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Abstract. Interoperability testing aims at verifying the possibility for
two or more components to communicate correctly while providing the
foreseen services. In this paper, we describe a new method for gener-
ating interoperability test cases. This method is equivalent to classical
methods in terms of non-interoperability detection. Contrary to classi-
cal approaches, this method avoids the well-known state-space explosion
problem. It has been implemented in the CADP Toolbox and applied to a
simplified version of the ISDN connection protocol. The obtained results
confirm the real contribution of this method: test cases has been derived
while classical approaches face the state-space explosion problem.

1 Introduction

Interoperability testing is used to verify that different protocol implementations
communicate correctly while providing the services described in their respective
specification. Contrary to conformance testing which is precisely characterized
with testing architectures, formal definitions [1, 2] and tools for generating au-
tomatically tests [3, 4], interoperability is not formally defined. Some formal
definitions [5, 6] and methods for generating interoperability tests [7, 8] exist,
but there is no precise characterization of interoperability for the moment, and
consequently no method based on formal definitions.

In this paper, we consider interoperability formal definitions of [9]. These defi-
nitions, called interoperability criteria, describe the conditions that two imple-
mentations must satisfy to be considered interoperable: providing the expected
service while interacting correctly. Based on a proved equivalence between two
of these criteria, a new method to generate automatically interoperability test
cases is described. This method is equivalent to classical methods in terms of
non-interoperability detection. But it avoids the construction of the specifica-
tion interaction that may lead to the well-known state-explosion problem [6].
Moreover, we apply this method -implemented in the CADP Toolbox [10]- on
a simplified version of the ISDN (Integrated Service Digital Network) connec-
tion protocol [11]. The obtained results show that the proposed method is a real
contribution as we are able to derive interoperability test cases while classical
methods were not applicable because of the state-space explosion problem.



This paper is structured as follows. First, we present the formal background
including interoperability formal definitions needed in Section 2. Then, Section
3 focuses on methods for generating interoperability test cases. We present first
classical method and then our new method. Section 4 describes the results of
the application of both methods on a simplified version of the ISDN connection
protocol. Conclusion and future work are in Section 5.

2 Formal background

In this section, we present the different notions that are used in the following.
First, interoperability is defined in Section 2.1. Section 2.2 presents the formal
model (IOLTS) and the related definitions used for interoperability formal ap-
proach. Finally, Section 2.3 describes the interoperability formal definitions (iop
criteria) considered for interoperability test generation.

2.1 Preliminary definitions

Different kinds of tests exist for testing if protocol implementations will work
correctly in an operational environment. For example, conformance testing veri-
fies that an implementation behaves as described in its specification. It considers
events observed on the interfaces of the Implementation Under Test (IUT), and
compares these events with events foreseen in the specification. The IUT is a
black-box: testers do not have any knowledge of its internal structure.

In this paper, we consider another kind of test: interoperability testing. This
kind of test has two goals. It verifies that different IUTs (two in this study)
can communicate correctly, and that they provide the services described in their
respective specification while communicating. In an interoperability testing ar-
chitecture, we can differentiate two kinds of interfaces. The Lower Interfaces are
the interfaces used for the interaction while the Upper Interfaces are used for the
communication of the implementations with upper layer. Testers are connected
to these interfaces but they can control (send message) only the upper interfaces.
The lower interfaces are only observable.

Depending on the access to the interfaces, different architectures can be distin-
guished. For example, the interoperability testing architecture is called unilateral
if only the interfaces of one IUT are accessible during the interaction, bilateral if
the interfaces of both IUTSs are accessible but separately, or global if the interfaces
of both IUTs are accessible with a global view.

2.2 IOLTS model and related definitions

We use IOLTS (Input-Output Labeled Transition System) [12] to model specifi-
cations. As usual in the black-box testing context, we also need to model IUTs,
even though their behaviors are unknown. They are also modeled by an IOLTS.

Definition 1. An IOLTS is a tuple M=(QM , XM AM o). QM is the set of
states and g}t € QM the initial state. XM denotes the set of observable events on



the interfaces: p?m € XM (resp. p'm € XM ) stands for an input (resp. output)
where p is the interface and m the message. AM is the transition relation.

Based on this model, I'(q) is the set of observable events (executed on the
interfaces of M) from the state g and I'(M, o) the set of observable events for the
system M after the succession of events (trace) o. In the same way, Out(M, o)
(resp. In(M, o)) is the set of possible outputs (resp. inputs) for M after the
trace 0. Traces(q) is the set of possible observable traces from ¢q. We can also
define i as p=l;la if p = 1;7a and g = [;7a if p = ljla.

An implementation can be quiescent in three different situations: either the
IUT can be waiting on an input, either it can be executing a loop of internal
(non-observable) events, or it can be in a state where no event is executable. For
an IOLTS M, a quiescent state ¢ is treated as an observable (practically with
timers) output event. An IOLTS with quiescence modeled is noted A(M).

Two other operations need to be modeled: asynchronous interaction and pro-

jection. The asynchronous interaction is used to calculate the IOLTS modeling
the behavior of a system composed by different communicating entities. For two
IOLTS M; and Ms, the asynchronous interaction is noted M| 4Ms. The way
to obtain this model of the interaction is described in [9]. First, M7 and M, are
transformed into IOLTS representing their behavior in an asynchronous envi-
ronment. Then, these two IOLTS are composed to obtain M| 4 Mo.
The projection of an IOLTS on a set of events is used to represent the behavior
of the system reduced to specific events (such as events observable on certain
interfaces). The projection of M on the set of events executable on its lower
interface M is noted M /XM,

Conformance formal definition Contrary to interoperability testing, confor-
mance is precisely formalized with formal definitions [1, 2] and tools for gener-
ating automatically tests like TGV [3] or TorX [4]. Among the different formal
definitions existing for conformance, the ioco conformance relation [2] says that
an implementation I is ioco-conformant with respect to its specification S if
I never produces an output which could not be produced by S after the same
trace. Moreover, I may be quiescent only if S can do so. Formally : I ioco
S =A Vo € Traces(A(S)), Out(A(I), o) C Out(A(S), o).

2.3 Interoperability formal definitions: iop criteria

Even though some formal definitions exist in [9, 13], there is no precise charac-
terization for interoperability (iop for short in the following). Here, we present
some formal definitions, called iop criteria. They consider different possible archi-
tectures for testing the interoperability of two IUTs (one-to-one context) and are
based on both purposes of interoperability: verifying that each entity actually
receives the outputs sent by the peer entity and that the messages sent by the
IUTs on their upper interfaces correspond to the service described in the specifi-
cations. Thus, outputs must be verified on both interfaces. As only outputs can



be observed, verifying that an input p is actually received by the peer entity
implies to determine the set of outputs that can happen only due to the recep-
tion of u. This set of outputs is calculated based on causal dependencies. The
set of outputs on M that are causally dependent of the input p after the trace
o is noted: CDep(M, o, p).

The global iop criterion considers both kinds of interfaces and both TUTS
globally. It says that, after a trace of the interaction of the specifications, all
outputs observed during the interaction of the implementations must be foreseen
in the specifications, and that outputs sent by one IUT via its lower interfaces
must be effectively received by the interacted IUT. This iop criterion corresponds
to the most used testing architecture.

Definition 2 (Global iop criterion iopg). I1iopals =def

Vo € Traces(S1||aS2), Out(Ii|| al2,0) C Out(Si||.4S2,0)

and V{i,j} = {1,2}, i #j,

Vo € Traces(Si||4S;), oi = 0/X% € Traces(S;), o; = a/X% € Traces(S;),
Yu € Out(l;,0/X%), Vo' € [(X% U X% U{8(i),6()}) \ @* U {e}, op.o’ i €
Traces(S;|| 4S;), it € In(I;,0;.(c" | X17)) = Out(I;, 0j.(0" / X1i).i.0) € CDep(
Sj, 05.(0" /51, 1), o1, € (Z77)* U {e}

In [9], we prove the equivalence of the global criterion with the so-called

bilateral iop criterion iopp (defined below via the unilateral iop criterion iopy)
in terms of non-interoperability detection. This equivalence is used for developing
our new interoperability test generation method.
The unilateral iop criterion iopy (view I;) considers interfaces of IUT Iy
while interacting with I. It says that, after a trace of S; observed during the
interaction, all outputs observed in I; must be foreseen in S7, and that I; must
be able to receive outputs sent by I via its lower interfaces.

Definition 3 (Unilateral iop criterion iopy). Iiiopyls =gcf

Vo1 € Traces(A(S1)), Vo € Traces(S1]|.452),

O'/Z’S1 =01 = Out((hHAIQ)/ESl, 0'1) - Out(A(Sl),al)

and Vo, = 0/X5 € Traces(A(S1)) such that o € Traces( S1||aS2), Vu €
Out(Iy,0/X%2), Vo' € (25 uX52)\ a)* U{e}, o.p.o’.fi € Traces(S1||4S2), i €
ITL(Il,Ul.(O'I/Zh)) = Out(Il, 01.(0//211).,&.0’1‘) S CDep(Sl, 01.(0//211), ﬂ),
oi € (Z9)* U {e}

The bilateral total iop criterion iopp is verified iff both (on I side and
I, side) unilateral criteria are verified: Iiiopgls (= Izioppli) =aes Iniopula A
Igioprl.

3 Interoperability test generation

3.1 Preliminary definitions

Iop test purpose In practice, a test purpose is an informal description of be-
haviors to be tested. Generally it is an incomplete sequence of actions. Formally,



a test purpose TP can be represented by a deterministic and complete IOLTS
equipped with trap states used to select targeted behaviors. Complete means
that each state allows all actions. In this study, we consider simplified iop test
purposes with only one possible action after each state (V o, |['(TP,0)| < 1)
and one Accept™? trap state used to select the targeted behavior.

Iop test cases During interoperability tests, three kinds of events are pos-
sible for the tester: sending of stimuli to the upper interfaces of the ITUTS,
receiving inputs from these interfaces, and observing events (input and out-
put) on the lower interfaces. Thus, a test case TC' can be represented by T'C
= (QTY, XTC ATC ¢I'®) an extended version of IOLTS. {PASS, FAIL, INC}
C QT are trap states representing interoperability verdicts. XT¢ C {u|n €
251 U 252} U {?2(u)|u € 29 U X372}, 2(u) denotes the observation of the mes-
sage 1 (that can be an input or an output) on a lower interface.

Iop verdicts The execution of the test case T'C on the system composed of the
two IUTs gives an interoperability verdicts. PASS means that no interoperability
error was detected during the tests. FAIL stands for the iop criterion is not
verified. INC (for Inconclusive) is for the case where the behavior of the SUT
seems valid but it is not the purpose of the test case.

3.2 Classical methods

In practice, most of interoperability test suites are written ”by hand”. This is
done by searching ”"manually” paths corresponding to the test purpose in the
specifications. Considering the number of possible behaviors contained in the
specification interaction, this ”manual” test derivation is an error-prone task.
Methods for automatic interoperability test generation (as in [7, 8, 14, 15, 16])
also consider algorithms that search paths corresponding to the test purpose in
the composition of the specifications (sometimes called reachability graph). The
study described in [6, 13] considers an interoperability formal definition that
compares events executed by the system composed of the two implementations
with events foreseen in the specifications. Thus, traditional methods for deriving
interoperability test cases are based on a global approach and on a general
interoperability definition corresponding to the formal iop global criterion iopg.
The classical method can be summarized, as in Figure 1(a), by two main steps.
The first one is the calculation of the specification interaction (completely or
based on the defined test purpose depending on the method). The second step
corresponds to the interoperability test case derivation based on the model of
the specification interaction and on the test purpose.

The problem with this (these) classical method(s) is that we can have state
space explosion when calculating the asynchronous interaction of the specifica-
tions [6]. Indeed, the number of states in the specification asynchronous inter-
action is in the order of O((n.m/)?) where n is the number of states in the
specifications, f the size of the input FIFO queue on lower interfaces and m the
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Fig. 1. Interoperability test generation: classical and new methods

number of messages in the alphabet of possible inputs on lower interfaces. This
calculation can be infinite if the size of the input FIFO queues is not bounded.

3.3 New approach: bilateral criterion based method

The equivalence -in terms of non-interoperability detection- between global and
bilateral iop criteria (cf. theorem 1 in [9]) suggests that iop tests derived based
on the bilateral iop criterion will detect the same non-interoperability situations
as tests generated using classical method. Moreover, the bilateral method (see
Figure 1(b)) avoids the calculation of the specification interaction.

General principles and verdict management Let us consider an iop test
purpose TP, as described in Section 3.1. The bilateral method can be decom-
posed in two main steps: cf. Figure 1(b). The first step of the bilateral method is
the derivation of two unilateral iop test purposes T'Ps, from the global interoper-
ability test purpose T'P. Each T'Ps, contains only events of S; and represents the
iop test purpose TP in the point of view of .S;. The second step is the unilateral
test case derivation. For this step, we can use a conformance test generation tool
F such that F : (S;, TPs,) — TC!, i € {1,2}. The unilateral test cases T'C;
are obtained from T'C] after some modifications due to differences in interface
controllability between conformance and interoperability contexts.

As bilateral and global iop criteria are equivalent in terms of non-interoperability
detection, we have: verdict(T'C, I1 || al2) = verdict(TCh, I1|| al2) A verdict(TCa,
I1||al2). The verdicts verdict(TC,I || al2), verdict(TC1,I1||al2) and verdict(
TCy,I1]|al2) are interoperability verdicts; verdict(T'C, I1|| al2) is a global in-
teroperability verdict and the two others are unilateral verdicts. The rules for
the combination of these two unilateral verdicts to obtain the final bilateral
iopp verdict are obvious: PASS A PASS = PASS, PASS ANINC = INC,
PASS N FAIL = FAIL, INC AN FAIL = FAIL, INCANINC = INC and
FAILNFAIL = FAIL.



Unilateral interoperability test purposes derivation The algorithm of
figure 2 shows how to derive two unilateral interoperability test purposes from
one global interoperability test purpose. Let us consider an event u of the test
purpose. If p is an event of the considered specification, it is added to the test
purpose. If i is an event from the other specification, there is two possibilities.
Either p is an event to be executed on lower interfaces: in this case, the mirror
event i is added. Either the event is an event to be executed on the upper
interfaces: in this case, the algorithm searches a predecessor of u, such that this
predecessor is an event to be executable on lower interfaces. The algorithm adds
the mirror of this predecessor to the test purpose.

Input: Si, S2: specification, T'P: iop test purpose; Output: {T Ps, }i—1,2;
Invariant: S; = Ss—; (* Sy is the other specification *); TP = pi...un
Initialization: TPs, = e Vi € {1, 2};
for (j = 0;j < nij++) do
if (u; € X77) then TPs, = TPs,.uj; TPs, = TPs, .[i;
if (u; € Eg’“) then TPs, = TPs,.jij; TPs, = TPs, .11
if (/.Lj € EU'i) then TPSi = TPSi./Jj;
T Ps, =add_precursor(y;, S;, T Ps,)
if (11; € XpF) then TPs, = T Ps, .ji;;
T Ps,=add_precursor(u;, Sk, TPs,)
if (u; ¢ X5 U X%)then error(TP not valid : p; ¢ X°1 U £°2)

function add_precursor(u, S, TP): return TP
o1 :=TP; a; =last_event(o1)
while a; € X} do o1=remove_last(o1);

aj =last_event(c1) end

M ={q€Q® 3q|(q, aj,¢') A o =a;w.p € Traces(q)}
if (Vg € M, o ¢ Traces(q)) then error(no path to p)
while (e=last_event(w) ¢ X7 U {e}) do w=remove_last(w)
if (e € X§) then TPs = TPs,.€ end

Fig. 2. Algorithm to derive T'Pg; from TP

Some additional functions are used in the algorithm of figure 2. Let us con-
sider a trace o and an event a. The function remowve_last is defined by : re-
move_last(c.a) = o. The function last_event is defined by : last_event(o)= € if
o= € and last_event(o)= a if 0= o7.a. The error function returns the cause of
the error and exits the algorithm.

Deriving unilateral interoperability test cases The second step of this
method is the derivation of two unilateral interoperability test cases based on
the obtained test purposes. For this, a conformance test generation tool is used.
It takes as inputs a specification Sy (resp. S2) and the corresponding test pur-
pose T'Ps, (resp. T'Ps,) and generates two conformance test cases T'C] and T'CY
that are modified in order to obtain the unilateral iop test cases T'C'; and T'Cs.
These unilateral interoperability test cases will be executed unilaterally on the



corresponding IUT in the SUT.

The modifications on T'CY{ and T'C} to obtain T'C and T'Cy are realized to take
into account the differences between upper and lower interfaces in interoper-
ability testing. For example, an event [lm (resp. [?m) in the obtained test case
will be replaced by ?(I?m) (resp. ?(I!m)) in the interoperability test case. This
means that the unilateral interoperability tester observes that a message m is
received from (resp. sent to) the other IUT on the lower interface I. No changes
are made on the test cases for events on the upper interfaces as these interfaces
are observable and controllable: a message can be sent (and received) by the
tester to the IUT on these interfaces.

Some words about complexity The first step of this method (algorithm of
Figure 2) is linear in the maximum size of specifications. Indeed, the first part of
this algorithm is linear as it is a simple traversal of the test purpose graph which
is a small automaton compared to a specification graph. The other part of the
algorithm (search of predecessor - only if the test purpose event is an event to
be executed on a upper interface) is only linear as it is also a simple path search
and is based on a stack structure.

The second step corresponds to the test generation. It uses a conformance test
generation tool. In our case, we use TGV tool. As TGV [3] is linear in complexity,
this step of the method is also linear in complexity.

Thus, the bilateral method costs less than the calculation of S| 452 needed for
classical method. Moreover, if an iop test case can be obtained using classical
approach, the bilateral method can generate an equivalent bilateral iop test case.

Causal dependency algorithm One objective of interoperability is to verify
the correctness of the communication between the IUTSs. Thus, iop test purposes
may end with an input. This latter situation occurs in the unilateral test purposes
derived by bilateral method. For example, if the iop test purpose ends with an
output on lower interface, its mirror event (an input) is added -as last event- to
one of the derived test purpose. The unilateral test case derivation generate a test
case for which the PASS verdict is affected to an input (a non-observable event).
An algorithm based on causal dependencies is used to complete bilateral method.
The purpose of this completion is to produce outputs that help in verifying that
the input is actually received by the corresponding IUT. The algorithm computes
the set of causal dependency events (associated with the paths to these events),
based on breadth-first search algorithms of the graph theory. It can also be used
for refining interoperability test cases generated by classical methods based on
test purpose ending with an input.

4 Applying the new method to a connection protocol

4.1 A simplified version of the ISDN connection protocol

ISDN (Integrated Services Digital Network) is a set of CCITT/ITU standards
for digital transmission over ordinary telephone wire as well as over other media.



This protocol requires a connection. The IUT-T recommendation Q.920 [11] con-
tains the description of the state diagram for sequences of primitives at a point-
to-point data link connection endpoint. The specifications of Figure 3 consider a
simplified version of this connection protocol. This version is simplified so that
it could represent any other communication protocol with request-acknowledge
connection negotiation. Two modes are possible: a client/server mode (57 and So
of Figure 3) or a complete client and server mode (specification S of Figure 3).

12%cnr

11tcnr]

UTIACK 12! nacl 12tack

Fig. 3. Examples of specifications: S1, S2 and S

Specifications Let us describe S; and Sy of Figure 3. UI7CNR is a connec-
tion request from the upper layer, [1lcnr (resp. (27cnr) the request sent (resp.
received) to the peer entity, [2lack/I2!nack the positive or negative response,
and UNNACK/U1!NACK the response forwarded to the upper layer.

TPy TP, TP3
l UI?CNR UI?CNR l 122cnr
l ULIACK l 12lack l ULIACK
ACCEPT ACCEPT ACCEPT

@ (b) (©
Fig. 4. Test Purpose examples: TPy, TP and T Ps
Test purposes A test purpose is an informal description of behaviors to be

tested, in general an incomplete sequence of actions. Each state of the test pur-
pose considers a particular event to be executed, but each state allows all actions.



Let us consider the three iop test purposes of figure 4. These iop test purposes are
applicable to the System Under Test (SUT) composed of two IUTs implementing
respectively S; and Ss. For example, TPy of Figure 4(a) (resp. TP of Figure
4(b)) means that, after the reception by I; (implementing S;) of a connection
request on its upper interface U1, this IUT I (resp. I2) must send a connection
acknowledgment on its upper interface U1 (resp. a connection acknowledgment
on its lower interface [2).

The three test purposes of figure 4 are also applicable for deriving interoper-
ability test cases executable on a SUT composed of two IUTs implementing the
specification S (the complete client and server mode).

4.2 CADP Toolbox used for implementing the method

Both classical and new (bilateral) methods were implemented into the CADP
toolbox [10]. CADP is a toolbox for the design of communication protocols and
distributed systems. It includes tools for explicit state space manipulation called
BCG. BCG (Binary-Coded Graphs) is both a format for the representation of
explicit LTSs and a collection of libraries and programs dealing with this format.
The BCG format is used for representing specifications and test purposes and
for manipulating these LT'Ss.

One step of the bilateral method is the generation of unilateral interoperability
test cases using a conformance test generation tool. In order to automatize con-
formance test generation, different test tools were developed: TorX [4], T'Veda
[17], SAMSTAG [18], TGV [3], etc. The conformance tool used in this study is
TGV (Test Generation using Verification techniques). TGV is integrated in the
CADP toolbox and can take as entries a specification and a test purpose in the
BCG format. This conformance test tool is used for the unilateral interoperabil-
ity test case generation of the bilateral method, but also for the global test case
generation of the classical approach with the specification interaction and a test
purpose as entries.

4.3 Applying the classical approach on the client/server mode

Specification interaction The first step of classical methods is the calculation
of a model of the system behavior, that is to say the calculation of the specifi-
cation interaction (called also reachability graph). For the interaction of S; and
So of Figure 3, we obtain the IOLTS of Figure 5.

Global interoperability test case derivation Based on the model of the be-
havior of the system composed of the two specifications and on the test purposes
of Figure 4, we can derive interoperability global test cases. The TGV tool was
used, taking as entries the specification interaction (Figure 5) and a test purpose
(Figure 4). Results of this test derivation are shown in Figure 6. These test cases
are those obtained after modifications due to controllability differences between
interoperability and conformance contexts. Interface UT'1 is the interface of the



Fig. 5. Interaction of S; and So

tester connected to upper interface U1l. Thus, UT1!C N R means that a tester
sends message CNR to the upper interface U1 of I;. For events on lower in-
terfaces, ?(u) corresponds to the observation of the event. However, inputs can
only be deducted from the corresponding output (sent by the other IUT) and
causal-dependency events.

These results are compared with test cases derived for the same test purposes
by the bilateral method in next Section.

TC; @ TC, TC3
UTLICNR un!cm?
D @y
UTLICNR
Altenr) \ G Al1tcnr) Xz A1 Ltenr)
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Q5@

(b) (c)

Fig. 6. Test Cases for the interaction of S and S2

4.4 Applying our new method on the client/server version

Unilateral test purpose derivation The first step of the bilateral interoper-
ability test generation method is the derivation of the iop global test purposes
into two unilateral iop test purposes. The implemented algorithm corresponds
to the algorithm presented in Figure 2.



Applying this step to the iop test purposes of figure 4 and specifications S; and
S, gives as result the unilateral iop test purposes of Figure 7. TP} and TP} of
Figure 7(a) are the test purposes derived for TPy (Figure 4(a)) and respectively
specifications S; and Ss. In the same way, TPy and TP$ of Figure 7(b) (resp.
TP} and TP? of Figure 7(c)) are derived from TP of Figure 4(b) (resp. T P3 of
Figure 4(b)). The same notation will be used for test cases in the following.
When deriving the unilateral iop test purposes, for events on lower interfaces, the
returned event is either the event itself, either its mirror. For event U1IACK,
as its predecessor is p = [1%ack, the returned event is i = [2lack (TP} and
TP}) or UINACK (TP} and TP}). The difficulty is for deriving an event from
U1?CNR for TP? (Figure 7(a)) and TP§ (Figure 7(b)). In S, this event is the
first possible event after the initial state. Its predecessor must be found in the
paths bringing back the entity in its initial state. The first predecessor found is
UIINACK. As this event is not an event of the interaction, the algorithm con-
tinues one more step to find [17nack as predecessor, and then returns [2!nack
(mirror of I17nack).

1

2 1 2 1 2
TPy TP{ TP PS5 TP3 TPS
j@ul?CNR j?z! nack U1?CNR 12!nack I11tenr 122cnr
lUl!ACK lIZ!ack lll?ack lIZ!ack lUl!ACK llZ!a:k
ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
@ (b) ©

Fig. 7. Unilateral Test Purpose derived for specifications S1 and S2

Unilateral test case derivation The second step of the bilateral interoper-
ability test generation method corresponds to the use of a conformance test tool
(here TGV) on a unilateral test purpose and the corresponding specification.
TGV will return conformance test cases that we want to reuse in interoperabil-
ity context after some modifications.

A test case is controllable if the tester does not need to choose arbitrarily be-
tween different events. In conformance, inputs on lower interfaces correspond to
outputs of the tester: a controllable conformance test case only considers one
of the possible inputs on lower interfaces. In interoperability testing, inputs on
lower interfaces are sent by the other implementation. An interoperability test
case must take into account all possible inputs on lower interfaces. The complete
test graph is an IOLTS which contains all sequences corresponding to a test pur-
pose: all the inputs of the implementation that correspond to the test purposes



are considered in this IOLTS. Thus, to have test cases usable in interoperability
context, the conformance tool used in this step (like TGV) for interoperability
test generation must compute the complete test graph.
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Fig. 8. Unilateral Iop Test Cases for specifications S1 and S2

The main modifications to be applied to the obtained conformance test cases
concern the types of messages. The messages on lower interfaces are observations
in interoperability testing whereas they corresponds to communication with the
tester in conformance testing. The results on Figure 8 gives the test cases mod-
ified for interoperability.

Interoperability ”scenario” and comparison with classical methods If
we calculate the interaction of two unilateral test cases, we obtain the interoper-
ability test case execution scenarios of Figure 9. The scenario obtained for 7'Ps
(Figure 9(c)) contains only one deadlock (state 7). This state corresponds to a
PASS verdict (PASS_1APASS_ 2=PASS).

The scenario obtained for TPy (Figure 9(a)) contains two deadlocks: states 15
and 7. State 15 corresponds to a PASS state. But state 7 is only to a verdict state
(PASS_1) of TC1, not to a verdict state of TC? (see test cases on Figure 8(a)).
This means that, in this state, TC] is executed until a verdict state, but TC?
has not reached a such state. The part of TC? not executed was generated be-
cause of the test purpose derivation (calculation of the predecessor of U1?7CNR
when deriving T P?). We can also remark that the trace executed until state 7 of
TCH| ATC? verifies the global test purpose T'P;. Thus, even though a deadlock
state without both unilateral verdicts exists, the obtained scenario is complete
regarding the iop test purpose T P;.

For TP, (scenario on Figure 9(c)), the obtained interoperability test cases end
with an input because the unilateral test purpose generated for S; ends with an
input. To complete these iop test cases (T'C3 and TC3||4TC3), we can either
add a postamble returning to the initial state, either use causal dependency al-
gorithm (using breadth-first search algorithms). It will add paths until outputs
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Fig. 9. Test Case interactions

that are executed only if the input [17ack is actually executed. In this simple ex-
ample (specification Sy), only the event UIIACK (or UT17ACK for the tester)
will be added with causal dependency event method.

We can observe that the global iop test case generated for T'Ps (Figure 6(c))
corresponds to the scenario obtained by the interaction of the unilateral test
cases generated for this iop test purpose (Figure 9(c)). For TP, and T' P, (global
test cases on Figures 6 (a) and (b) and scenarios on Figure 9 (a) and (b)), there
are more branches. But a look at glance on the traces contained in both the
global test case and the scenario from bilateral method shows that they are
equivalent in terms of verdicts. Indeed, the same execution paths lead to the
same verdicts. These examples confirm the equivalence of both classical (global)
and new (bilateral) methods in terms of non-interoperability detection.

4.5 Application to the complete client and server mode

Both methods were also applied on the specification S describing both client
and server parts and using the same test purposes. The interaction S|| 4.5, calcu-
lated for classical approach, is composed of 454 states and 1026 transitions with
input queues of each system bounded to one message. Results in the following
table are given for a queue size of 3. The table gives the number of states s and
transitions ¢ (noted s/t in the table) for different test cases. The first two lines
correspond to iop test cases derived with the bilateral method (S as specification
1 and 2) and the third line to the interaction of these test cases. The last line
gives results for test cases derived with classical method. For this method, the



generated specification interaction has 47546 states and 114158 transitions.

TP TR, TP
S as spec. 1 (bilateral method) 9/17 8/16 9/17
S as spec. 2 (bilateral method) 13/24 13/24 12/22
TCOY| AT C? 19546/57746 (19468 /57614 | 19405/57386
S||4S (global method)  [54435/120400[18014/40793[54456 /120443

We observe that we can derive unilateral test cases via the bilateral method.
These test cases can be used for executing interoperability test cases. For classical
(global) methods, we faced the state space explosion problem. Indeed, we were
not able to compute S|| 45 for a queue size limited to 4 messages (on a system
with a 2GHz processor and 1 Gb of memory). This shows that the bilateral
method can be used to generate iop test cases even for specifications that produce
state space explosion problem. Moreover, these test cases are not dependent of
the queue size.

4.6 Summary of the experimentation results
The result on the examples can be summarized as follows.

1. In terms of non-interoperability detection, the obtained iop test cases con-
firm the equivalence of the bilateral and global iop criteria that was proved
theoretically in [9].

2. The causal-dependency based algorithm can be used to complete iop test
cases generated with both global and bilateral method, particularly when
we have test purposes ending with inputs.

3. The bilateral method can be used to generate interoperability test cases even
for specifications that produce state space explosion problem with classical
methods.

5 Conclusion

In this paper, we present a new method for generating interoperability test cases.
The interoperability criterion on which the presented method is based was proved
equivalent in terms of non-interoperability detection to another interoperability
criterion on which classical methods are generally based. This equivalence was
confirmed by experimental results. Moreover, we show that the so-called bilat-
eral interoperability test derivation method allows up to generate interoperability
test cases in situations where it would have been impossible with the traditional
methods because of state space explosion problem.

As future work, we will study the generalization of the formal interoperabil-
ity definitions and test generation methods to a context with more than two
implementations. We will also study how to apply the described method to a
distributed testing architecture.
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