Automation of Avionic Systems Testing *

David Cebrian, Valentin Valero and Fernando Cuartero

Albacete Computer Science Research Institute
University of Castilla-La Mancha, Avda. Espana s/n, Albacete (Spain)
http://www.dsi.uclm.es

Abstract. In this paper we present an automatic testing process to
validate Avionic Systems. To do that, we have developed a tool that in-
terprets scripts written in Automated Test Language and translate them
to user codes written in C language. To carry out this work, the syntax of
scripts has been defined by a context free grammar. This testing process
is based on the execution of a pre-defined set of test cases. Currently,
these test sets are obtained from Test Description Document and they
are introduced in the system in C code manually. Therefore, automation
of this process would reduce the time used for the testing, as a great
quantity of tests are realized and a great quantity of errors are made
when tests are made by hand.

Key words: Testing, Avionics systems, Real time systems, grammar
testing

1 Introduction

In the development of Avionic Systems, testing and validation, have become a
very important part into the software development process, due to the critical
real environment where they are going to work. For this reason, testing is usually
a very time consuming task. Test automation facilities are desirable in order to
reduce the time required for this task.

Actually, for the development of Avionic Systems Software, and in general
for the development of complex critical systems, the use of formal techniques
for evaluating the capabilities provided by the system and the expected ones
becomes very important. Depending on the system to be designed, very different
specification formalisms can be used [2,4,12, 15].

Real-time and embedded systems are nowadays so complex that to com-
pletely specify their behavior is a very difficult task. In particular, these systems
are very heterogeneous and include a big amount of components with different
natures (sensors, busses, displays, keyboards, storage devices, etc.).

For this reason, software testing, and mainly in this kind of systems, has
become a very important part into the software development process [15], as

* Supported by the Spanish government (cofinanced by FEDER founds) with the
project TIN2006-15578-C02-02, and the JCCLM regional project PAC06-0008-6995

systems are more and more complex and not detected failures can have fatal
consequences.

A failure in a software system can occur for several reasons, now we just
mention some of them:

— Specification deficiencies:
e Incomplete description of functionality.
e Inconsistent description of functionality.
— Design errors:
e Misinterpretation of specification.
e Erroneous control logic.
e Insufficient error handling.
— Coding errors:
e Non-initialized data.
e Usage of wrong variables.

In the development of Avionic systems, testing and validation is a decisive
job due to the critical real environment where they are going to work. The effects
of an avionic system malfunction would be catastrophic in many cases, so intense
efforts to avoid failures are always taken and heavy tests are performed on the
equipments. That is why testing is usually a very time consuming human effort
and so much time is dedicated to achieve the necessary qualification.

In the literature about avionic software testing, we can see in [14] a descrip-
tion of the main aspects that must be considered to test this kind of systems.
Another related work is [7], where model-based simulation testing is used to test
avionic software systems.

Then, the main purpose in these works is to be able to qualify before getting
the system totally operative in the Avionic systems in order to improve the
whole process. For that purpose, test automation facilities are desirable in order
to reduce the time required for qualification. Thus, in this paper our goal is to
describe a tool that we have developed in order to automate a part of the testing
process for Helicopter embedded software.

This tool interprets scripts written in Automated Test Language and trans-
lates them to user codes written in C. This Automated Test Language is closer
to human language and it permits to describe test cases easily. This test automa-
tion tool has been applied to helicopter software testing, in a real corporation
(Eurocopter company).

The particular language that we use has been defined by the software testing
group of the helicopter company, and it is specific for this purpose. There are,
of course, some standard notations that could be used to accomplish this task
too, like TTCN-3 [3].

To interpret these scripts written in Automated Test Language, a context-
free grammar has been used. Nowadays, grammars are omnipresent in software
development. They are used for the definition of syntax, exchange formats and
others. Several important kinds of software rely on grammars, e.g., compilers,

debuggers, profilers, slicing tools, pretty printers, (re-) documentation tools, lan-
guage reference manuals, browsers, software analysis tools, code preprocessing
tools, and software modification tools [6,9, 16].

A grammar defines a formal language and provides a device for generating
sentences. From a perspective of software engineering, a grammar may be con-
sidered as both a specification (defining a language) and a program (serving
as a parser generators input). In practice, ensuring that a grammar specifies
an intended language which can be considered as user requirements is indeed a
validation problem [5].

Testing is a standard way to validate specifications or programs (formal anal-
ysis is another). Grammar testing covers various technical and pragmatic aspects
such as coverage notions [10], test set generation [11], correctness and complete-
ness claims for grammars or parsers, and integration of testing and grammar
transformations.

In this paper we focus our attention on test set generation. Test data gener-
ation requires a variety of techniques [8], for example, to minimize test cases, to
accomplish negative test cases, etc.

The rest of the paper is structured as follows. In the next Section a description
of a system that accepts user codes generated by the tool will be described. Next,
the tool operation is shown. In Section 4 a case study is presented. Finally, our
conclusions and future work are presented.

2 System overview

In this section, we describe the specific system that we consider for our Avionic
System Testing environment. This System accepts user codes generated by the
implemented tool. The System is a combination of a real-time platform designed
to execute Avionic Equipment Tests and a Unix workstation which is used as a
user interface to drive the test.

The Avionic Equipment of the considered helicopter basically consists of a
core computer that integrates, among others, the functions concerning control
and display subsystem, navigation subsystem and communication subsystem.
These subsystems are connected via redundant busses to improve reliability.

Then, the Real-Time System platform contains the simulated equipment of
the helicopter and it is mainly composed by I/O cards for the different busses of
the helicopter (MILBUS 1553, ARINC 429, RS485, etc.) and an avionic database
containing specific information about the helicopter to be tested (Fig. 1).

And finally, the System Unix Workstation shall provide the capability to
control the operation of the tests and run the simulations. By means of it, we
can manage the simulations, specifying the concrete datas that are to be used,
we can also inject some types of errors to test the system reactions, we can
prepare the scripts for the tests, and of course, we can monitor the system, to
view and record the results of the simulation.

Another feature of interest of this system is that of scenarios, which allow
the testers to establish the context in which tests are to be made. Then, a

Relational

Database 2
Real Time Unix

Workstation Sa Workstation

Real Time
10

System

Fig. 1. Real-Time platform

scenario is a specific test directly linked to an upper context that defines the
set of objects which should be operational during the test like codes, data items
to be displayed in dashboards, data items to be modified in dashboards and
configuration of simulated equipment. The descriptions of the system and of the
scenarios are stored in the database.

2.1 Testing environment constraints

Due to the nature of the system environment there are important constraints
related to how user code should be generated. User code will be always executed
in the same way: there is a period indicated in the test information which serves
as a basis to cyclic execution of pieces of code. Each cycle will have the duration
of the specified period, and each piece of code is forced to be executed within
one cycle. Generated user code has to fit this rule and special care has to be
taken in controlling that no piece of code extends the cycle duration, since this
would cause a general system failure.

Thus user code must be divided according to this restriction, so a control
code is introduced to select the concrete piece of code that must be executed
on each cycle. The easiest solution to fulfil this as a set of switches, each one
including a persistent counter that will indicate in each cycle what case clause
to execute:

static int Counter = 1;

int TestRun ()
{

switch (Counter)

case 1
<execution piece 0>
Counter = 2;
break ;

case 2 :
<execution piece 1>
Counter = 3;

Thus, the modification of the value of the persistent counter will allow navi-
gating between different execution pieces.

This hard coding constraint makes the most challenging task of the code
generator to establish a set of mechanisms that will allow translating a sequence
of instructions to an equivalent code made of a set of switch clauses connected
and controlled by auxiliary variables.

Then, once we have described the testing environment, let us see the format
that system user codes have (each test). They are defined by the following items:

— A name - (32 bytes length).

— A period - integer expressed in milliseconds.

— An Interface: a text file description describing the exchange of information
between the user code and the system.

— A specific main module which will be automatically called by the system
according to the period.

— Some user modules.

Furthermore, a test is composed of three hierarchical levels: procedures, tasks
and steps. This division obeys the grammar definition that we are considering,
in which each test is divided in this way. Then, each of these three levels may
be run in a kind of control loop for some specific set of values, which may be
defined directly in the test description or in a text file which can be modified
from an execution to another.

3 The tool

The system accepts C code to specify the tests. With the purpose of making eas-
ier the specification of these tests, a tool called Code Generator, has been built.
This tool accepts as input user scripts that make easier the tests specification.
The function of this software is to interpret these scripts written in Automated
Test Language and translate them to system user codes written in C.

These user scripts (written in Automated Test Language) are generated from
a document called, test description document. This document is written by ex-
pert testers and it is written in natural language. So to carry out these tests, they

Test
Description
Document

e
Test Scripts

Code SYSTEM

Generator =

Y, Syste User Code Iie

Fig. 2. Testing process

have to translate the test description document to Automated Test Language
(Fig. 2). This task is made manually but in the future the test description doc-
ument will be written in a high level language and this task will be automated.
An example of Automated Test Language is shown in Fig. 3.

The tool must read the scripts specified by the user and translate them into
C code. C functions will be created and grouped into different files in order to
increase modularity. The file structure will follow the scheme shown in Fig. 4:

Some execution levels are considered for system user code execution control.
Each level will call the level immediately below. In the example script 1000
(Fig. 3), the resulting user code will be executed in different nesting levels:

— Level 0: code in INIT, RUN (not nested switch) and END phase in Main
User Code file.

— Level 1: Example_Script 1000 related code: nested switch in RUN phase in
Main User Code file.

— Level 2: P1 and P2 related code. This is the code in ProcedureName_Run.cc
files.

— Level 3: T1 and T2 related code.This code is located in
ProcedureName_TaskName.cc files.

— Level 4: Step 1 and Step 1 related code (but not the nested code they
contain: IF/ THEN/ ELSE/ ENDIF). This code is also located in Proce-
dureName_TaskName.cc files.

— Level 5 and below: code inside IF and ELSE clauses. This code is located
in ProcedureName_TaskName.cc files.

Example_Script 1000
Procedure P1
Task T1
Step 1
GET Variable INSERT_BOTH
IF WAIT_VALUE VALUE_AVAILABLE TRUE O

THEN
ADDOUTPUT "IRS1 available"
ELSE
ADDOUTPUT "IRS1 not available"
ENDIF
Procedure P2
Task T2
Step 1

GET Variable INSERT_BOTH

Fig. 3. Example script 1000

= Main User Code file
Interface File Common files
v
Main header file

| | bd 1 1
[Im’t Phase User Code ﬁle] [Run Phase mercodeﬁfa] [End Phase User Code File]

| 1 1
[Procedure 1 User Code] [Procedure 2 User Code] [Procedure n User Code]
file file File

Fig. 4. Generated file structure

3.1 General strategies

This tool has been implemented in a platform independent way. This approach
allows the system to be compiled for several platforms with no changes in the
source code.

The formal syntax of the scripts has been defined by a non-ambiguous context-
free grammar, so each valid input will have only one possible derivation tree. The
complete grammar is omitted, because it is very large, it has 72 production rules,
and it is unimportant for our purposes.

The tool must read the scripts and translate them into C code. For this rea-
son, a LALR(1) interpreter has been built, which can deal with many context-free
grammars by using small parsing tables. The parsing process of these interpreters
is divided into several levels:

— Lexical level: This is the simplest and lowest level of the interpreter. In
this level the parser reads the input character by character and translates
these sets of characters into words.

— Syntactic Level: Once the input has been divided into tokens, the pro-
cessing is much easier. This level checks the correctness of a given input
according to the specified grammar. Then, once the words of the input have
been identified (which is done by the lexical level), this level just tests if
there is a derivation tree in the grammar, which leads to the given input.
As this level generates the derivation trees of the given grammar, it is very
important that this grammar has no ambiguity. Each given input will have,
if it has any, only one possible derivation tree.

— Semantic Level: A grammar must define all the correct sequences of the
language. But there are conditions which might be really difficult to repre-
sent in the definition of a language. To avoid this, grammars which define a
superset of the correct sequences accepted are used and some tests to check
that the accepted sequences fulfil these constraints are added. In this step
we check that some features (like the declaration of variables) are consis-
tent. These features have to be checked over the whole test. For this reason,
a structure capturing a logical representation of the scripts has been intro-
duced. Specifically, we have used ASTs (Abstract Syntax Trees). Figure 5
shows an example of AST, in this case that one associated with the Example
Script 1000 (Fig. 3). In this example, we can see how the defined tree has
a structure according to the level division in the scripts. These nodes which
keep the structure of the test (TestDescription, Procedure, Task, Step) could
be called structural trees. For each of the available instructions in the test
(If-then-else, GET, ADDOUTPUT) there is an appropriate tree too.

For the development of the project, lex and yacc tools have been used. Par-
ticularly, flex 2.5 implementation of lex and bison 2.1 implementation of yacc
have been chosen.

— Flex[13]: with this tool programs whose control flow is directed by instances
of regular expressions in the input stream can be written. It is well suited for

Level 1: TestDescription

Levelz. Procedure: P1 Pruc@
Level 3- Task: T1 Task: T2

" ,:I::; . > —
Level 4: Step:1) (Step: 2)
- — 2 e "

—

o =
= }h‘"\? . S

Instruction_List }{ Instruction_List

Condition \

Condition |
ontroller (_G_t\‘ 6
1] }
.__‘__,.f’

Fig. 5. AST associated with Example Script 1000

Level »>= 5:

editor-script type transformations and for segmenting input in preparation
for a parsing routine.

— Bison][1]: Yacc provides a general tool for imposing structure on the input
to a computer program. The yacc user must prepare a specification for the
syntax that the input must fulfil: this specification includes rules describing
the input structure (productions from our context free grammar), but also
code to be invoked when these rules are recognized (semantic actions).

4 Case study

We now use another example (Antenna_Selection) to describe the tool opera-
tion (Fig. 6). In practice, the scripts are obtained manually by using the test
description document. Notice that we do not need to know how these scripts
are obtained (which technique is used in particular to generate them), neither
to fully understand their mission because these tasks are carried out by testing
engineers of helicopter company.

Code Generator takes this script as input and translates it to system user
code. The system user code thus obtained consists of some files, the structure of
which is shown in Fig. 7.

The contents of these files are:

— Antenna_Selection.x: This is the interface file. It contains imports and
exports of variables from the database.

Antenna_Selection 200
PROCEDURE P1_Antena
TASK T1
STEP 0
SET External 5
GET Externall Internall
SET Externallc 6.2
ADDOUTPUT "HELLO"
STEP 1
GET External2 Internal2
FREEZE Proofl
UNFREEZE Proof2
FREEZE Proof3
STEP 2
GET External2 Internal2
ADDOUTPUT hey
INSERT_LABEL hello labell
REMOVE_LABEL hello labell
IF (6==6) THEN
INSERT_LABEL hello labell
ELSE
ADDOUTPUT hey
INFORMATION "proof"

ENDIF
TASK T2
STEP 0
GET External Internal
TASK T3
STEP 0O
GET Externall Internall
SLEEP 10
GET External2 Internal2
PROCEDURE P2_Antena
TASK T1
STEP 0
SLEEP 10
SLEEP 12
GET External3b Internal3b
SLEEP 15
GET External3c Internal3c
GET External3d Internal3d
PROCEDURE P3_Antena
TASK T1
STEP 0O
ADDOUTPUT "hello"

Fig. 6. Example script

[Antenna Seleccionx]

[CnrmnunFuncﬁuns.h]

[Antenna Seleccion.cc]

[Anmnm‘_Seleccﬁnn.h]

/

[Antenna_Selectiun_Init. cc]

\

[Antenna Selecction End.cc]

|

fPl Antena Fun.cc]

[P2_Antena_Run.cc]

[P3 Antena Run.cc]

—*P1 Antena Tl.cc

[P2 Antena Tl.cc |

P3 Antena Tl.cc

Pl Antena T2.cc
Pl Antena T3.cc

Fig. 7. Generated files

— CommonFunctions.h: This file contains a set of common functions used
by other files.

— Antenna_Selection.cc: This is the main file and controls the test operation.
Below, its source code is shown in Fig. 8:

#include Antenna_Selection.h"
case 1:
void CODE (unsigned long inCodeState) P2_Antena_Run();
{ if (Level==1)
switch(inCodeState) Step[Levell
{ =Step[Levell+1;
case CO_INIT: case 2:

Level = 1; P3_Antena_Run();
for(int i=0; i<4; i++) if (Level==1)
Step[i]=0; Step[Level]
Antenna_Selection_Init(); =Step[Level]+1;

AnaisEndOfPhase (); break;
break; }
case CO_RUN: break;
switch (Step[1]) case CO_END:
{ Antenna_Selection_End();
case O: fclose(Fout);
P1_Antena_Run(); AnaisEndOfPhase ();
if (Level==1) break;
Step[Level] }
=Step[Level]+1; }

Fig. 8. Antenna_Selection.cc

— Antenna_Selection_Init.cc: It contains the code for the inicialization of
the test.

— Antenna_Selection_End.cc: It contains the code for the conclusion of the
test.

— P1_Antena_Run.cc, P2_Antena Run.cc and P3_Antena_Run.cc: They
contain the related code with procedures P1, P2 and P3.

— P1_Antena_T1l.cc, P2_Antena_T1l.cc, P3_Antena_T1.cc,
P1_Antena_T2.cc, P1_Antena_T3.cc: These files contain the related code
with the diferent tasks.

These files are accepted by the test system as input and they are used to
drive the test. We can observe, in Fig. 8, that the generated code obeys the
constraints imposed by the testing environment as it is divided into some pieces
of code by means of a set of switchs. Each piece of code will require a time that
will not be greater than the cycle duration (this is controlled by the inCodeState
variable).

5 Conclusions and Future Work

In this paper, a first step for helicopter software automated testing has been
shown. We cannot provide real experimental results because the tests are car-
ried out by the helicopter company testing group, and we have no information
comparing the time required for the testing process when it was made manually
and currently, by using our tool.

As future work our intention is to extend the automation of testing to other
aspects of this process. The whole concept of Automated Test will allow gener-
ating a complete test set based on the test description document. It will concern
a complete environment including:

1. Automatic database frame import.
2. Automatic scenario definition.
3. Automatic code generation.

The principle is to define a high-level language with a friendly syntax which
will be used by test teams to describe their tests. A simple way may be to directly
use this high-level language as part of the test description document and to be
able to extract it automatically. The main advantage that we can obtain with
this automated testing is to save a lot of time in testing execution and humman
effort to achieve the necessary qualification.

For this purpose, some constraints must be fulfilled:

1. A friendly syntax and format easily generated from the specifications. This
description must be accessible to a test team guy even if he is not an expert
in programming languages.

2. Common format agreed by all test teams. The idea is to use a simple support
which may be provided by test guys using standard editors like: text editors,
Microsoft Office editors, etc.

3. Comprehensive language, not directly mapped on a specific software com-
piler. The idea is that test team guys must be able to describe a test proce-
dure, even if they are not experts in software programming language.

4. The test description language must cover at least all the functionalities ac-
tually covered by the specifics ones already existing.

Our intention for the immediate future is to increase the automation level
of testing environment, by including scenarios in the Code Generation tool, and
even it would be important to replace the Test Description Document by another
document which can be automatically interpreted by a tool.

Acknowledgement: We would like to thank to the anonymous referees for
their suggestions and corrections that have contributed to improve this paper
significantly.

References

1.
2.

o

10.

11.

12.

13.
14.

15.

16.

R. Stallman C. Donnelly. Bison. The YACC-compatible Parser Generator, 1995.
Ana R. Cavalli, Jean Philippe Favreau, and Marc Phalippou. Formal methods
for conformance testing: Results and perspectives. In Proceedings of the IFIP
TC6/WG6.1 Sizth International Workshop on Protocol Test systems VI, pages
3-17, Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Pub-
lishing Co.

C.Willcock. Introduction to TTCN-38, 2002.

Marc Constantijn Willem Geilen. Formal Techniques for Verification of Complex
Real-Time Systems. M.C.W. Geilen, 2002.

. Chao Liu Hu Li, Maozhong Jin and Zhongyi Gao. Test criteria for context-free

grammars. Computer Software and Applications Conference. COMPSAC 2004.
Proceedings of the 28th Annual International, pages 300-305, 2004.

Ralf Lammel Jan Kort and Chris Verhoef. The grammar deployment kit. Flectronic
Notes in Theoretical Computer Science, 65(3):7, 2002.

Gunnar Jonas Jan Peleska, Klemens Brumm and Tobias Hartmann. Advancement
in automated simulation and testing technology for safety-critical avionic systems.
Aerospace Testing 2006, 2006.

Paul Klint, Ralf Lammel, and Chris Verhoef. Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331-380, 2005.

Ralf Lammel. Grammar testing. Fundamental Approaches to Software Engineering
: 4th International Conference, FASE 2001 : Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001, Genova, Italy,
April 2-6, 2001, Proceedings, pages 201-216.

Ralf Lammel and Wolfran Schulte. Controllable combinatorial coverage in
grammar-based testing. TestCom 2006, pages 19-38, 2006.

Peter M. Maurer. Generating test data with enhanced context-free grammars.
IEEE Software, 7(4):50-55, 1990.

M. Nuiez, F.L. Pelayo, and 1. Rodriguez. A formal methodology to test complex
embedded systems: Application to interactive driving system. In IFIP TC10 Work-
ing Conf.: International Embedded Systems Symposium, IESS’05, pages 125-136.
Springer, 2005.

V. Paxson. Flex, version 2.5. A fast scanner generator., 1995.

Jan Peleska. Test automation for avionic systems and space technology (extended
abstract). 1996.

Jan Peleska. Formal methods for test automation - hard real-time testing of con-
trollers for the airbus aircraft family. Integrated Design and Process technology,
IDPT-2002, 2002.

Hui Wu. Grammar-driven generation of domain-specific language tools. In OOP-
SLA ’06: Companion to the 21st ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 772—773, New York, NY,
USA, 2006. ACM Press.

