact that this software had a targeted component test improvement (unit 
level) during the year 2005, which greatly improved the quality. We know that from 
the period 2003-2004 most of the trouble reports came from outside this software 
organization (applications, customers), but after the improvement most of the trouble 
reports originated from within the organization. We also know that the testing of these 
products have improved between 2003 and 2006, with only one test level in 2003, and 
now with more than 4 test levels. We can also see this reflecting in the number of 
duplications going down. We have noticed that viewing Trouble Reports (failures) 
over time, provides us information that many of the changes induced by the trouble 



reports that we considered were both re-designs for change and expansions purposes 
and for fixing bad design, and these problems were more common earlier in the 
development than in the later stages of development. We suggest that changing 
software configuration and build system will have a great impact on the code (since 
our study indicated as much as 15% of faults are due to SCM). We think there is 
much information to be utilized from this study. We do believe it is humanly 
impossible to understand the entire system, and even if knowing context and teaching 
about it, this will only remedy a part of the problem, and that unit and component 
testing alone have no chance of finding a majority of these faults, which is of course 
already shown and evident. This study strengthens that evidence. Even if we strongly 
believe component testing is essential for complex systems that need to be robust, we 
must do testing on many other levels in the system to understand where the important 
faults hide. Testing is a support to the designer.  

We were surprised that the fault categories that are the target of many static 
analysis tools had so low frequency, which leads us to suggesting a more cost–
efficient way might be to work on specifications, understanding the software context, 
and test-set up. We believe that since the system is build in a “fail-safe” way with the 
aim to minimize impact of anything going wrong (by duplication of hardware, 
protocol resending, restarting etc) the impact of simple singular faults are often 
hidden or dormant. We believe that the improvement on component test are not 
reported in the same way in the trouble report system, since designers correct their 
own mistakes when they encounter them, rather than report them, which puts a hidden 
figure on these types of faults. Most of the component test faults (that is found by e.g. 
static analysis tools and component test) are not as visible in this study, but still do 
exist.  

We have concluded why there is such a lack of information on code faults – and 
how good it is to do this analysis and really understand the information, since it gives 
Ericsson guidance on where efforts of improvements should be targeted. We 
understand the difficulty to gather this information if traceability of the code is not 
directly possible from the reported failure. The strength in our study is that it is 
unbiased to the code, and based solely on applying clear classification rules. We have 
of course encountered problems with classifications, how distinct the classes are, and 
how classifications should be applied. We intend to explore this in detail in a future 
work. 
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