
Automatic Test Generation from

Interprocedural Specifications

Camille Constant1, Bertrand Jeannet2 and Thierry Jéron1 ?

1 IRISA/INRIA, Campus de Beaulieu, Rennes, France,
{constant, jeron}@irisa.fr

2 INRIA Rhône-Alpes, Saint Ismier, France,
Bertrand.Jeannet@inrialpes.fr

Abstract. This paper adresses the generation of test cases for testing
the conformance of a reactive black-box implementation with respect to
its specification. We aim at extending the principles and algorithms of
model-based testing for recursive interprocedural specifications that can
be modeled by Push-Down Systems (PDS). Such specifications may be
more compact than non-recursive ones and are more expressive.
The generated test cases are selected according to a test purpose, a (set
of) scenario of interest that one wants to observe during test execu-
tion. The test generation method we propose in this paper is based on
program transformations and a coreachability analysis, which allows to
decide whether and how the test purpose can still be satisfied. However,
despite the possibility to perform an exact analysis, the inability of test
cases to inspect their own stack prevents it from using fully the core-
achability information. We discuss this partial observation problem, its
consequences, and how to minimize its impact.

1 Introduction

Testing is the most used validation technique to assess the correctness of reactive
systems. Among the aspects of software that can be tested, e.g. functionality,
performance, timing, robustness, etc, we focus here on conformance testing and
specialize it to reactive systems [1]. Conformance testing compares the observ-
able behaviour of an actual black-box implementation of the system with the
observable behaviour described by a formal specification, according to a con-
formance relation. It is an instance of model-based testing where specifications,
implementations, and the conformance relation between them are formalised.
Test cases are automatically derived from specifications, and the verdicts result-
ing from test execution on an implementation are proved to be consistent with
respect to the conformance relation. Moreover, in addition to checking the con-
formance of the implementation, the goal of the test case is also to guide the test
execution towards the satisfaction of a test purpose, typically a set of scenarii of
interest. The test selection problem consists in finding a strategy that maximizes
the likehood for the test case to realize the test purpose.

? This work was partly supported by France Telecom R&D, contract 46132862

LTS STS

PDS
Recursive
Programs

+variables

approximated analysis

+recursion partial observation
of state

recursive program
with finite-state variables

single procedure program
with infinite-state variables

Fig. 1. Test selection on various models

This problem has been previously addressed in the case where the specifi-
cations, the test cases and the test purposes are modeled with finite Labelled
Transition Systems (LTS) [2, 3]. It was more recently addressed in the case where
the same objects are modeled with Symbolic Transition Systems (STS), which
extend LTS with infinite datatypes and can model non-recursive imperative pro-
grams [4]. The aim of this paper is to address the test selection problem in the
case where the specification is modeled as a Push-Down System (PDS), which
extends LTS with a stack over a finite alphabet and can model recursive pro-
grams manipulating finite datatypes. Such specifications may be more compact
that non-recursive ones and are more expressive than single procedure programs.
Fig. 1 summarizes the different models.

Outline and Contributions. We first illustrate our test selection methodology on
an example in Sect. 2. Then, we recall in Sect. 3 the testing theory framework
we use. Next, we present our contribution which is twofold:

– First, we describe in Sect. 4 a test generation method, that takes as inputs
a recursive specification and a non-recursive test purpose and that returns
a recursive test case. This method is based on program transformations.
Technical choices are guided by theoretical properties of the underlying PDS
and LTS models, but the generation is defined in terms of programming
language concepts.

– Second, we present in Sect. 5 a selection algorithm which takes as input the
previously generated test case and specializes it. This algorithm is based on a
(co)reachability analysis of the test case. We formalize a partial observation
problem, due to the inability of test cases to inspect their own stacks. We
compare its consequences on the generated test cases with the impact of
using a non-exact, over-approximated coreachability analysis as done for test
selection based on symbolic STS models [4]. We also propose an improvement
of the selection algorithm which minimizes the negative impact of this partial
observation aspect on test selection.

2 Introductive Example

We illustrate in this section the concepts we will develop and our testing method-
ology on a running example, before formalizing it in the next sections.

main()

m0

m1

τ F()

F()

f0

f1

f2

f3

!x

τ G()

?c

!z

G()

g0

g1

g2

g3

g4

?b

τ t=true

τ G()

!y

?a

A

B

S C

D

E

x

a

y

c

b
]

]

]

]
]

(a) Recursive Specification, (b) Test Purpose,
recognizing the traces xbnaync + z recognizing the traces xb∗ayc

Fig. 2. Control-flow Graphs of Specification and Test Purpose

Specification. In our testing theory, the IUT is considered as a black box reactive
system, and its observations are the messages exchanged with its environment.
The specification we consider as an example is the small recursive program of
Fig. 4. Its control flow graph is given on Fig. 2(a). Double circles denote the
observation points (see Sect. 4). Inputs and outputs are distinguished by the
symbols ? and ! (inputs and outputs alphabets are disjoints). The behavior of
this specification program is the following: the main function calls the function
F (), which either emits the output !z and returns, or emits the output !x, calls
the function G(), then receives the input c and returns to its caller. According to
its first input, the function G() has two different behaviors: if the input is ?a, it
returns to the caller, whereas if the input is ?b, the function G() is called again
(recursively) and after it returns, the output !y is emitted.

What is really important is the traces recognized (or generated) by the spec-
ification, which is here Traces(S) = {!z} ∪ {!x · (?b)n·?a · (!y)n · c? | n ≥ 0}, a
context free language. The (non-)conformance of an IUT w.r.t. a specification
S will be only based on Traces(S). Intuitively, an IUT will be defined as con-
formant to S if after any execution trace which is a prefix of Traces(S), it emits
only outputs that S can emit as well. Note that the global variable t has no
influence on Traces(S), its usefulness will be explained later (see Sect. 5).

void main(){

emit(x) [] receive(p);
emit(y) [] receive(p);

}

Fig. 3. Non-conformant IUT

For instance, the IUT besides (where []

stands for the non-deterministic choice opera-
tor) is not conformant to S. After the execution
trace !x, it may emit !y, whereas S specifies that
no output may be emitted at this point: one
or more ?b and then one ?a should be received
first). Note that on all states, IUT is ready to receive any input on the parame-
ter p.

enum out_t { x,y,z };
enum inp_t { a,b,c };

bool t = false;
void main(){

f();

}

void f()
{

f0: emit(p) when (p == x || p == z){

if (p==z) goto f3;
}

f1: g();
f2: receive(p) when (p == c) {};

f3:
}

void g()
{

g0: receive(p) when (p == a || p == b){
if (p == a) goto g4;

};

g1: t = true;

g2: g();
g3: emit(p) when (p == y) {}

g4:

}

Fig. 4. Specification corresponding to
Fig. 2

enum out_t { a,b,c };
enum inp_t { x,y,z };

enum verdict_t { none, fail, pass, inconc };
enum verdict_t verdict = none;

bool t = false;
void main(){

f();

}

void f()
{

f0: receive (p) when true {

if (p != x && p != z)
{ verdict = fail; abort(); }

if (p == z) goto f3;
};

f1: g();
f2: emit(p) when (p == c) {}

[]

receive(p) when true
{ verdict = fail; abort() };

f3:
}

void g()
{

g0: emit(p) when (p == a || p == b){
if (p == a) goto g4;

}
[]
receive(p) when true

{ verdict = fail; abort() };
g1: t = true;

g2: g();
g3: receive(p) when true {

if (p != y){ verdict = fail; abort(); }

}
g4:

}

Fig. 5. Canonical tester associated to the
specification of Fig. 4

Canonical Tester. A tester, called canonical tester can be generated from S very
straightforwardly, according to the (yet intuitive) definition of conformance. The
name canonical tester stems from the fact that it can detect any non-conformant
execution of the implementation. It is actually the most general tester, from
which any sound test case can be derived. The program transformation consists
in mirroring inputs into outputs and vice-versa, and to emit a failure verdict
when the transformed program receives an unexpected input at an observation
point. Fig. 5 gives the canonical tester Can(S) associated to S. A new type and
a global variable verdict have been introduced for storing the verdict. Can(S)
stimulates the IUT by sending to it input messages, and checks that the outputs
of the IUT , which correspond to its own inputs, are conformant w.r.t. S.

If this canonical tester is run in parallel with the non-conformant program of
Fig 3, and if the conformant program chooses to emit !x and then !y, the tester

will perform the execution m0
τ
−→ f0

?x
−→ f1

τ
−→ g0 and will reach location g0,

where it will receive an unexpected ?y input and will abort.

Notice that not only the (canonical) tester, but also the example IUT accept
any input at an observation point. These are usual asumptions in the ioco theory.
For the tester, the reason is that it should check any output from the IUT for
conformance. For the IUT , this allows to prevent deadlocks.

Test purpose. For large specifications, the canonical tester is too general. It tests
the IUT in a completely random way. One is often more interested in guiding
the execution of the IUT so as to realize a specific scenario that may reveal an
error, and to stop the test execution successfully when the scenario has been
completed without conformance error.

In this context, a test purpose is a (set of) scenario one wants to observe
during a conformant test execution. The test purpose depicted as an automaton
on Fig. 2 specifies that one is interested in detecting conformance errors occur-
ing along the traces in TracesE(TP) = xb∗ayc. The symbol] means “all other
elements in the alphabet” and the double circle denotes the final state E. This
test purpose indicates that we want to test the case where the IUT emits !x at
control point f0 and performs one recursive call of G from G.

The aim of test selection is to transform the canonical tester so that it is
more likely to produce the execution trace xb∗ayc until completion when exe-
cuted in parallel with the IUT . If a conformance error occurs, the tester aborts
immediately with a fail verdict. For instance, the first time the tester enters
in function G(), it should first emit a !b, because a matching ?y should be later
received to realize the scenario. Moreover, the second time it enters (recursively)
in function G(), it should emit an !a, because only one ?y message should be
observed before !c.

On the other hand, if an IUT starts its execution by emitting one !z (which
is conformant to S), the scenario cannot be completed. The tester should detect
such a case and abort gracefully with an inconclusive verdict.

Selected test case. Fig. 8 depicts the test case we obtain with the method we
will develop in the paper. Compared to the canonical tester of Fig. 5, we have
first inserted at each observation point a call to the function TP() (after having
checked the absence of conformance error at this point). The function TP()

defined on Fig. 6 takes as input the last message exchanged and implements the
automaton of Fig. 2(b). If the final state is reached, it emits the pass verdict.

There are two other modifications to the canonical tester. At control point
f0, when a ?z is received, the inconclusive verdict is emitted. Last, at control
point g0, the condition for emitting a message has been enforced: !a is emitted
iff the variable t is true. Indeed, t allows to distinguish if G() is called for the
first time from f1, in which case t is false, or if it is called recursively from g2,
in which case t is true. Hence, the knowledge of the value of t allows the test
case to realize exactly the scenario defined by the test purpose (once ?x has been
received from the IUT).

The next sections describe the theoretical fundations of this test selection
scheme sketched on the running example. After having presented the testing
theory on LTS models in Sect. 3, we adapt it on recursive specifications in Sect 4.

enum pc_t { A,B,C,D,E,S };

enum pc_t pc = A;
void TP(enum msg_t p)

{
if (pc == A && p == x) pc = B;

elsif (pc == B && p == b) pc = B;
elsif (pc == B && p == a) pc = C;
elsif (pc == C && p == y) pc = D;

elsif (pc == D && p == c){
pc = E;

verdict = pass;
abort();

}
else pc = S;

}

Fig. 6. Test Purpose corresp. to Fig. 2.(b)

// Type and global variables Declarations

// ...
void main(){
m0: f();

m1:
}

void f()

{
f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }
TP(p);

};

f1: g();
f2: emit(p) when (p == c) {

f2e: TP(p)
}

[]
receive(p) when true

f2r: { verdict = fail; abort(); };

f3:
}

void g()

{
g0: emit(p) when (p == a || p == b){

g0e: TP(p);
if (p == a) goto g4;

}
[]
receive(p) when true

g0r: { verdict = fail; abort(); };
g1: t = true;

g2: g();
g3: receive(p) when true {

g3r: if (p != y)
{ verdict = fail; abort(); }

TP(p);

}
g4:

}

Fig. 7. Product

// Type and global variables Declarations

// ...
void main(){

m0: f();

m1:
}

void f()

{
f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }
TP(p);

if (p == z)
{ verdict = inconc; abort(); }

};

f1: g();
f2: emit(p) when (p == c) {

f2e: TP(p)
}

[]
receive(p) when true

f2r: { verdict = fail; abort(); };

f3:
}

void g()

{
g0: emit(p) when ((p == a && t == true)

|| (p == b && t == false)){

g0e: TP(p);
if (p == a) goto g4;

}
[]
receive(p) when true

g0r: { verdict = fail; abort(); };
g1: t = true;

g2: g();
g3: receive(p) when true {

g3r: if (p != y)
{ verdict = fail; abort(); }

TP(p);

}
g4:

}

Fig. 8. Test Case after selection

3 Testing Theory

The testing theory we consider is based on the notions of specification, implemen-
tation, and conformance relation between them [2] and on the model of Labelled
Transition Systems (LTS). An LTS is defined by a tuple M = (Q, Q0, Λ,→)
where Q is a set of states, Q0 is the set of initial states, Λ = Λv ∪ {τ} is an
alphabet of visible (Λv) and internal ({τ}) actions and →⊆ Q × Λ × Q is a set

of labelled transitions. The notation p
a
→ q stands for (p, a, q) ∈→, and p

a
→

for ∃q : p
a
→ q. An execution is a sequence q0

a0→ q1
a1→ . . . qn+1 with q0 ∈ Q0.

Traces(M) ⊆ Λ∗
v denotes the projection of the set of executions of M onto visible

actions. For a subset X ⊆ Q of states, TracesX(M) denotes the projection of
the set of executions of M ending in a state q′ ∈ X onto visible actions. It is
also named the set of traces accepted by X . The set of prefixes (resp. strict pre-
fixes) of a set of traces Y is denoted by pref ≤(Y) (resp. pref <(Y)). M is called

deterministic if Q0 has a single element q0, if p
α
→ q ∧ p

α
→ q′ =⇒ q = q′ and

if p
τ
→ q =⇒ ¬(∃α ∈ Λv : p

α
→). Note that this definition is not the standard

definition of a deterministic LTS because transitions with internal actions are
possible. M is complete for A ⊆ Λ, if ∀a ∈ A, ∀p ∈ Q, p

a
→.

The specification is a deterministic LTS S = (QS , QS
0 , Λ,→S), and the Imple-

mentation Under Test (IUT) is assumed to be an LTS IUT = (QIUT , QIUT
0 , Λ,→IUT

) which is unknown except for its alphabet, which is assumed to be the same as
that of the specification. Moreover, it is assumed that the IUT is input-complete,
which reflects the hypothesis that the IUT cannot refuse an input from its envi-
ronment.

In this context, a test case for the specification S is a deterministic LTS
TC = (QTC , QTC

0 , Λ,→TC) which is able to interact with an implementation
and to emit verdicts:

– its alphabet is the mirror of that of S (ΛTC
? = ΛS

! and ΛTC
! = ΛS

?)
– it is input-complete (outputs of IUT are not refused) except in verdict states;
– it is equipped with 3 disjoint subsets of sink, verdict states Pass, Fail, Inconc ⊆

QTC . Intuitively, Fail means rejection, Pass that some targetted behavior
has been realized (this will be clarified later), and Inconc that a targetted
behavior cannot be realized any more.

The conformance relation defines which implementations are considered cor-
rect w.r.t. the specification. We will consider the following conformance relation:

Definition 1 (Conformance relation). Let S = (QS , QS
0 , Λ,→S) and IUT =

(QIUT , QIUT
0 , Λ,→IUT) be two LTS with same alphabet. A trace σ of IUT con-

forms to S, denoted by σ conf S, iff

pref ≤(σ) ∩ [Traces(S)·Λ! \ Traces(S)] = ∅

IUT conforms to S, denoted by IUT conf S, iff all its traces are conformant:
Traces(IUT) ∩ [Traces(S)·Λ! \ Traces(S)] = ∅.

Intuitively, IUT conf S if after each trace of S, IUT may emit only outputs that
S can emit as well, while its inputs are unconstrained. Except for the notion of
quiescence (absence of outputs), conf corresponds to the ioco relation of [2].

The set of traces Traces(S)·Λ!\Traces(S) is the set of minimal non-conformant
traces. It is characterized by a test case called the canonical tester, which is
obtained from the specification S by inversion of inputs and outputs, followed
by an input-completion, where each unspecified input leads to Fail.

Definition 2 (Canonical Tester). Let S = (QS , QS
0 , Λ,→S) be the determin-

istic LTS of the specification. The canonical tester of S for conf is the deter-
ministic LTS Can(S) = (QS ∪ Fail, QS

0 , ΛCan,→Can) such that

– Fail = {qFail}, with qFail 6∈ QS a new state;
– its alphabet is the mirror of that of S (ΛCan

? = ΛS
! and ΛCan

! = ΛS
?)

– →Can is defined by the rules:

q, q′ ∈ QS q
α
−→S q′

q
α
−→Can q′

q∈QS α ∈ ΛS
! = ΛCan

? ¬(q
α
−→S)

q
α
−→Can qFail

We have Traces(Can(S)) = pref ≤(Traces(S)·Λ!)
TracesFail(Can(S)) = Traces(S)·Λ! \ Traces(S)

Can(S) is already a test case. However, it is typically too large and is not
focused on any part of the system. It is more interesting in practice to test what
happens in the course of a given scenario (or set thereof), and if no error has
been detected, to end the test successfully when the scenario is completed.

Definition 3 (Test Purpose). A test purpose for a specification S is a deter-
ministic LTS TP = (QTP , QTP

0 , Λ,→TP) equipped with a subset Accept ⊆ QTP

of accepting sink states. TP is complete except in these Accept states.

The completeness assumption allows not to constrain S in the product S × TP
(unless the execution trace is accepted).

The test case should now not only detect conformance errors, but also try to
satisfy the test purpose. For this, it has to take into account output choices of
the specification (observable non-determinism) and to detect incorrect outputs
of the IUT w.r.t. the test purpose.

The verdicts and their meanings are summarised as follows. The Fail verdict
is emitted if the implementation does not conform to the specification, so iff TC
observes an unspecified output after a trace of S. Pass means that the behavior
wanted by the test purpose has been realized by the implementation. The verdict
Pass is thus emitted iff TC observes a trace of S accepted by TP . The Fail and
Pass verdicts are uniquely defined, so that they are emitted appropriately and
as soon as possible, whereas the Inconc verdict is not uniquely defined. Indeed,
Inconc, which means that the behavior wanted by TP cannot be realized any
more, may be emitted only if the trace observed by TC belongs to S (it is
conformant) but is refused by TP . The test execution can thus be interrupted,
as Pass cannot be emitted any more. We have adopted this definition because

checking whether a trace is refused is not always possible, either because it is
undecidable, for instance with infinite-state symbolic model [4], or because of
partial observation issues as discussed in Sect. 5. We refer to [4] for how optimal
test cases are defined.

Test selection for LTS. We briefly recall how to generate an optimal test case
from a specification S and a test purpose TP given as finite LTS [3]. One first
builds the canonical tester Can(S) using Def. 2. One then builds the product P =
Can(S) × TP combining the information about conformance given by Can(S)
and the information about the wanted scenario given by TP . One defines the
set Pass of verdict states as Pass = QS ×AcceptTP . Adding the Inconc verdict is
done by observing that

pref ≤(TracesPass(P)) = Tracescoreach(Pass)(P)

where coreach(Pass) = {q ∈ QP | ∃q′ ∈ Pass : q →∗ q′} denotes the set of states
that may reach a state in Pass. A valid test case TC is obtained from P by
adding a new state Inconc and by modifying →P as follows:

q
α
−→P q′ q′ ∈ coreach(Pass)

q
α
−→TC q′

q
α
−→P q′ α ∈ Λ

Can(S)
? q′ 6∈ coreach(Pass)

q
α
−→TC Inconc

The first rule keeps only transitions maintaining the execution in coreach(Pass).
In particular, it selects the appropriate outputs w.r.t. TP that should be sent
to the IUT . As TC should remain input-complete, the second rule redirects the
input transitions not selected by the first rule to the Inconc verdict, which is
thus emitted as soon as the execution leaves the prefixes of accepted traces by a
conformant input.

4 Modeling Recursive Specifications and Test Purposes

The previous section recalled our framework for model-based testing, based on
the low-level semantics model of LTS. We already extended these principles and
designed sound algorithms for infinite-state symbolic transition systems in [4].
Our aim here is to do the same for recursive specifications which can be compiled
into (input/output) pushdown automata, PDS. Such specifications manipulate
finite data but may have an infinite control due to the recursion, hence they are
more expressive than finite LTS. In terms of traces, which is a relevant notion for
the conformance relation, they generate context-free languages instead of regular
languages. Moreover, even if there are cases where the recursion is bounded and
the specification may be flattened into a LTS (by inlining), such a process may
result in a huge LTS.

Push-Down Systems. A labelled Push-Down System (PDS) is defined by a tuple
P = (G, Γ, Λ, c0, ↪→) where G is a finite set of locations, Γ is a finite stack
alphabet, c0 ∈ G × Γ ∗ is the inital configuration, Λ = Λv ∪ {τ} is a finite set of
visible (Λv) and internal ({τ}) actions, and ↪→⊆ (G×Γ)×Λ×(G×Γ ∗) is a finite

Expressions expr

Atomic Instructions atom ::= var = expr | if (expr) goto label

Interproc. Instructions callret ::= proc() | return

Communications com ::= emit(p) when expr {block}
| receive(p) when expr {block}
| com [] com

Instructions instr ::= atom | callret | com

Sequences block ::= ε | instr ; block

Fig. 9. Language Syntax

Control point k ∈ K

Global environment g ∈ GEnv = GVar → Val

Local environment l ∈ LEnv = LVar → Val

Configuration (g, σ) ∈ C = GEnv × (K × LEnv)+

Fig. 10. Language Semantic domains

set of labelled transitions. Such a labelled PDS P generates an infinite LTS M =
(QM , QM

0 , Λ,→M) where QM = G×Γ ∗, QM
0 = {c0}, and →is defined by the rule:

(g, γ)
α
↪→ (g, γ′) ∧ ω ∈ Γ ∗ =⇒ (g, ω · γ)

α
→ (g, ω · γ′)

The notions of deterministic and complete PDS are defined in terms of LTS.

A small programming language. The syntax and semantics of the small language
we used in the example of Sect. 2 is inspired by Bebop [5], an input language
of the Moped tool, which is a model-checker for linear-time temporal logic on
pushdown systems [6].

Bebop uses a classical imperative language syntax. We assume for the sake
of simplicity that control structures have been transformed into test and branch
intructions, and that parameter passing and returns for procedures are emulated
by using dedicated global variables. This results in the syntax given in Fig. 9.

The features added to Bebop are the communication instructions, and the
non deterministic choice operator between them. Emission and reception instruc-
tions use a special global variable p which contains the message, and which may
be used only in the condition and in the block associated to these instructions.
We assume that emissions and receptions are not nested. The operator [] is the
non-deterministic choice operator. It may be used only for communication in-
structions. The reason is that while we allow non-determinism, it should remain
observable, so that to any trace of the program corresponds an unique execution.

Its semantics as a Push-Down System (PDS). We assume that the special vari-
able p takes its values in the alphabet Λ. The semantics of this language is
defined using the domains defined on Fig. 10. It is given as a labelled PDS
P = (G, Γ, c0, Λ, ↪→) where G = GEnv , Γ = K × LEnv , c0 = (g0, (k0, l0)) is
the initial configuration, and ↪→ is defined by the following inference rules, using
the control flow graph associated to the program. We just sketch the standard
inference rules and we refer to [6] for more details, as we focus more precisely on
the semantics of the emission and reception instructions.

– An atomic instruction generates a rule of the form
k

atom
−−−→ k′

(g, (k, l))
τ

↪→ (g′, (k′, l′))
with a condition on (g, l) in the case of a test and branch instruction.

– A procedure call generates a rule
k

proc()
−−−−→ k′

(g, (k, l))
τ

↪→ (g, (k′, l) · (sproc, l
′
0))

where

sproc is the start point of the caller. Such a transition means that a new
activation record is pushed onto the stack, with an initial local environment
l′0, which reflects the assumption that the variables are uninitialized. A pro-

cedure return generates a rule
k

proc()
−−−−→ k′ eproc

return
−−−→ . . .

(g, (k′, l′) · (eproc, l))
τ
↪→ (g, (k′, l′))

where the

activation record is popped and the control goes back to the caller.
– An emission instruction generates a rule

k
emit(p) when expr {k′:block}
−−−−−−−−−−−−−−−−−−→ k′′ ∀v 6= p : g′(v) = g(v)

(g, (k, l))
p

↪→ (g′, (k′, l)) if Jexpr K(g′, l) = true

(g, (k, l))
τ
↪→ (g′, (k′′, l)) if Jexpr K(g′, l) = false

One first forgets the previous value of p when introducing g′, in order to make
it uninitialized, as its real scope is the condition and the block associated to
the emission. Then, if the current environment (g, l) satisfies the condition, p

is emitted and the control passes to the beginning of the block k′. Otherwise,
the control passes to k′′. Notice that an non-deterministic choice is performed
here: the instruction may emit any message p which satisfies the condition.

The semantics of the reception is identical to the emission. Emissions and
receptions need to be distinguished only w.r.t. the conformance relation.

All instructions generate internal transitions labelled by τ , except emission and
reception instructions. The observation points of a program are defined as the
control points at the beginning of communication instructions. They are the only
control points from which a message may be exchanged. Such observation points
may be separated by (sequences of) ordinary control points linked by internal
τ -transitions. Notice that we do not use the term“observation point” in the sense
given to it in the testing community, when refering to the testing architecture.

Interprocedural specification and its canonical tester. An interprocedural speci-
fication S (c.f. Fig. 4) is a program defined with the language of Fig. 9, which is
deterministic, in the sense that the allowed non-determinism should be observ-
able, so that to a trace corresponds a unique possible execution ending in an
observation point. A choice can still exist between two emissions and/or recep-
tions, but we cannot have a choice between two internal instructions (generating
τ -transitions).

This deterministic assumption allows to build easily the canonical tester of S,
which is an executable, hence deterministic observer of Traces(S)·ΛS

? \Traces(S).
The canonical tester Can(S) is obtained from S using the following program
transformation at each observation point:

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

emit(p) when expr
e
{

block e

}
[]

receive(p) when expr
r
{block r}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true {
if(not expr

e
){verdict = fail ; abort() }

block e

}
[]

emit(p) when expr
r
{block r}

This operation mimics the corresponding operation defined for LTS in Sect. 3.
Here, it could be done on the PDS generated by the program, but we prefer to
proceed directly by program transformations.

Test purpose. When performing test generations from LTS, the test purpose is
an LTS that is taken into account by computing the product Can(S)×TP (c.f.
Sect. 3). Now, Can(S) is a PDS. It is known that the product of two PDS is not
a PDS, hence we cannot specify test purposes using PDS if we do not want to
manipulate more expressive computational models. However, as the product of a
PDS with an LTS is still a PDS, we can consider test purposes defined by finite
LTS. We can compute the synchronous product of Can(S) with TP to add the
Pass verdict to the canonical tester.

However, our goal is to proceed by program transformations. This excludes
to work directly on the underlying LTS and PDS models. The solution consists:

– in implementing the LTS TP (which should satisfy Def. 3) by a procedure
TP(p) that takes as input the last exchanged message and implements the
LTS, c.f. Figs. 2(b) and 6;

– and in instrumenting Can(S) by inserting calls to TP at observation points:
˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true {
if(not expr

r
)

{ verdict = fail; abort() }
block r

}
[]
emit(p) when expr

e
{block e}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if(not expr

r
)

{ verdict = fail; abort() }
TP(p); block r

}
[]

emit(p) when expr
e
{TP(p); block e}

The call to TP is performed after having checked the conformance, because ac-
cepted traces are conformant. The procedure TP is in charge of emitting the Pass

verdict. This transformed canonical tester will be denoted by P . Fig. 7 depicts
the obtained program for our running example.

5 Test Selection on the Recursive Canonical Tester

Test selection is based on the same principle as for LTS, c.f. Sect. 3. In particu-
lar we will exploit the identity pref ≤(TracesPass(P)) = Tracescoreach(Pass)(P) to
recognize (conformant) traces that may be accepted in the future by the test
purpose. However, the inability of test cases to inspect their own stack prevents
it from using fully the coreachability information. We analyse this partial obser-
vation problem in this section.

Location Coreachable states
from 〈(−, pass, E), ω〉

m0 〈(ff,−, A), ω.m0〉
〈(tt,−, A), ω.m0〉

m1 〈(−, pass, E), ω.m1〉
f0 〈(ff,−, A), ω.f0〉

〈(tt,−, A), ω.f0〉
f0r 〈(ff,−, A, x), ω.f0r〉

〈(tt,−, A, x), ω.f0r〉
f1 〈(ff,−, B), ω.f1〉

〈(tt,−, B), ω.f1〉
f2 〈(ff,−, D), ω.f2〉

〈(tt,−, D), ω.f2〉
f2e 〈(ff,−, D, c), ω.f2e〉

〈(tt,−, D, c), ω.f2e〉
f2r ⊥
f3 〈(−, pass, E), ω.f3〉
g0 〈(ff,−, B), ω.(f1g0 + f1g2g0〉

〈(tt,−, B), ω.(f1g0 + f1g2g0〉
g0e 〈(ff,−, B, a), ω.f1g2g0e〉

〈(ff,−, B, b), ω.f1g0e〉
〈(tt,−, B, a), ω.f1g2g0e〉
〈(tt,−, B, b), ω.f1g0e〉

g0r ⊥
g1 〈(ff,−, B), ω.f1g1〉

〈(tt,−, B), ω.f1g1〉
g2 〈(ff,−, B), ω.f1g2〉

〈(tt,−, B), ω.f1g2〉
g3 〈(ff,−, C), ω.f1g3〉

〈(tt,−, C), ω.f1g3〉
g3r 〈(ff,−, C, y), ω.f1g3r〉

〈(tt,−, C, y), ω.f1g3r〉
g4 〈(ff,−, C), ω.f1g2g4〉

〈(ff,−, D), ω.f1g4〉
〈(tt,−, C), ω.f1g2g4〉
〈(tt,−, D), ω.f1g4〉

(a) Coreachable states

Location Reachable states
from 〈(ff, none, A), m0〉

f0r 〈(ff, none, A, x), m1f0r〉
〈(ff, none, A, z), m1f0r〉

f2e 〈(ff, none, C, c), m1f2e〉
〈(tt, none, D, c), m1f2e〉
〈(tt, none, S, c), m1f2e〉

f2r 〈(ff, none, C,−), m1f2r〉
〈(tt, none, D,−), m1f2r〉
〈(tt, none, S,−), m1f2r〉

g0e 〈(ff, none, B, a), m1f2g0e〉
〈(ff, none, B, b), m1f2g0e〉

〈(tt, none, B, a), m1f2g
+

3
g0e〉

〈(tt, none, B, b), m1f2g
+

3
g0e〉

g0r 〈(ff, none, B,−), m1f2g0r〉

〈(tt, none, B,−), m1f2g
+

3
g0r〉

g3r 〈(tt, none, C, y), m1f2g
+

3r
〉

〈(tt, none, D, y), m1f2g
+

3r
〉

〈(tt, none, S, y), m1f2g
+

3r
〉

(b) Reachable states in obser-
vation points

Location Intersection reachable
and coreachable states

f0r 〈(ff, none, A, x,), m1f0r〉
f2e 〈(ff, none, C, c), m1f2e〉
f2r ⊥
g0e 〈(ff, none, B, a), m1f2g3g0e〉

〈(tt, none, B, b), m1f2g0e〉
g0r ⊥
g3r 〈(tt, none, C, y), m1f2g3r〉

(c) Intersection between
reachable and coreachable
states

Fig. 11. Analysis of the program of Fig. 7. The configurations are composed of the
values of global variables (t, verdict , pc, p) and the stack (− means any value, and
ω = K∗). As p is “active” only at observation points, its value is not precised elsewhere.

Coreachability Analysis. In the PDS generated by the semantics of our pro-
gramming language, a configuration is a pair (g, σ) ∈ C of a global environ-
ment and a call-stack. The set of configurations corresponding to the Pass ver-
dict is Pass = {(g, σ) | g(verdict) = Pass)}. The wanted coreachable set is
coreach = {c ∈ C | ∃c′ ∈ Pass : c →∗ c′}.

We will exploit nice theoretical properties of PDS for computing coreach .
These properties justify the choice of PDS as the semantic model of our language,
and the restriction to finite-state variables. Given a PDS P = (G, Γ, c0, Λ, ↪→),
a set of configurations X ∈ ℘(G × Γ ∗) = G → ℘(Γ ∗) is regular if it associates
to each global state a regular language. The first result is that the coreachabil-
ity (resp. reachability) set of a PDS is regular if the final (resp. initial) set of
configurations is regular [7]. The second result is that in this case, the coreach-

ability (resp. reachability) set is computable with polynomial complexity [8, 9].
The Moped tool implements efficient symbolic algorithms to compute these sets,
using a model of symbolic PDS where the transition relation ↪→ is represented
with BDDs [6].

As the set Pass is regular, we can provide to Moped the PDS generated
by our recursive program and the set Pass, and we obtain the regular set of
coreachable configurations. Coming back to our running example, the table of
Fig. 11(a) indicates, for every location, the configurations from which we can
reach the final configuration 〈(−, pass, E), ω〉. As there are no local variables in
the example, the stacks contain only control points.

The problem of partial observation. The selection consists in adding tests in the
program P , using coreachability information, for selecting the outputs to emit,
and for detecting the inputs which make P leave the set of accepted traces.
However, in an usual imperative language like ours, a program can only ob-
serve the top of the stack, whereas deciding whether the current configuration
is coreachable or not may require the inspection of the full stack.

Let us define the observation function α : C → GEnv × K × LEnv
(g, ω · (k, l)) 7→ (g, k, l)

extended to sets, and γ = α−1 the corresponding inverse function. (α, γ) forms
a Galois connection. At some location k of the program, given a set of config-
urations X , and X(c) = {(c ∈ X | c = (g, ω · (k, l))} its projection on location
k, the program can only decide if the current valuation of variables (g, l) is in-
cluded in α(X(c)). This means that in term of configurations, one can only test
inclusionship in γ ◦ α(X) ⊇ X . In particular one may be in a case with

γ ◦ α(coreach(k)) ∩ γ ◦ α(coreach(k)) 6= ∅ (1)

where one cannot decide, using only the observable part of the configuration,
whether the configuration is coreachable or not. For instance, in Fig. 11(a), in
location g0e, α(coreach(g0e)) = (p ∈ {a, b} ∧ pc = B) and α(coreach(g0e)) = tt.

Selection rules. Because of the partial obervation phenomenon, we have to be
conservative in the selection. Let cond co(k)(g, l) be the logical characterization
of α(coreach(k)). We transform the program P as follows:

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if (not expr

r
)

{ verdict = fail; abort() }
kr :

TP(p); block r

}
[]

emit(p) when expr
e

{ke : TP(p); block e}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if (not expr

r
)

{ verdict = fail ; abort() }
kr : if not (cond co(kr))

{ verdict = inconc; abort() }
TP(p); blockr

}
[]

emit(p) when expr
e
andcond co(ke)

{ke : TP(p); block r}

For receptions, at location kr, after having checked the conformance, ¬cond co(k)

is a sufficient condition to leave the prefixes of accepted traces (γ(¬cond co(k)) ⊆

coreach(k)). So if it is satisfied we emit Inconc. For emissions, cond co(k) is a neces-
sary condition to stay in prefixes of accepted traces (γ(cond co(k)) ⊇ coreach(k)).

The obtained program is a sound test case. There is a strong similarity be-
tween this test selection algorithm and the test selection algorithm for symbolic
infinite-state transition systems defined in [4]. Here partial observation may pre-
vent us to perform an optimal selection. In [4], it is the impossibility to compute
the exact coreachability set, and the need to resort to an overapproximation.

Improving selection with reachability information. One can improve the selection
algorithm using reachability information. Let reach denote the set of reachable
configurations of the program P . At a point k, we can exploit the knowledge that
the current configuration is anyway included in reach(k), and testing the inclu-
sion in γ◦α(reach(k)∩coreach(k)) instead of γ◦α(coreach(k)).3 The problematic
case identified by Eqn (1) becomes

γ ◦ α(reach(k) ∩ coreach(k)) ∩ γ ◦ α(reach(k) ∩ coreach(k)) 6= ∅ (2)

It is clear that Eqn. (2) implies Eqn. (1) but that the converse if false.
Coming back to our example, Fig. 11(b) gives the reachability set of P pro-

jected on observation points, and Fig. 11(c) the intersection reach(k)∩coreach(k)
for these points. If cond co(k)(g, l) denotes now a formula characterizing α(reach(k)∩
coreach(k)), we now have cond co(g0a) = (pc = B)∧(t∧p = b∨¬t∧p = a) instead
of just (pc = B). One can check that Eqn. (2) is not true for k = g0e, thus the
selection is optimal at this point. Fig. 8 depicts the test case obtained by this
improved selection algorithm. It should be noted that the presence of the vari-
able t helps to perform an accurate selection at location g0, because it allows
to distinguish whether G() has been called from f1 or from g2. If we remove
this variable, which does not change the semantics of S w.r.t. the conformance
relation, one could not select optimally the output a or b to send to the IUT.

6 Concluding Remarks

The selection algorithm of Sect. 5 is currently under implementation by the ex-
tension of the Moped tool. Moped acts as a model-checker returning a Boolean
answer, possibly with a counter-example. For our application, we need to get the
sets of configurations computed by Moped, to intersect reachability and core-
achability sets, to project this intersection on the visible part, and to convert
the result in terms of a programming language expression.

It is interesting to note the similarity of the two combinations: partial ob-
servation and exact analysis w.r.t. full observation and approximated analysis.
In case of partial observation, the observation function α we introduced acts
exactly as an abstraction (approximation) function. This means that one could
apply our method to general recursive programs, on which the analysis would be
in general approximated. The non-optimality of the selection would then be a
consequence of the combination of partial observation and inexact analysis. One
gets the diagram of Fig. 1.
3 As reachability and coreachability sets are regular, so is their intersection.

Alternative methods. Our selection method described in Sect. 5 is based on (i) an
exact analysis computing full configurations (instead of just visible parts of con-
figurations), and (ii) on pure program transformations. These two choices could
be revised. Concerning (i), one could use a less precise, classical interprocedural
analysis method, which could still be exact for the observable part of the stack
(for instance using the Bebop tool [5]). However it would lead to a less precise
selection scheme. In particular, intersecting the coreachabe set with reachable set
would filter out less values. Concerning (ii), one could instrument the program
so as to get more knowledge about the invisible part of the configuration. For
instance, one could add a data-structure maintaining a stack of procedure return
points, and using it when testing if one is still in a coreachable configuration.
Although the resulting test case could not be any more transformed into a PDS,
the analysis would still be performed on the same intermediate program P as in
Sect. 5. Test case execution would be however slower, as testing for coreachability
would involve more complex datatypes.

References

1. ISO/IEC 9646: Conformance Testing Methodology and Framework (1992)
2. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.

Software—Concepts and Tools 17(3) (1996)
3. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Int. Journal on Software

Tools for Technology Transfer 6 (2004)
4. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on

approximate analysis. In: Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’05. Volume 3440 of LNCS. (2005)

5. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In:
Workshop SPIN’00. Volume 1885 of LNCS. (2000)

6. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Computer Aided Verification, CAV’01. Volume 2102 of LNCS. (2001)

7. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer
Science 106 (1992)

8. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Electronic Notes on Theoretical Computer Science 9 (1997)

9. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Int. Conf. on Concurrency Theory, CONCUR’97.
Volume 1243 of LNCS. (1997)

