

Using TIMEDTTCN-3 in Interoperability Testing for
Real-time Communication Systems

Zhiliang Wang1, Jianping Wu1, Xia Yin1, Xingang Shi2 and Beihang Tian1

1 Department of Computer Science and Technology, Tsinghua University
Beijing, P. R. China, 100084

{wzl, yxia, tbh}@csnet1.cs.tsinghua.edu.cn, jianping@cernet.edu.cn
2 Network Research Center, Tsinghua University,

Beijing, P. R. China, 100084
shixg@cernet.edu.cn

Abstract. Interoperability testing is an important technique to ensure the qual-
ity of implementations of network communication software, and real-time pro-
tocol interoperability testing is an important issue in this area. TIMEDTTCN-3 is
a real-time extension of test specification language TTCN-3. In this paper, test
notations for real-time interoperability testing are studied. Test behavior trees
are constructed from specifications of system under test and then transformed
to TIMEDTTCN-3 test cases. We also investigate real-time TTCN and analyze
the insufficiency of its capabilities in specifying time constraints. Possible ex-
tensions for real-time TTCN are given to specify real-time interoperability test
cases. From the comparisons between the two real-time test notations, it can be
concluded that TIMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be suitable for real-time interoperability testing.

1 Introduction

In order to ensure the quality of communication software, protocol test techniques are
widely used. Conformance testing is the basic method of protocol testing, which can
be used to test whether an implementation conforms to its protocol specification. As
the complement of conformance testing, interoperability testing is often used to test
whether two or more protocol implementations can communicate with each other
correctly and inter-operate as a whole system to perform functions specified in proto-
col specifications. Interoperability testing is necessary because (1) It is difficult to
perform exhaustive conformance testing, that is, a conformance test suite can hardly
ensure 100% test coverage; (2) Many optional features may be contained in network
protocols, and moreover vendors perhaps have their own extensions, so if two im-
plementations implement different options, problems on interoperability will happen.
Interoperability testing is also being performed by IETF and ETSI in the process of
protocol design ([KD03]). Interoperability testing events have been organized by
these organizations.

In the area of interoperability testing, [Hao97] proposed a TTCN-2 based frame-
work for interoperability testing, [VBT01] presented a formal framework for interop-

erability testing and several interoperability relations were defined to guide test gen-
eration. Interoperability test generation is an important issue in this field. In most
works of test generation, the basic idea is to model the interoperability system under
test as a system of communicating finite state machines and generate test sequences
for the composition of these machines ([RC90]). Based on this idea, a series of test
generation techniques have been proposed ([KSK00, SKKJ03, TKS03, SKCK04,
ETSY04]). Different from the above literatures, [HLSG04] proposed an efficient
method only considering the specification of one protocol entity. By this method,
there is no need to generate the composition machine and the state space explosion
can be alleviated.

But in most real-life network protocols, not only the behaviors of input and output,
but also their time of occurrence should be considered, that is, such protocols can be
modeled by real-time systems. In order to test real-time systems, we should check if
the I/O behaviors act under the specified time constraints. In the field of real-time
testing, many methods of conformance testing have been proposed. In most of these
works, Timed Automaton [AD94] or its variants have been used to specify real-time
system. [SVD01, EDK02] converted timed automaton to grid automaton, and applied
existing test generation methods for finite state machine (FSM) to it. But this method
suffers from the state space explosion problem. [HNTC99] presented a test generation
method of executability decision. [KJM03, KT04, LMN04, BB04] defined timed
conformance relations, and proposed associated test generation methods. As far as we
know, [WWY04] is the first work to study interoperability testing of real-time sys-
tems. An interoperability test generation method of time dependent protocols was
presented in [WWY04].

In this paper, we focus on the problems of test notations suitable for interoperabil-
ity testing of real-time communication systems, i.e., how to specify test cases. The
testing and test control notation version 3(TTCN-3) ([TTCN3, GHRS03]) is a new
test specification language standardized by ETSI (European Telecommunications
Standards Institute), which is a new version and redesign of TTCN (tree and tabular
combined notation) ([TTCN]). TIMEDTTCN-3 ([DGN02]) is a real-time extension of
TTCN-3. [DGN03] presented a method of generating TIMEDTTCN-3 code from MSC
test specifications; and [NDG04] used TIMEDTTCN-3 in specifying real-time com-
munication patterns. In this paper, we intend to use TIMEDTTCN-3 in real-time inter-
operability testing. Following the test generation method presented in [WWY06], a
parameterized test behavior tree will be generated from the formal model of system
under test (SUT). Parameters in the test behavior tree are relative time intervals be-
tween IO events. In this paper, firstly the test behavior tree will be converted from the
view of SUT to the view of test system, which is an intermediate notation of test
cases. Then we give transformation rules to transform such a test behavior tree to a
TIMEDTTCN-3 test case.

We also investigate the real-time extension of TTCN – real-time TTCN ([WG99])
and intend to use real-time TTCN to specify test cases. But unfortunately, we find
that real-time TTCN has no enough capabilities to specify timed interoperability test
cases. We also give possible extensions of real-time TTCN on the syntactical and
semantic levels to specify test cases. Based on the transformation results to

TIMEDTTCN-3 and extended real-time TTCN test cases, we compare the two test
notations mainly on the capabilities of specifying hard real-time requirements.

The rest of the paper is structured as follows. Section 2 gives the formal model
Communicating Multi-port TIOA (CMpTIOA) to specify interoperability system
under test; and as a working example, a simple real-time communication protocol
system is specified by using this model. In Section 3, test architecture is given and
test behavior trees will be generated. In Section 4, we give transformation rules from
test behavior trees to TIMEDTTCN-3 test cases. In Section 5, we investigate real-time
TTCN and draw a comparisons between TIMEDTTCN-3 and real-time TTCN. Con-
clusion and future work are given in Section 6.

2 Preliminaries

2.1 Multi-port TIOA

Timed Automaton ([AD94]) is a widely-used model of real-time system. TIOA
(Timed Input Output Automata [EDK02]) is a variant of Timed Automaton, which
distinguishes whether an action is an input or output. To specify an entity interacting
with more than one other entities, we extend TIOA to Multi-port TIOA as follows.
Definition 1. Multi-port Timed Input Output Automaton (MpTIOA)

A Timed Input Output Automaton with n ports (for short, np-TIOA) is a 6-tuple (L,
I, O, l0, C, T), where,

 L is a finite set of locations;
 It has n ports communicating with environment, which are denoted as P1, P2, …,

Pn respectively;
 I is an n-tuple: I=(I1, I2, …, In), where Ik(k=1,2,…,n) is the set of input action

symbols of port Pk; nIIII ∪∪∪= L21 is the set of input action symbols; An in-
put action symbol occurring in port Pk can be denoted as Pk?a (a�Ik);

 O is an n-tuple: O=(O1, O2, …On), where Ok(k=1,2,…,n) is the set of output ac-
tion symbols of port Pk; n21 OOOO ∪∪∪= L is the set of output action sym-
bols. An output action symbol occurring in port Pk can be denoted as Pk!b (b�Ok);

 l0 � L is the initial location;
 C is a finite set of clocks {t1, t2, …, t|C|}, where, |C| is the number of clocks;.

vi�R+(non-negative real numbers) is the clock value of ti;)(|C|21 v,,v,vv L
r
= de-

notes a clock valuation;
 T is a set of transitions: Tl,l,a,P,R ∈′)(, where, Ll,l ∈′ are the source and destina-

tion locations; OIa ∪∈ is an input or output action symbol; P is the time con-
straint, which is a Boolean conjunction over linear inequalities P(v

r
); The subset

R⊆ C specifies the clocks to be reset to 0. The transition Tl,l,a,P,R ∈′)(can be

also denoted as ll a[P]/R ′→ ; □

In the model, we assume that time constraints of transitions are all the format of
)(~dvi∧ , where ~∈{<, >, ≤, ≥, =}, and d∈R+. We distinguish two urgency types

([BST98]) of transitions implicitly: (1) Lazy, for transitions with input actions, means
that input actions may be not taken because they are controlled by environment (such
a property is also called “Unforced Inputs”); and (2) Delayable, for transitions with
output actions, means that the corresponding output action must be taken during such
transitions’ enabling time.

The semantics of MpTIOA can be defined as a TIOTS (Timed Input Output Tran-
sition System))(→,A,A,s,S outin0 , where IAin = and OAout = . We denote

outin AAAct U= as the set of all IO symbols. Its states are the pairs)(v,ls
r

= , where
Ll∈ is a location,)(|C|21 v,,v,vv L

r
= is a clock valuation. S is the set of all possible

states. SRActS ××→⊆ +)(U is the set of transitions. There are two types of transi-
tions: Timed transitions and Discrete transitions. Timed transitions model time
progress, which are the form)(）（ v,lv,l d rr ′→ , where +∈Rd is the delaying time,

)(＝ d,,d,dvdvv L
rrrr
+=+′ , and in this period, no discrete transitions occur. Discrete

transitions)(）(v,lv,l a rr ′′→ correspond to execution of the transition)(l,l,a,P,R ′ in
MpTIOA, where P is satisfied by v

r
(P(v

r
)=true) and v

r′ is obtained by updating v
r

according to R.

2.2 Communicating Multi-port TIOA

To specify an interoperability system under test including two or more entities, we
introduce a formal model Communicating MpTIOA (CMpTIOA). In the model,
MpTIOA can model each single entity, and all these entities in the system can com-
municate with each others via channels between different MpTIOAs.
Definition 2. Communicating Multi-port Timed Input Output Automata (CMpTIOA)

A Communicating MpTIOA is composed of a set of MpTIOAs M and a set of
channels Ch, where,
(1) M={M1, M2, …, Mm} is a finite set of m MpTIOAs;
(2) Ch = {Cij | i, j = 1, 2, …, m � i ≠ j} is a finite set of channels between MpTIOAs:
Cij�Ch represents the communicating channel from MpTIOA Mi to Mj. □

In the definition of CMpTIOA, channels behave like FIFO queues. Intuitively, the
semantic of channels is that outputs of MpTIOA Mi can be transferred via channel Cij
to be inputs of Mj. In this paper, we assume that transfer time of actions in communi-
cating channels can be neglected, that is, the channels are lossless and non-delayed.
Definition 3. Port Mapping Relations of CMpTIOA
Port Mapping Relations R of CMpTIOA M is an m-tuple: R=(R1, R2,…, Rm), where
Rk(k=1,2,…,m) is the Port Mapping Relations of MpTIOA Mk; Rk is a set of Port
Mapping Relations for all ports of Mk: Rk={r1, r2,…, rn}, where n is the port number
of Mk, and ri(i=1,2,…, n) can be the format of 1) Pi -> Mj:Ph(j≠k), which means that
the port Pi of Mk is connected to the port Ph of Mj via the channel Ckj; 2) Pi -> env,

which means that the port Pi of Mk is connected to the external environment of the
system. □

According to the above definitions, we can get the abstract topology of the system
under test. We furthermore denote the ports communicating with the external envi-
ronment as "external ports"; and others as "internal ports". Inputs/outputs on exter-
nal/internal ports are "external/internal inputs/outputs".

2.3 A simple real-time communication protocol

We specify a simple real-time communication protocol by using MpTIOA. Fig. 1 (a)
shows the specification of such a protocol, which is a 2p-TIOA with two ports (U and
l) and two clocks {t1, t2}. IU={A}, OU={B,C}, Il=Ol={a,b,c}. The initial location is ‘0’.
The protocol can be specified informally as follows:

(1) Initiate a connection to a remote entity actively:
If an input ‘A’ is received from port U in the initial location 0, the protocol entity

should initiate a connection to a remote entity actively; In this transition
(0,U?A,true,{t1,t2},1), the two local clocks t1 and t2 should be reset to 0. Within 2
time units, an output ‘a’ should be sent from port l to remote entity, and the clock t1
should be reset to 0 (transition (1,l!a,[t1<2],{t1},2)). After that, three cases should be
considered:

a) Receiving an input ‘b’ from port l in time, i.e., transition (2,l?b,[t1≥1,t2<2],{},3),
indicates that the connection can be established;

b) Receiving an input ‘b’ from port l too late, i.e., transition (2,l?b,[t2≥2],{t1},4),
indicates that the connection cannot be established;

c) Receiving an input ‘c’ from port l, i.e., transition (2,l?c,true,{t1},4), indicates
that the connection cannot be established.

If the connection can be established, an output ‘B’ should be sent to port U, i.e.,
transition (3,U!B,[2<t2<3],{},0); else, an output ‘C’ should be sent to port U, i.e.,
transition (4,U!C,[t1<1],{},0).

(2) Respond a connection request from a remote entity passively:

0

1

2

3 4

U?A/
{t1,t2}

l!a
[t1<2]
/{t1}

l?b
[t1>=1,t2<2]

l?b
[t2>=2]

/{t1}

l?c/{t1}

U!B
[2<t2<3]
/{t1,t2}

U!C[t1<1]
/{t1,t2}

5

l?a/
{t1}

l!b
[1<t1<3]
/{t1,t2}

l!c
[t1<3]
/{t1,t2}

l?a/{t1}

l?b
l?c

l?a,b,c
U?A

U?A
l?b[t1<1,t2<2]

l?a,b,c
U?A

l?a,b,c
U?A

l?a,b,c
U?A

(a) Specification of a MpTIOA (b) an input-complete specification

Fig. 1. A simple real-time protocol specified by using MpTIOA

a) Sending an output ‘b’ to port l, i.e., transition (5,l!b,[1<t1<3],{},0);
b) Sending an output ‘c’ to port l, i.e., transition (5,l!c,[t1<3],{},0).
To test interoperability, we make an assumption that both specifications and im-

plementations are input-complete, that is, they can accept any inputs at any locations.
To make a specification input-complete, some self-loop transitions can be added to it,
which indicates that a specification ignores the unspecified input actions. Fig. 1(b)
shows an input-complete specification after adding self-loops to Fig. 1(a).

Fig. 2 shows an example of a system under test specified by CMpTIOA, which is a
real-time communication system containing two real-time protocol entities. M={M1,
M2}, Ch={C12, C21}. The specifications of M1 and M2 are both the MpTIOA of Fig.
1(b). We use subscript 1, 2 on ports and actions to distinguish them. Port Mapping
Relations are ({U1->env, l1->M2:l2}, {U2->env, l2->M1:l1}).

Fig. 2. An example of CMpTIOA

3 Test Behavior Tree

3.1 Test architecture

To test interoperability of protocol system, test architecture should be defined firstly.
Fig. 3 shows test architecture that can be used to test SUT in Fig. 2. In the test archi-
tecture, there are two types of access points to SUT in the test system: PCO (Point of
Control and Observation) and PO (Point of Observation). PCOs have capabilities of
control and observation, which can either apply stimuli to or receive responses from
SUT; and POs only have capabilities of monitoring the interactions of SUT. In Fig. 3,
PCO1 and PCO2 are connected to the external ports U1 and U2 respectively, and only
one PO is contained in test architecture to monitor the IO behaviors in channel C12
and C21.

Fig. 3. Test architecture used to test SUT in Fig.2

3.2 Generating test behavior tree

In [WWY06], based on timed interoperability relations, a test generation method was
presented. This method starts from the formal model of SUT, and as a result, a pa-
rameterized test behavior tree can be generated. Such a test behavior tree is just an
intermediate notation. In this paper, we do not intend to introduce this method in
detail.

Fig. 4 is a part of resulting parameterized test behavior tree. Leaf nodes of a test
behavior tree are the verdict “pass” or “fail”. For “fail” verdict, it is also necessary to
indicate which implementation the fault is located in. The other internal nodes repre-
sent the tester’s knowledge of the SUT’s current global states, denoted as (s1, s2, …,
sm), where ）（ iii v,ls

r
= (i =1,2,…,m), representing local states of Mi. The root node is

the initial global state GS0=)(m
0

2
0

1
0 ,...,s,ss of SUT, where ）（ i

0
i
0

i
0 v,ls

r
= (i =1,2,…,m).

Edges between nodes are labeled as possible input/output events and their time con-
straints in SUT. Parameters di(i=0,1,2,…) in a test behavior tree represent relative
time intervals between the two consecutive IO events. There are two types of parame-
ters: controllable parameters are time intervals between an external input event and
its last IO event in the tree, and their values should be set in test cases in advance, so
such parameters are controllable for test system, e.g., d0 in Fig. 4; uncontrollable
parameters are time intervals between an internal or external output event and its last
IO event, and their values are dependent on SUT and only can be retrieved on the
process of test execution and cannot be set in advance, so such parameters are uncon-
trollable for test system, e.g., d1, d2, d3 in Fig. 4.

Fig. 4. A part of parameterized test behavior tree (from the view of SUT)

Parameterized test behavior tree in Fig. 4 is described from the view of SUT. To
generate executable test case, at first, it should be converted to the test behavior tree
which is described from the view of test system. The basic idea is to convert edges of
the original tree to nodes of the resulting tree, and associate each IO event with one
access point of test system; e.g., for test architecture of Fig. 3, IO events on the port
U1 of M1 are associated with PCO1, events on U2 of M2 are associated with PCO2 and
events on the two internal ports l1 and l2 are all associated with PO. On PCO1 and
PCO2, input/output actions of SUT should be converted to sending/receiving test
events of test system. On PO, all actions should be converted to receiving test events
of test system.

Fig. 5 shows the resulting test behavior tree described from the view of test system:
the root node represents the start point of the test; other internal nodes are labeled as
test events and their time constraints; black leaf nodes represent pass verdicts, and
gray leaf nodes represent fail verdicts. In the timing axis on the right of the tree, the
global time for the same level of test events occurring are denoted as Ti(i=0,1,2,…),
so relative time intervals between two consecutive events are di=Ti+1-Ti (i=0,1,2,…).

Fig. 5. Test behavior tree (from the view of test system)

We have proved in [WWY06], all time constraints on each test event can be repre-
sented by a conjunction over a set of linear inequalities on parameters (see Lemma 1),
e.g., on the time point T3, time constraints of node (1) are [1<d2<3 and d2≥1 and
d1+d2<2] ([1<d2<3 and d1+d2<2]).

Lemma 1. On the time point Tk, time constraints of the test event nodes can be repre-
sented by a conjunction over a set of linear inequalities on di(i=0,1,…,k-1). □

4 Transformation to TIMEDTTCN-3 Codes

4.1 TIMEDTTCN-3

TIMEDTTCN-3 ([DGN02]) is a real-time extension of TTCN-3([TTCN3]). In
TIMEDTTCN-3, the concept of absolute time is introduced, so TIMEDTTCN-3 pro-
vides a capability of testing hard real-time requirements. TIMEDTTCN-3 (1) intro-
duces a new verdict conf to indicate functional pass but no-functional fail; (2) intro-
duces the concept of absolute time and provides mechanisms of retrieving the current
local time and delaying the execution of a test component; (3) extends the TTCN-3
logging mechanism; (4) supports both online and offline evaluation.

4.2 Transformation to TIMEDTTCN-3 test cases

Now we consider how to convert a test behavior tree to a TIMEDTTCN-3 test case. In
this paper, for the sake of simplicity, only test architecture with one single main test
component is considered. Firstly, not considering time constraints, a test behavior tree
can be converted to a TTCN-3 test case easily: Pre-order traversing method can be
used to covert a test behavior tree to dynamic behaviors of a TTCN-3 test case. In a
test behavior tree, each node of sending event corresponds to a TTCN-3 statement of
send operation, and each node of receiving event corresponds to a TTCN-3 statement
of receive operation. The nodes of the same level in a test behavior tree can be repre-
sented by using alt statements of TTCN-3, which are called a set of alternatives.
When reaching a leaf node of the test behavior tree, a verdict should be set by using a
setverdict statement, and the test case will be stopped.

Now we consider time constraints in test behavior trees and give transformation
rules from test behavior trees to TIMEDTTCN-3 test cases.

(1) Get global time values of nodes in the test behavior tree:
In TIMEDTTCN-3, the concept of absolute time is introduced. To get global time

values of nodes, e.g., T0, T1, T2 … in Fig. 5, now operations in TIMEDTTCN-3 can be
used. The now statements should be placed directly after the associated statements of
receive operations that correspond to nodes of receiving events. For example, in
Table 1, for the receive operation of line 9 corresponding to node (b) or (c) in Fig. 5,
a now statement is placed directly in line 10 to get the global time and store it in a
float variable T2.

(2) Get the real values of uncontrollable parameters:
In the test behavior tree, uncontrollable parameters are time intervals between an

internal or external output event and its last IO event, which can be calculated only in
the process of test execution. In TIMEDTTCN-3, assignment statements can be used
to get the real values of such parameters. These values can be calculated by expres-
sions on global time values, in fact, di=Ti+1-Ti (i=0,1,2,…). For example, an uncon-
trollable parameter d1 can be calculated by an assignment statement in line 11.

Table 1 the TIMEDTTCN-3 test case for the test behavior tree in Fig. 5

1 testcase testcase1() runs on simple_rtp {
2 var float T0,T1,T2,T3,T4; //global clock
3 var float d1,d2,d3; //time interval
4 T0 := self.now;
5 T1 := T0 + 1;
6 resume(T1) ; //wait until T1 point
7 PCO1.send(A1); //node (a)
8 alt { //alt 1
9 []PO.receive(a) {
10 T2 := self.now;
11 d1 := T2 – T1;
12 if(d1 < 2) { //node (b)
13 alt { //alt 2
14 []PO.receive(b) {
15 T3 := self.now;

42 }
43 []PCO1.receive{ //node(12)
44 setverdict(fail);
45 }
46 } //end of alt 4
47 } else { //node(4)
48 setverdict(conf);
49 }
50 }
51 []PO.receive(c) {
52 T3 := self.now;
53 d2 := T3 - T2;
54 if(d2 < 3) { //node (3)
55 alt { //alt 5
56 [] PCO1.receive(C1) {

16 d2 := T3 – T2;
17 if((d2>1) and (d2<3)
 and ((d1+d2)<2)){ //node(1)
18 alt { //alt 3
19 []PCO1.receive(B1) {
20 T4 := self.now;
21 d3 := T4 – T3;
22 if(((d1+d2+d3)>2) and
 ((d1+d2+d3)<3)){//node(7)

23 setverdict(pass);
24 } else { //node (8)
25 setverdict(conf);
26 }
27 }
28 []PCO1.receive { //node(9)
29 setverdict(fail);
30 }
31 } //end of alt 3
32 } else if((d2>1) and (d2<3)
 and ((d1+d2)>=2)){ //node(2)

33 alt { //alt 4
34 []PCO1.receive(C1) {
35 T4 := self.now;
36 d3 := T4 – T3;
37 if(d3 < 1) { //node (10)
38 setverdict(pass);
39 } else { //node (11)
40 setverdict(conf);
41 }

57 T4 := self.now;
58 d3 := T4 - T3;
59 if(d3 < 1) { //node(13)
60 setverdict(pass);
61 } else { //node(14)
62 setverdict(conf);
63 }
64 }
65 [] PCO1.receive {//node (15)
66 setverdict(fail);
67 }
68 } //end of alt 5
69 } else { //node (5)
70 setverdict(conf);
71 }
72 }
73 []PO.receive { //node (6)
74 setverdict(fail);
75 }
76 } //end of alt 2
77 } else {
78 setverdict(conf);
79 }
80 }
81 []PO.receive {
82 setverdict(fail);
83 }
84 } //end of alt 1
85 } //end of test case

(3) Implementation of controllable parameters:
In the test behavior tree, controllable parameters are time intervals between an ex-

ternal input event and its last IO event, which should be set in advance. To implement
such parameters, resume statements can be used. For example, we set the controlla-
ble parameter d0 in Fig. 5 to 1 time unit, so this parameter can be implemented by line
4~7 in Table 1, which means that after waiting 1 time unit from the time point T0,
PCO1 will send A1 to SUT.

(4) Online evaluations and verdicts setting:
Only online evaluation can be used to test hard real-time requirements in real-time

interoperability testing. According to Lemma 1, Time constraints of the test event
nodes on the time point Tk can be represented by a conjunction over a set of linear
inequalities on parameters di(i=0,1,…,k-1). Until the time point Tk, values of all un-
controllable parameters have been calculated by transformation rule (2) and values of
all controllable parameters have been set in advance, so during the testrun, Mathe-
matical formulae on the values of di(i=0,1,…,k-1) can be used in online evaluations
on the time point Tk. In the example of Table 1, the if statement of line 17 checks if
the test event node (1) is reached by using the condition 1<d2<3 and d1+d2<2.

When verdict nodes of the test behavior tree are reached, verdicts should be set by
using setverdict statements. Besides pass or fail verdicts, if functional requirements

are satisfied, i.e., received messages are correct, but non-functional requirements are
violated, i.e., time constraints are not satisfied, a conf verdict should be set. In the
example of Table 1, setverdict statement in line 23 set a pass verdict for node (7) in
Fig. 5; and setverdict statement in line 25 set a conf verdict for node (8) in Fig. 5.

According to above transformation rules, the test behavior tree in Fig. 5 can be
converted to the TIMEDTTCN-3 test case with about 85 lines codes shown in Table 1.

5 Comparisons with Real-time TTCN

5.1 Real-time TTCN

Real-time TTCN ([WG99]) is a real-time extension of TTCN-2, which is a previous
version of TTCN-3. Table 2 is an example of real-time TTCN behavior description.
Real-time TTCN extends TTCN-2 both on the level of syntax and semantics. In real-
time TTCN, an assumption is made that execution of each statement is instantaneous.
On the syntactical level, real-time TTCN adds two columns in dynamic behavior
description table: Time and Time options column. Time columns are used to define
the earliest and latest execution times (EET and LET) to constrain relative time inter-
val between the associated test event statement and a previous or earlier test event. In
real-time TTCN, two types of methods for specifying EET and LET are defined: (1)
Define the two values by using time expressions directly, which indicate relative time
interval between the execution time of the associated statement and its previous state-
ment (just the parent node in the test behavior tree). In the example of Table 2, line 1
is defined by two constants directly, and line 3 is defined by using a time name,
which should be defined in Time Declaration table and be evaluated by an assign-
ment statement before use (line 2). (2) Define the two values by using Labels, which
indicate relative time interval between the execution time of the associated statement
and its earlier statement that labeled as this Label. For example, in Table 2, line 5
defines time constraints (L1+WFN, L1+LET), which means that the time interval
between the execution time of line 5 and line 1 are from WFN to LET. The two types
of specifications are different from the starting time points for relative time interval.
In real-time TTCN, entries in Time Options columns are combinations of M and N.
On the semantics level, [WG99] defines its operational semantics and formal seman-
tics based on timed transition system.

Table 2 An example of real-time TTCN behavior description ([WG99])

Test Case Dynamic Behaviour
Nr La Time Time

Options
Behaviour Description C V Comments

1
2
3
4
5

L1

2, 4

2, NoDur

L1+WFN,

M

M, N

A ? DATA_ind
 (NoDur := 3)
 A ! DATA_ack
 A ? DATA_ind
 B ? Alarm

 Time Label
Time Assignment

L1+LET

5.2 Problems in transformation from test behavior tree to real-time TTCN

We consider how to transform a test behavior tree to a real-time TTCN test case. Not
considering time constraints, the method of transformation is similar to the one for
TTCN-3. Now consider time constraints of each node in the test behavior tree of Fig.
5. For controllable parameters, three cases should be considered:

Case 1: Node (3) PO?c, d2[d2<3]:
In this case, d2 is just the time interval between the execution time of this statement

and its previous statement corresponding to its parent node in the test behavior tree,
so the first method of specifying EET and LET in real-time TTCN can be used:
EET(3) = 0, LET(3) = 3.

Case 2: Node (7) PCO1?B1, d3[2<d1+d2+d3<3]:
In this case, d1+d2+d3 = T4 - T1, is just the time interval between the execution time

of this statement and the statement corresponding to node (a), so the second method
of specifying EET and LET in real-time TTCN can be used: Label the statement cor-
responding to node (a) as L1, then EET(7) = L1+2, LET(7) = L1+3. See Table 3.

Table 3 real-time TTCN representation of Node (7) in Fig. 5

Test Case Dynamic Behaviour
Nr La Time TOpt Behaviour Description C V Com-

ments
1
2
3
4

L1

L1+2,L1+3

PCO1!A1
 ……

 PCO1?B1
 ……

P

Node (a)

Node (7)

Case 3: Node (2) PO?b, d2[1<d2<3 and d1+d2≥2]:
This case is most complicated. In this case, time constraints of the node are 1<d2<3

and d1+d2≥2: on the one hand, 1<d2<3 indicates the time interval between the execu-
tion time of this statement and its parent statement; on the other hand, d1+d2=T3 - T1,
so d1+d2≥2 indicates the time interval between the execution time of this statement
and the statement corresponding to node (a) must be not less than 2 time units. Thus
neither the two methods of specifying EET and LET can satisfy the two real-time
requirements at the same time. If real-time TTCN should be used in real-time interop-
erability testing, real-time TTCN must be extended to solve this problem.

For uncontrollable parameters, their values should be set in advance, so the relative
time intervals corresponding to such parameters must be fixed values. In this case,
EET and LET are the same. For example, in Table 4, line 1 represents the node (a) in
the test behavior tree, so its EET and LET are both 1 time unit.

5.3 Possible extensions of real-time TTCN

In this section, we give a suggestion of possible extensions of real-time TTCN for
interoperability testing of real-time communication system.

In the Case 3 of Section 5.2, time constraints can also be represented as max(2-
d1,1)<d2<3, where the return value of the function max() is the maximal value of
parameters. With different values of d1, the values of max(2-d1,1) are possibly differ-
ent: in fact, when d1<1, max(2-d1,1)=2-d1, so time constraints can be represented as 2-
d1<d2<3; when d1≥1, max(2-d1,1)=1, so time constraints are 1<d2<3. If the above
various cases are distinguished in dynamic behavior descriptions, test cases will be-
come very fussy. To avoid such a problem, a uniform syntax can be used. Here, the
concept of absolute time must be introduced in real-time TTCN just like in
TIMEDTTCN-3. Possible extensions for real-time TTCN on the syntactical level can
be as follows.

(1) Introduce a timestamp recording function T(): for a lable L, T(L) returns the
absolute time value of the execution time for the statement labeled as L;

(2) Introduce the third type of method for specifying EET and LET: the meanings
of EET and LET are the same with the first type of specifying method, i.e., time con-
straints of the relative time interval between the execution time of the associated
statement and the previous statement corresponding to its parent node; in the expres-
sions of EET and LET, function T(), max() and min() can be used.
Proposition 1. In real-time interoperability testing, all time constraints of each node
in test behavior trees can be represented as EET and LET by the above syntactical
extensions.
Proof. According to Lemma 1, on the time point Tk, time constraints of the test event
nodes can be represented by a conjunction over a set of linear inequalities on
di(i=0,1,…,k-1). So on the time point Tk+1 (k=0,1,2…), time constraints of dk can be
reduced to the two following formats: (1))(1k10k ,d,,ddfd −≤ L or (2)

)(1k10k ,d,,ddgd −≥ L , here,)(1k10 ,d,,ddf −L and)(1k10 ,d,,ddg −L are both linear
expressions on d0, d1,…, dk-1; thus EET and LET of the statement corresponding to
this node can be represented as max{)(1k10 ,d,,ddg −L } and min{)(1k10 ,d,,ddf −L }
respectively. Because of di =Ti+1-Ti (i=0,1,2,…), so EET and LET also can be repre-
sented as max{)(k10 ,T,,TTg L′ } and min{)(k10 ,T,,TTf L′ }, here,)(k10 ,T,,TTg L′
and)(k10 ,T,,TTf L′ are expressions by using Ti+1-Ti in instead of di in

)(1k10 ,d,,ddg −L and)(1k10 ,d,,ddf −L respectively, and they are all linear expres-
sions on T0, T1,…, Tk. If a label is attached to the corresponding statement, Ti
(i=0,1,2,…) can be get by function T(). Thus EET and LET of the statement can be
specified by using function T(), max() and min(). □

Table 4 the real-time TTCN test case for the test behavior tree in Fig. 5

Test Case Dynamic Behaviour
Nr La Time TOpt Behaviour Description C V Comments
1
2
3

L1
L2

1
0,2
1, 2-T(L2)+T(L1)

PCO1!A1
PO?a

PO?b

Node (a)
Node (b)
Node (1)

4
5
6
7
8
9
10
11
12
13
14

 L1+2,L1+3

max(2-T(L2)+T(L1),1), 3
0,1

0,3
0,1

0,1

M

PCO1?B1
PCO1?otherwise

PO?b
PCO1?C1
PCO1?otherwise

PO?c
PCO1?C1
PCO1?otherwise

PO?b
PO?otherwise

PO?otherwise

P
F

P
F

P
F
F
F
F

Node (7)
Node (9)
Node (2)
Node (10)
Node (12)
Node (3)
Node (13)
Node (15)
Node (4)
Node (6)

On the semantics level, we can also refine operational semantics for the syntactical
extensions. Before evaluating a set of alternatives, the values of EET and LET for
each alternative should be evaluated at first. If the value of EET for one statement is
greater than LET, the corresponding statement should be ignored in the process of
evaluation, and test execution should not be stopped.

By using these extensions of real-time TTCN, the test behavior tree shown in Fig.
5 can be converted to a real-time TTCN test case in Table 4.

5.4 Comparisons between TIMEDTTCN-3 and real-time TTCN

Since TIMEDTTCN-3 is a real-time extension of TTCN-3, it has also the characteris-
tics of TTCN-3. In this section, we compare TIMEDTTCN-3 with real-time TTCN
only from the aspect of the capability of real-time testing. From the discussions in
Section 4 and 5, we can see that

(1) TIMEDTTCN-3 is powerful enough to specify time constraints in real-time in-
teroperability testing; even more complicated time constraints can be evaluated easily
by retrieving current absolute time, storing its value in a variable and passing it to
expression statements. In real-time TTCN, no concept of absolute time is introduced;
only Time and Time Options columns are added to Dynamic Behavior table to spec-
ify the earliest and latest execution times, which are constraints of time intervals rela-
tive to a fixed time point. So real-time TTCN cannot specify some complicated real-
time requirements; one example of such situations has been analyzed in Case 3 of
Section 5.2. To remedy this gap, real-time TTCN should be extended both on the
syntactical and semantic levels.

(2) TIMEDTTCN-3 is more flexible than real-time TTCN for its style like common
programming languages in specifying real-time requirements. However, the style of
real-time TTCN is more compact and formal.

(3) The semantics of TIMEDTTCN-3 is straightforward and simple, just like a com-
mon programming language. However, the semantics of real-time TTCN is a little
more complicated, especially the two time options are fussy and impenetrable.

(4) TIMEDTTCN-3 supports both online and offline evaluations, so it has the capa-
bilities of evaluating both hard and soft real-time requirements and it can be used not
only real-time testing but performance testing. However, real-time TTCN has only
capabilities of evaluating hard real-time requirements.

6 Conclusion

TIMEDTTCN-3 is a real-time extension of TTCN-3. In this paper, we use
TIMEDTTCN-3 in real-time interoperability testing. From system specifications, test
behavior trees can be generated. Then transformation rules from such intermediate
notations to TIMEDTTCN-3 test cases are given. We also investigate a real-time ex-
tension of TTCN – real-time TTCN. Since this notation has not enough capabilities of
specifying time constraints in real-time interoperability testing, we extend real-time
TTCN to fill in such a gap and transform test behavior trees to extended real-time
TTCN test cases. From the comparisons between the two real-time test notations, it
can be concluded that TIMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be more suitable for real-time interoperability testing.

We have implemented initial prototypes of test execution for both real-time TTCN
and TIMEDTTCN-3. In our future work, we plan to study real-time interoperability
testing under distributed test architecture and use the TIMEDTTCN-3 based test sys-
tem in real-life timed interoperability testing.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China
under Grant No. 90104002 and No. 60572082/F010110, and 973 Program of China
under Grant No. 2003CB314801.

References
[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

1994, 126(2): 183–235.
[BB04] L. B. Briones, E. Brinksma. A Test Generation Framework for quiescent Real-

Time Systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 64-78.

[BST98] S.Bornot, J.Sifakis, S. Tripakis. Modeling Urgency in Timed Systems.
COMPOS'97, LNCS 1536, Springer Verlag, 1998.

[DGN02] Z. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 -- A Real-Time
Extension for TTCN-3. Testcom2002: 407-424.

[DGN03] Z. Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 Based Graphical Real-
Time Test Specification. TestCom 2003: 110-127.

[EDK02] A. En-Nouaary, R. Dssouli, F. Khendek. Timed Wp-method: testing real-time
systems. IEEE Transactions on Software Engineering, 2002, 28(11): 1023 -
1038.

[ETSY04] K. El-Fakih, V. Trenkaev, N. Spitsyna and N. Yevtushenko. FSM Based Inter-
operability Testing Methods for Multi Stimuli Model. TestCom 2004: 60-75.

[GHRS03] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, et al. An introduction to
the testing and test control notation (TTCN-3). Computer Networks, 2003,
42(3): 375-403.

[Hao97] R. Hao. Research on Protocol Conformance and Interoperability Testing based
on Formal Methods (In Chinese). PhD thesis, Tsinghua University, P. R. China,

1997.

[HLSG04] R. Hao, D. Lee, R.K. Sinha and N. Griffeth. Integrated System Interoperability
Testing With Applications to VoIP. IEEE/ACM Transactions on Networking,
2004, 12(5): 823-836.

[HNTC99] T. Higashino, A. Nakata, K. Taniguchi, and A. R. Cavalli. Generating test cases
for a timed I/O automaton model. IFIP TC6 12th International Workshop on
Testing Communicating Systems, 1999: 197-214.

[KD03] P. Krémer and S. Dibuz. Framework and Model for Automated Interoperability
Test and Its Application to ROHC. Testcom2003: 243 - 257.

[KJM03] A. Khoumsi, T. Jéron and H. Marchand. Test cases generation for nondetermin-
istic real-time systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2003, LNCS 2931: 131-146.

[KSK00] S. Kang, J. Shin, and M. Kim. Interoperability Test Suite Derivation for Com-
munication Protocols. Computer Networks, 2000, 32(3): 347-364.

[KT04] M. Krichen and S. Tripakis. Black-Box Conformance Testing for Real-Time
Systems. SPIN 2004: 109-126.

[LMN04] K. Larsen, M. Mikucionis, B. Nielsen. Online Testing of Real-time Systems
Using Uppaal. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 79-94.

[NDG04] H. Neukirchen, Z. Dai, J. Grabowski. Communication Patterns for Expressing
Real-Time Requirements Using MSC and Their Application to Testing. Test-
Com 2004: 144-159.

[RC90] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
The 3rd Int. Workshop on Protocol Test Systems, 1990.

[SKCK04] S. Seol, M. Kim, S. T. Chanson, and S. Kang. Interoperability Test Generation
and Minimization for Communication Protocols Based on the Multiple Stimuli
Principle. IEEE Journal on Selected Areas in Communications (JSAC), 2004,
22(10): 2062-2074.

[SKKJ03] S. Seol, M. Kim, S. Kang and J. Ryu. Fully Automated Interoperability Test
Suite Derivation for Communication Protocols. Computer Networks, 2003,
43(6): 735-759.

[SVD01] J. Springintveld, F. Vaandrager, and P.R. D'Argenio. Testing Timed Automata.
Theoretical Computer Science, 2001, 254(1-2): 225-257.

[TKS03] V. Trenkaev, M Kim, and S. Seol. Interoperability Testing Based on a Fault
Model for a System of Communicating FSMs. TestCom 2003, LNCS 2644:
226–242.

[TTCN] ITU-T Recommendation X.292 (1998): OSI Conformance Testing Methodology
and Framework for Protocol Recommendations for ITU-T Applications––The
Tree and Tabular Combined Notation (TTCN). ITU-T, Geneva (Switzerland).

[TTCN3] ETSI European Standard (ES) 201 873-1 V2.2.1 (2002-08): The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language. European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis (France),
2002.

[VBT01] C. Viho, S.Barbin and L. Tanguy. Towards a formal framework for interopera-
bility testing. FORTE 2001: 51-68.

[WG99] T. Walter, J. Grabowski. A framework for the specification of test cases for real-
time distributed systems. Information & Software Technology, 1999, 41(11-12):
781-798.

[WWY04] Zhiliang Wang, Jianping Wu, Xia Yin. Towards Interoperability Test Genera-
tion of Time Dependent Protocols: a Case Study. IEEE Globecom2004, Vol. 2:
589-594.

[WWY06] Zhiliang Wang, Jianping Wu and Xia Yin. A Formal Framework to Interopera-
bility Testing for Real-time Systems. Submitted.

