
New approach for EFSM-based Passive Testing of Web
Services

Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani, Abdeslam En-
Nouaary, Roch Glitho

Concordia University
1455 de Maisonneuve West Bd, Montreal, Quebec

H3G 1M8, Canada
{abdel,m_serhan,ennouaar}@ece.concordia.ca,

{dssouli,glitho}@ciise.concordia.ca,

Abstract. Fault management, including fault detection and location, is an
important task in management of Web Services. Fault detection can be
performed through testing, which can be active or passive. Based on passive
observation of interactions between a Web Service and its client, a passive
tester tries to detect possible misbehaviors in requests and/or responses. Passive
observation is performed in two steps: passive homing and fault detection. In
FSM-based observers, the homing consists of state recognition. However, it
consists of state recognition and variables initialization in EFSM-based
observers. In this paper, we present a novel approach to speed up homing of
EFSM-based observers designed for observation of Web Services. Our
approach is based on combining observed events and backward walks in the
EFSM model to recognize states and appropriately initialize variables. We
present different algorithms and illustrate the procedure through an example
where faults would not be detected unless backward walks are considered.

Keywords: EFSM-based passive testing, Web Services testing.

1 Introduction

Web services, a rapidly emerging technology, offer a set of mechanisms for program-
to-program interactions over the Internet [1]. Managing Web Services is critical
because they are being actually used in a wide range of applications. Fault
management including fault detection is an important issue in this management.

Active testing and passive testing have been used for fault detection. An active
tester applies test cases to the Web Service Under Test (WSUT) and checks its
responses. In passive testing, messages received (requests) and sent (responses) by the
Web Service Under Observation (WSUO) are observed, and the correct functioning is
checked against the WSUT’s model. The observation is done by entities known as
observers.

Passive testing can complement active testing because it helps detecting faults that
have not been detected before deployment. Furthermore, in many cases, it is a better
alternative to active testing when the system is already deployed in its final operating

mailto:@ece.concordia.ca
mailto:@ciise.concordia.ca

environment. It enables fault detection without subjecting the system to test cases.
Test cases consume resources and may even imply taking the WSUT off-line.

Passive testing is conducted in two steps: passive homing (or state recognition) and
fault detection. During the first phase, the observer tries to figure out the state where
the WSUO is moving actually. This phase is necessary when the observation starts a
while after the interaction has started and previous traces are not available.

Few models have been used for model-based observers but most of the published
work on passive testing are on control part of systems and are based on Finite State
Machine (FSM) model ([2], [3], [4]). Although this model is appropriate for control
parts of WSUO, it does not support data flow. Extended FSM (EFSM) is more
appropriate for the handling of variables.

The homing procedure in an EFSM-based observer consists of recognizing the
actual state of the WSUO in addition to assigning appropriate values to different
variables. In the few published papers on EFSM-based passive testing, the homing
procedure is either ignored or it depends on the upcoming observed request/responses.
In the first case ([5], [6], [7]), the observer must get all the traces to be able to initiate
the fault detection process. In the second case ([8], [9]), the observer waits for
exchanged messages before moving forward in the homing procedure. Ignoring the
homing phase is a very restrictive assumption. Waiting for exchanged messages to
continue on the homing procedure may delay the fault detection. Moreover, if there is
a significant time gap between requests and responses, the observer spends most of its
time waiting.

In this paper, we present a novel approach for homing online EFSM-based
observers. Unlike offline observers, online observers analyze the observed traces in
real time and report faults as soon as they appear. The observer performs forward
walks whenever a new event (request or response) is observed. It performs backward
walks in the EFSM model of the WSUO in absence of observed events. The
information gathered from the backward and forward walks help speeding up the
homing procedure.

The remaining sections of this paper are organized as follows: in the next section,
we present related work for passive observation based on FSM and EFSM models.
Section 3 presents our new approach using backward and forward walks to speed up
the homing procedure and discusses different algorithms illustrated through an
example. Section 4 concludes the paper and gives an insight for future works.

2 Related work

Active testing refers to the process of applying a set of requests to the WSUT and
verifying its reactions. In this configuration [10], the tester has complete control over
the requests and uses selected test sequences to reveal possible faults in the WSUT.
Even though it is performed before deployment, active testing is not practical for
management once a Web Service is operating in its final environment. Under normal
conditions, the tester has no control over requests and/or responses. Passive
observation is a potential alternative in this case.

Fig. 1 shows an observer monitoring interactions between the WSUO and its client
during normal operations without disturbing it. Disturbing in this case means no
injection of requests messages for testing purposes. If the observed responses are
different from what's expected, the WSUO is then declared faulty.

Fig. 1. Passive Testing Architecture

Formal methods, especially Finite State Machine (FSM) have been used in passive
observation. Lee et al. in [2] propose algorithms for passive homing and fault
detection for FSM-based observers for network management. These algorithms are
extended in ([11]; [12]) to deal with fault location in networks and in [13] for avionics
telecommunication. They have also been applied to GSM-MAP protocol in [4] and to
TCP in [14]. Miller et al. extended the algorithms using Communicating FSM
(CFSM) in [3]. While these algorithms work fine, they provide no support for
dataflow which requires consideration of EFSM models.

EFSM is an extension of FSM by the following:
§ Interactions have certain parameters, which are typed.
§ The machine has a certain number of local variables, which are typed.
§ Each transition is associated with an enabling predicate. The predicate can be
any expression that evaluates to a Boolean (TRUE or FALSE). It depends on
parameters of the received input and/or current values of local variables.
§ Whenever a transition is fired, local variables can be updated accordingly and
parameters of the output are computed.

Formally, an EFSM is described by a tuple M = (S, S0, I, O, T, V, δ) ([10]) where:
§ S is a set of states,
§ S0 ∈ S is the initial state,
§ I is a finite set of inputs,
§ O is a finite set of outputs,
§ T is a finite set of transitions
§ V is a finite set of variables
§ δ: S x (I U O) à S is a transition relation

In an EFSM, each transition of T is represented as t: I|P|A|O where:
§ t: label/ID of the transition,
§ Ss: starting state of the transition,
§ I: the input that triggers the transition,
§ P: the enabling predicate (data conditions),
§ A: variables assignments
§ O: the output produced by the transition

§ Se: ending state of the transition
Using EFSM models allows the detection of input/output faults in addition to faults

related to data flow. The latter faults include calling of wrong function, wrong
specification of data type, wrong initial values of variables, and referencing undefined
or wrong variables.

In the literature on EFSM-based observers, the homing procedure is either ignored
or depends fully on observed messages. In the first case, the authors in ([5]; [15]; [7];
[16]) suppose that the observation will start sharply with the interaction between the
WSUO and its client. A passive observer based on this assumption will not be able to
detect faults if it does not get whole traces. In the second case ([8]; [9]), the observer
must wait for exchange of messages before moving forward in the homing procedure.

Since we are interested in online observation of Web Services, ignoring the
homing procedure is not an option. We suppose that an EFSM-based online observer
can initiate its observation at any time without having access to previously exchanged
requests/responses. In the work presented in ([8]; [9]), the observer uses the
exchanged messages for state and variables homing. This approach is efficient when
the time gap between requests and responses is too short so the observer will be
processing traces most of its time. If this time gap is relatively high, the observer
spends a significant amount of time waiting for events while valuable information can
be gathered by analyzing the EFSM model of the WSUO. The example presented in
section 3.6 shows an example where the approaches presented in ([8]; [9]) fail to
detect a fault that would have been detected if the observer was performing
appropriate analysis of the EFSM machine of the WSUO.

3 EFSM-based observation: forward and backward walks

In client-server communication as in Web Services, it is reasonable to assume that
there will be a delay between requests and responses. In fact, the client takes time to
formulate and send its request. Once a response is received, the client takes again
some time to process the response and decide what to do with it. Moreover, the Web
Service requires time to process a request, generate, and send its response.

To speed up the homing procedure, the observer should make a concise use of the
information contained within the EFSM model in addition to the information carried
by observed events. The homing algorithm can perform backward walks in the EFSM
model to guess what transitions the WSUO fired before getting into its actual state.
By analyzing the set of predicates and variable definitions on these transitions, the
observer can reduce the set of possible states and/or the set of possible values of
variables. Performing both backward and forward walks provides a set of possible
execution trees: the forward process adds execution sequences to the root of trees, and
the backward process adds execution sequences to the leaf states of trees.

During the homing procedure, the observer manipulates the following entities:
§ Set of Possible States (SPS): this is the set of possible states with regards to
what has been observed and processed up to now. At the beginning, all states are
possible.

§ Tree of Possible Previous States for state s (TPPS(s)): this tree contains the
possible paths that could lead to each state s in the SPS. During the homing
procedure, there is a TPPS for each state in the SPS.
§ Set of Possible Variable Values for variable v (SPVV(v)): this is the set of all
possible values that variable v can have with regards to what has been received
and processed before. It consists of a list of specific values or ranges. At the
beginning, all values in the definition’s domain of variable v are possible.
§ Set of Known Variables (SKV): the set of known variables. A variable is said
to be known if it is assigned a specific value. In this case, SPVV(v) contains one
element, i.e. |SPVV(v)| = 1.
§ Set of Unknown Variables (SUV): the set of variables not yet known.

The next three sub-sections present in detail the processes of analyzing observed
requests and responses and performing backward walks within an EFSM-based
observer using both backward and forward walks.

3.1 The homing controller algorithm

While the observer is going through the homing procedure (Algorithm 1), it has 3
possible options:

1. process a request that has been received by the WSUO (line 11),
2. process a response that has been sent by the WSUO (line 17), or
3. perform a one-step backward walk (line 20). In this case, the algorithm

considers the event e that triggers the loop as empty.
Processing observed events has priority and the backward walk is performed if and

only if there are no observed events waiting for processing. This procedure is repeated
until:
§ a fault is detected (unexpected input/output which results in an empty set of
possible states and/or contradictory values of variables), or
§ the set of possible states has one item (|SPS| = 1) and the set of unknown
variables is empty (SUV = Ø).

The complexity of Algorithm 1 depends on the number of events required to
successfully achieve the homing procedure (line 4) and the complexity of
processInput (line 11), processOutput (line 17), and performBackWalk (line 20). Lets
denote the number of cycles to achieve the homing by n, and the complexities of
processInput, processOutput and performBackWalk by O(BF_PI), O(BF_PO),
O(BF_BW) respectively. The complexity O(H) of the homing algorithm is given in
Equation 1 and will be developed through the following sections when individual
complexities will be computed.

O(H) = n.O(BF_PI) + n.O(BF_PO) + n.O(BF_BW) Equation 1

Algorithm 1. Homing controller

3.2 Processing observed requests

When the observer witnesses an input, if the observer was expecting an output, a fault
(“Output expected rather than Input”) is generated. Otherwise, it removes all the
states in the set of possible states that don’t accept the input, and the states that accept
the input but the predicate of the corresponding transition is evaluated to FALSE. For
each of the remaining possible transitions, the input parameters are assigned (if
applicable) to appropriate state variables. Then, the predicate condition is
decomposed into elementary expressions (operands of AND/OR/XOR combinations).
For each state variable, the set of possible values/ranges is updated using the
elementary conditions. If this set contains a unique value, this latter is assigned to the
corresponding variable; this variable is then removed from the set of unknown

variables and added to the set of known variables. The transition’s assignments part is
processed, then updating the sets of known/unknown variables accordingly
(Algorithm 2). The observer expects now the next observable event to be an output.

Algorithm 2. Processing observed requests

The complexity of Algorithm 2 is affected by the maximum number of states in the

SPS (line 1), maximum number of transitions at each state in the SPS (line 3), and the
complexity of updating the SPVV, SKV, and SUV. In fact, we can assume that a
predicate will have very few elementary conditions, then decomposing the predicate
(line 7) and using the elementary conditions to update the variables (line 8) does not
affect the complexity of the whole algorithm. If the number of variables is V, the
complexity of updating the SPVV, SKV, and SUV is in the order of O(V) since the
procedure should go through all the variables. The complexity of Algorithm 2 is
depicted in Equation 2 where Smax is the maximum number of states in the SPS, and
Tmax is the maximum number of transitions that a state in the SPS can have.

max maxO(BF_PI)=O(S .T .V) Equation 2

3.3 Processing observed responses

In case the event is a response (output), if the observer was expecting an input, a fault
(“Input expected rather than Output”) is generated. Otherwise, the observer removes
all the states in the set of possible states that don’t have transitions that produce the
output. If a state has two (or more) possible transitions, the TPPS is cloned as many as
possible (number of possible transitions) so that each clone represents a possible
transition. The assignment part of the transition is processed and variables are
updated. The set of possible states holds the ending states of all the possible
transitions. In the context of SOAP communication between a Web Service and its
client, the response (message) holds basically one parameter. Whenever an output
message is observed, a variable becomes known, or at least a new condition on
variable values is augmented unless the message carries no parameter or the variable
is already known. The observer expects now the next observable event to be an input.

Let’s now determine the complexity of Algorithm 3. If we denote the maximum
number of nodes (i.e states) in a TPPS tree by Pmax, cloning a TPPS tree (line 5) is in
the order of O(Pmax). Moreover, the complexity of removing a TPPS tree (lines 14 and
19) is also in the order of O(Pmax). Lines 8 and 9 do not affect the complexity since the
number of assignments in a transition is somehow low compared, for instance, to
Pmax. The complexity of Algorithm 3 then can be written as:

max max maxO(BF_PO) = O(S .T .(P + V)
Equation 3

3.4 Performing backward walk

While the observer is waiting for a new event (either request or response), it can
perform a 1-step backward walk in the EFSM model to guess the path that could bring
the Web Service to its actual state. From each state in the set of possible states, the
observer builds a tree of probable-previously visited states and fired transitions. Every
time a transition could lead to the actual state or one of its possible previous states, the
variables constraints in the enabling condition is added as a set of successive
elementary conditions connected with logical operators OR and AND: constraints of
two successive transitions are connected with AND, while constraints on two
transitions ending at the same state are connected with OR.

Algorithm 3. Processing observed responses

Algorithm 4 has three embedded loops. The first loop (line 1) is bounded by the
number of TPPS trees; that is, the number of states in the SPS (Smax). The second loop
(line 2) goes through all leaf states of a TPPS, which is at the worst case Pmax. The
third loop (line 3) explores all the states in the EFSM that can lead to a particular state
in a TPPS. Lets denote the number of states in an EFSM by SEFSM. Propagating a
constraint through the root of a TPPS (line 4) is in the order of O(Pmax.V) since the
procedure has to process all states and update the SPVV at each state. The complexity
of Algorithm 4 can be written as:

2

max EFSM maxP(BF_BW) = O(S .S .P .V) Equation 4

Algorithm 4. Performing Backward walk

From Equation 1, Equation 2, Equation 3, and Equation 4, the overall complexity
for homing an observer using Algorithm 1 can be developed as follows:

max max max max max

2
max EFSM max

2
max max max max EFSM max

O(H) = O(n.S .T .V + n.S .T .(P + V) +
 n.S .S .P .V)
 = n.S .T .(P + V)+ n.S .S .P .V)

3.5 Discussion

Although backward walks-based observers require a little bit more resources than an
observer without backward walks, this overload is acceptable. First of all, backward
walks are performed whenever there is no trace to analyze so the observer does not
use additional processing time. It just uses the slots initially allocated to trace
analysis. Second, limiting the backward to a unique step at a time reduces the duration
of cycles of Algorithm 4 and does not delay processing of eventual available traces.

As for convergence of Algorithm 1, it is not possible to decide if the observer will
converge or not. This is the case for both brands of observers: with backward and
without backward. This limitation is out of the scope of the homing approach used but
fully tied to the fact that the observer has no control on exchanged events. The Web
Service and its client can continuously exchange messages that do not bring useful
information to reduce the SPS and the SPVV.

However, the backward approach can be compared to the approach without
backward, for the same WSUO and observed traces, as follows:

Property 1: if an observer without backward walks converges, an observer with
backward walks converges too.

Property 2: if an observer without backward walks requires n cycles to converge,
and an observer with backward walks requires m cycles to converge, then m≤n.

The next sub-section presents a proof of property 2 which can be considered also
as proof for property 1.

Proof
The homing algorithm converges when the SPS has one element and the SUV is
empty. The SUV is empty when, for each variable v in V, SPVV(v) contains a unique
element.

As discussed above, analysis of traces adds states as roots of TPPS and backward
walks adds states as leaves of TPPS. Whenever a trace can generate two different
execution paths, the corresponding TPPS is cloned. This will build TPPS trees where
the root has a unique child. In such trees, all constraints propagation from backward
walks will propagate using AND operator between the root and its child. This
propagation tries to reduce the SPVV; in the worst case the SPVV is neither reduced
nor extended.

In Fig. 2, at a cycle i, a TPPS has Si as root, Sj is its child, and SPVVi(v) is the set
of possible values of variable v at Si as computed from a previously observed trace.
Suppose that during cycle i+1, the backward walk adds two leaves to Sj: Sl and Sk. In
Fig. 2, the labels on transitions represent the SPVV that result from the predicate of
the transitions.

Sj Si
SPVVi(v)

Cycle i

Sj Si
SPVVi(v)

Cycle i + 1

Sl SPVVj1 (v)

Sk
SPVV j2(v

)

Fig. 2. SPVV and constraints propagation

Propagation of constraints from Sl and Sk to Sj and then to Si modifies SPVV(v) as
follows: SPVVi+1(v) = SPVVi(v) ∩ ((SPVVl(v) ∪ SPVVk(v)). There are three cases:

1. SPVVi(v) ⊆ (SPVVl(v) ∪ SPVVk(v)): in this case, the SPVVi+1(v) is equal to
SPVVi(v). The backward walks do not bring useful information to reduce
SPVVi(v). If subsequent backward walks do the same, the number of required
cycles for homing remains unchanged: m=n.

2. SPVVi+1(v) = : this indicates that the variable, at Si after cycle i+1 can not
have any value from its definition domain. The observer detects a fault
immediately without waiting for the next observed event which results in m
strictly less than n (m<n).

3. SPVVi+1(v)  SPVVi(v): in this case, the SPVV(v) is reduced. If following
backward walks, associated to trace analysis, reduce further the SPVV(v), the
homing with backward is likely to require less than n cycles (m<n) or at most
n cycles (m=n).

The following example illustrates the first case where backward walks reduce the
number of required cycles (m<n) and allows detection of faults that can not be
detected without backward walks. The execution of the homing procedure is detailed
hereafter in a step by step scenario.

3.6 Example

Let’s consider the portion of an EFSM of a Web Service illustrated in Fig. 3 where
variables u, x, y, and z are integers. Events I1(15), O(13), and I2(0) are observed
respectively. Each transition is represented as t:I|P|A|O where t is the label of the
transition, I its input, P its predicate, A is the set of assignments, and O is the output.
A predicate of a transition is evaluated to TRUE/FALSE if its condition is true/false,
otherwise it is said INCONCLUSIVE if the predicate can not be evaluated. The latter
case occurs if some of the variables in the predicate are not yet known.

Observation without backward walks

After observing I1(15), transitions t1, t2, and t4 can be fired but not t3 or t5.
However, since the input parameter is bigger than 0, the predicate of t4 is evaluated to
FALSE. Only transitions t1 and t2 should be considered since the variables y and z
are, up to now, unknown and the predicates are evaluated to INCONCLUSIVE. This
reduces the set of possible states to S1 and S2. If t1 is executed then x := 15, y > 15,
and z := 15 − y, if t2 is executed then y := 15, z < 15, x := 15 − z.

When O1(13) is observed, the value of the output parameter (13) indicates that
transition t2 has been executed. Later on, when event I2(0) is observed, since the
variable u is unknown, the predicate (x > u) is evaluated to INCONCLUSIVE, which
enables the transition. So, the sequence I1(15), O1(13), I2(0) executes properly.

However, the sequence I1(15), O1(13), I2(0) is a faulty sequence and the fault
would be detected if backward walks have been considered as discussed in the next
section.

Fig. 3. EFSM Example

Observation with backward walks

The delay after each event (I1, O1, and I2) gives the observer opportunities to
perform backward walks. The observer executes the following operations:
processInput(I1(15)), performBackWalk, processOutput(O1(13)), performBackWalk,
processInput(I2(0)).

As illustrated in Table 1, after executing the first three operations, SPS contains S3.
In TPPS, S2 is the child of S3. To get to S2, the only previous transition is t4 which
assigns 10 to variable u. From this point forward, the homing procedure is completed
since SPS has one state and SUV is empty. Later on when receiving I2(0), transition
t3 can not be fired since its predicate (x>u) is evaluated to FALSE. The observer
notifies the WSO that a fault just occurred.

Table 1. Content of SPS, SPVV, SKV, SUV, TPPS

 I1(15) Backward walk O1(13)

SPS S1, S2 S1, S2 S3

SPVV
t1 : x:=15, y> 15, z:= x-y
 or
t2 : y:=15, z <15, x:=y-z

t4 : u:=10
 or
t5 : u:=15

x:=13, y:=15,
z:=2, u:=10

SKV
t1 : x,
 or
t2 : y

 u, x
 or
u, y

x, y, z, u

SUV
t1 : y, z, u
 or
t2 : x, z, u

y, z
 or
x, z

Ø

TPPS Figure 4.a Figure 4.b

t5:I2(x)|x>0|u:=15|O2(u)

t4:I1(x)|x<0|u:=10|O1(u)

S1

S2

a b

S4

S4

S1

S2

Fig. 4. TPPS

4 Conclusion

Fault detection is a basic operation in management of Web Services. It is conducted
through testing which can be passive or active. An active tester applies selected test
cases to the WSUT and checks the responses. Unlike active testers, a passive tester
observes, passively, the interactions between the WSUO and its client. Based on this
observation, correctness of requests and/or responses is verified.

FSM models have been used for passive testing for network management.
However, it does not support data flows, an important aspect in Web Services XML-
messaging. EFSM has the ability to specify both control and data flow parts of Web
Services. When designing EFSM-based observers, the homing procedure has to
assign appropriate values for different variables.

In this paper, we presented a novel approach for homing EFSM-based observers.
This approach is based on observed events and on backward walks in the EFSM
model of the WSUO. Whenever a trace is observed, it’s immediately processed by the
observer. Otherwise, the observer analyzes the possible paths that could bring the
WSUO to its actual state. Analyzing the set of constraints on different paths could
reduce the set of possible values variables can have at a specific state.

We are currently implementing observers based on the algorithms presented above
and Web Services that will be used to evaluate the detection capabilities of such
observers.

References

[1] W3C, "World Wide Consortium," at http://www.w3.org 2006.
[2] D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John, "Passive

testing and applications to network management," International Conference
on Network Protocols. Atlanta, GA, USA: IEEE Computer Society, (1997),
pp. 113-22.

[3] R. E. Miller, "Passive testing of networks using a CFSM specification,"
International Performance, Computing and Communications Conference.
Tempe/Phoenix, AZ, USA: IEEE, (1998), pp. 111-16.

[4] M. Tabourier, A. Cavalli, and M. Ionescu, "A GSM-MAP protocol
experiment using passive testing," Formal Methods. World Congress on
Formal Methods in the Development of Computing Systems, vol. vol.1,
Lecture Notes in Computer Science (LNCS). Toulouse, France: Springer
Verlag, (1999), pp. 915-34.

[5] A. Cavalli, C. Gervy, and S. Prokopenko, "New approaches for passive
testing using an Extended Finite State Machine specification," Information
and Software Technology, vol. 45, pp. 837-852, (2003).

[6] B. Alcalde, A. Cavalli, D. Chen, D. Khuu, and D. Lee, "Network protocol
system passive testing for fault management: a backward checking
approach," Formal Techniques for Networked and Distributed Systems
(FM), Lecture Notes in Computer Science (LNCS). Madrid, Spain: Springer
Verlag, (2004), pp. 150-66.

[7] B. T. Ladani, B. Alcalde, and A. Cavalli, "Passive testing - a constrained
invariant checking approach," 17th International Conference on Testing of
communicating systems (TestCom), Lecture Notes in Computer Science
(LNCS). Montreal, Que., Canada: Springer Verlag, (2005), pp. 9-22.

[8] D. Lee, C. Dongluo, H. Ruibing, R. E. Miller, W. Jianping, and Y. Xia, "A
formal approach for passive testing of protocol data portions," 10th
International Conference on Network Protocols. Paris, France: IEEE
Computer Society, (2002), pp. 122-31.

[9] D. Lee, C. Dongluo, H. Ruibing, R. E. Miller, W. Jianping, and Y. Xia,
"Network protocol system monitoring-a formal approach with passive
testing," IEEE/ACM Transactions on Networking, vol. 14, pp. 424-37,
(2006).

[10] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, "Test
development for communication protocols: towards automation," Computer
Networks, vol. 31, pp. 1835-72, (1999).

[11] R. E. Miller and K. A. Arisha, "On fault location in networks by passive
testing," International Performance, Computing, and Communications
Conference. Phoenix, AZ, USA: IEEE, (2000), pp. 281-7.

[12] R. E. Miller and K. A. Arisha, "Fault identification in networks by passive
testing," 34th Annual Simulation Symposium. Seattle, WA, USA: IEEE
Computer Society, (2001), pp. 277-84.

[13] K. A. Arisha, "Fault management in avionics telecommunication using
passive testing," 20th Digital Avionics Systems Conference (DASC), vol. 1.
Daytona Beach, FL, USA: IEEE, (2001), pp. 1-7.

http://www.w3.org

[14] C. Dongluo, W. Jianping, and C. HuiCheng, "Passive testing on TCP,"
International Conference on Communication Technology (ICCT). Beijing,
China: Beijing Univ. Posts & Telecommun, (2003), pp. 182-6.

[15] J. A. Arnedo, A. Cavalli, and M. Nunez, "Fast testing of critical properties
through passive testing," 15th IFIP International Conference on Testing of
Communicating Systems, Lecture Notes in Computer Science (LNCS).
Sophia Antipolis, France: Springer Verlag, (2003), pp. 295-310.

[16] E. Bayse, A. Cavalli, M. Nunez, and F. Zaidi, "A passive testing approach
based on invariants: application to the WAP," Computer Networks, vol. 48,
pp. 247-66, (2005).

