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Abstract. There are two main shortcomings in the existing models for 
generating checking sequences based on distinguishing sequences. First, these 
models require a priori selection of state recognition sequences (called α-
sequences) which may not be the best selection for yielding substantial 
reduction in the length of checking sequences. Second, they do not take 
advantage of overlapping to further reduce the length of checking sequences. 
This paper proposes an optimization model that tackles these shortcomings to 
reduce the lengths of checking sequences beyond what is achieved by the 
existing models by replacing the state recognition sequences with a set of basic 
sequences called α-elements and by making use of overlapping. 

1. Introduction  

To ensure the correct functioning of implementations of a Finite State Machine 
(FSM) M, a fault detection experiment can be formed [14]: Such an experiment 
consists of applying an input sequence (derived from M) to an implementation N of 
M, observing the actual output sequence produced by N in response to the application 
of the input sequence, and comparing the actual output sequence to the expected 
output sequence. The applied input sequence is called a checking sequence which 
determines whether N is a correct or faulty implementation of M [8, 10].  

A checking sequence of M is constructed in such a way that the output sequence 
produced by N in response to the application of the checking sequence provides 
sufficient information to verify that every state transition of M is implemented 
correctly by N. That is, in order to verify the implementation of a transition from state 
a to state b under input x, 1) N is transferred to the state recognized as state a of M; 2) 
the output produced by N in response to x is checked to be as specified in M (to detect 
an output fault); and 3) the state reached by N after the application of x is recognized 
as state b of M (to detect a transfer fault). Hence, a crucial part of testing the correct 
implementation of each transition is recognizing the starting and terminating states of 
the transition which can be achieved by a distinguishing sequence [8], a 
characterization set [8] or a unique input-output (UIO) sequence [6]. A distinguishing 
sequence for M is an input sequence for which each state of M produces a distinct 
output sequence. It is known that a distinguishing sequence may not exist for every 
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minimal FSM [14], and that determining the existence of a distinguishing sequence 
for an FSM is PSPACE-complete [15]. However, based on distinguishing sequences, 
various methods have been proposed for FSM based testing (e.g., [4, 9-11, 16, 17]). 

Recent methods for constructing reduced length checking sequences based on 
distinguishing sequences utilize optimization models. In these models, a 
distinguishing sequence for M is used to form both α-sequences and test segments 
[11, 16]. The α-sequences, which consist of consecutive applications of the 
distinguishing sequence for M, are formed to ensure that each state of M is also a 
distinct state of N; the test segments, which consist of the application of the input 
triggering the corresponding transition and the distinguishing sequence for M, are 
formed to verify that every state transition of M is implemented correctly by N. The 
α-sequences collectively confirm that if N produces the corresponding distinct output 
sequence for each state of M, then the distinguishing sequence for M is also a 
distinguishing sequence for N, that is, the distinguishing sequence used in the 
formation of the α-sequences defines a bijection between states of M and N. Thus, 
when a path P of the directed graph G representing M is formed such that the input 
sequence that induces P on G covers each α-sequence and each test segment, that 
input sequence is a checking sequence of M.  

In these models, however, there are two main shortcomings. These models require 
a priori selection of a set of α-sequences which may not guarantee a substantial 
reduction in the length of a resulting checking sequence. Also, these models connect 
the α-sequences and test segments to form a checking sequence and thus do not take 
advantage of potential overlapping among the α-sequences and test segments that 
could be used to further reduce the lengths of checking sequences.  

This paper proposes a novel optimization model that tackles these shortcomings in 
generating the minimal-length checking sequences: The proposed model does not 
require selection of α-sequences in advance. It employs a set of α-elements where 
there is an α-element for each state of M which consists of the application of the 
distinguishing sequence for M twice. The set of α-elements are then used for the same 
purpose as the α-sequences in the earlier models. The proposed model does not 
simply connect the α-sequences and test segments to form a checking sequence. It 
facilitates the use of overlapping among the α-elements and test segments to further 
reduce the lengths of resulting checking sequences.  

In the remainder of the paper, the proposed model is presented after some 
preliminary definitions. An example is used to illustrate the model and the steps of its 
construction. It is then proven that the proposed model constructs a checking 
sequence. The extensions and the potential uses of the model are discussed in the 
concluding remarks.   

2. Preliminaries  

A deterministic and completely specified FSM (finite state machine) is a quintuple M 
= (S, X, Y, δ, λ), where S = {s

1
, s

2
, ..., s

n
} is a finite set of states with n = |S| and s

1
 ∈ S 

as the initial state, X is a finite set of inputs, Y is a finite set of outputs, δ is a state 
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transition function that maps S×X to S, and λ is an output function that maps S×X to Y. 
M is minimal if, for any different states s

i
, s

j
 ∈ S, there is an input sequence I ∈ X* 

such that λ(s
i
, I) ≠ λ(s

j
, I).  M can be represented by a directed graph (digraph) G = (V, 

E) (Figure 1) where a set of vertices V = {v
1
, v

2
, ..., v

n
} represents the set of states of 

M and a set of directed edges E={(v
j
, v

k
; x/y): v

j
, v

k ∈ V} represents all specified 
transitions of M. More specifically, each edge e = (v

j
, v

k
; x/y) ∈ E represents a state 

transition t = (s
j
, s

k
; x/y) of M from state s

j
 to s

k
 with input x ∈ X and output y ∈ Y, and 

the (input/output) pair x/y is the label of e.   
A path P = (n

1
, n

2
; x

1
/y

1
)(n

2
, n

3
; x

2
/y

2
) ... (n

r-1
, n

r
; x

r-1
/y

r-1
), r > 1, of G = (V, E) is a 

finite sequence of adjacent (not necessarily distinct) edges in E, where each node n
i
, 1 

≤ i ≤ r, represents a vertex of V; n
1
 and n

r
 are called start and end of P, and the 

input/output sequence (x
1
/y

1
)(x

2
/y

2
) ... (x

r-1
/y

r-1
) is called label of P, denoted label(P). P 

is represented by (n
1
, n

r
; I/O), where I/O is called the transfer sequence T from n

1
 to 

n
r
, I = “x

1
x

2
 ... x

r-1
” is called the input portion of I/O, O = “y

1
y

2
 ... y

r-1
” is called the 

output portion of I/O. In this case, I (or I/O) is said to induce P at n
1
. The length (or 

cost) of an input sequence I (or input/output sequence I/O) is its number of inputs, 
denoted |I| (or |I/O|). The length (or cost) of a path P = (n

1
, n

r
; I/O) is the length (or 

cost) of the input sequence I, denoted |P|. A sequence i1 i2 … ik is a subsequence of x1 
x2 … xm if there exists a Δ, 0 ≤ Δ ≤ m-k, such that for all j, 1 ≤ j ≤ k, ij = xj+Δ. 
Subsequence i1 i2 … ik is a prefix of x1 x2 … xm if i1 = x1.   

A digraph G = (V, E) is strongly connected if, for every pair of vertices vj and vk, 
there exists a path from vj to vk. A Rural Postman (RP) path from vertex v

i
 to vertex 

v
j
 over a subset of edges E' in G = (V, E) is a path which starts at v

i
, ends at v

j
, and 

includes all edges of E'; the Rural Chinese Postman (RCP) Problem is to find an RP 
path of minimum cost i.e., an RCP path, which is the optimization model we will 
formulate. Algorithms for solving the RCP problem and its special cases important to 
testing can be found in [1, 16], which are left outside of the scope of this paper.    

Let M = (S, X, Y, δ, λ) denote a completely specified, minimal, and deterministic 
FSM, which is represented by a strongly connected digraph G = (V, E). Given an 
FSM M, let Φ(M) be the set of FSMs each of which has at most n states and the same 
input and output sets as M.  Let N be an FSM of Φ(M).  N is isomorphic to M if there 
is a one-to-one and onto function f on the state sets of M and N such that for any state 
transition (si, sj; x/y) of M, (f(si), f(sj); x/y) is a transition of N. A checking sequence of 
M is an input sequence starting at the initial state s1 of M that distinguishes M from 
any N of Φ(M) that is not isomorphic to M i.e., the output sequence produced by any 
such N of Φ(M) is different from the output sequence produced by M. In the context 
of testing, this means that in response to this input sequence, any faulty 
implementation N from Φ(M) will produce an output sequence different from the 
expected output, thereby indicating the presence of a fault(s). As stated earlier, a 
crucial part of testing the correct implementation of each transition of M in N from 
Φ(M) is recognizing the starting and terminating states of the transition which lead to 
the notions of state recognition and transition verification used in algorithms for 
constructing checking sequences (for example, [11], [16]). These notions are defined 
below in terms of a given distinguishing sequence D for FSM M. 
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A distinguishing sequence (DS) of M is an input sequence D such that the output 
sequence produced by M in response to D is different for each state of M (i.e., ∀ si, sj 
∈ S, si ≠ sj, λ(si, D) ≠ λ(sj, D)). A distinguishing sequence for FSM M0 is shown in 
Table 1. Based on this definition, the concepts of state recognition and transition 
verification can be defined as follows. Let an IO-sequence Q be the label of a path P 
= e1e2 …er of G starting at v1, where ej = (nj, nj+1; xj/yj) for all j, 1 ≤ j ≤ r, i.e., Q = 
(x1/y1)… (xr/yr). Then the following defines state recognition and transition 
verification as in [16]. 

1

3

2

t
3
:a/0

t
1
:a/0

t
5
:a/1

t
4
:b/0

t
2
:b/1

t
6
:b/1

 
Fig. 1. FSM M0 

Table 1. A DS D = “aa” and responses of each state of FSM M0 

Start state End state D = “aa” 
1 3 00 
2 1 01 
3 2 10 

Recognition of a node ni of P (in Q) as some state of M is defined recurrently and is 
associated with a nonnegative number depth(ni): Let depth(ni) = ∞ initially;  
• 1) A node ni of P is d-recognized (in Q) as some state s of M if ni is the start of a 

subpath of P whose label is D/λ(s, D); depth(ni) ← 0.  
• 2) Suppose that (nq, ni; T) and (nj, nk; T) are subpaths of P such that nodes nq and nj 

are d-recognized as state s of M, and nk is d-recognized as state s' of M but ni is not 
d-recognized. Then, node ni is t-recognized as state s' of M; depth(ni) ← 1.  

• 3) Suppose that (nq, ni; T) and (nj, nk; T) are subpaths of P such that nq and nj are 
either d-recognized or t-recognized as state s of M, and nk is either d-recognized or 
t-recognized as state s' of M. Then, node ni is t-recognized as state s' of M; 
depth(ni) ← min{depth(ni), 1 + max{depth(nq), depth(nj), depth(nk)}}.  

• A node of P is said to be recognized if it is either d-recognized or t-recognized as 
some state of M.  

A transition t = (s, s'; x/y) of M is verified (in Q) if there is an edge (ni, ni+1; xi/yi) of P 
such that nodes ni and ni+1 are recognized as states s and s' of M, and xi/yi =x/y.  

Verification of the transitions of M leads to forming checking sequences as shown 
in Theorem 1 below, which forms the foundation for our proposed model.  
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Theorem 1 [16] Let Q be the label of a path P of G (for FSM M) such that every 
transition is verified in Q. Then the input portion of Q is a checking sequence of M. 

In the proposed model, recognition of nodes n
i
 and n

i+1
 of edge (n

i
, n

i+1
; x

i
/y

i
) of P 

(of G for FSM M), which corresponds to the transition t = (s, s'; x/y) of M, will be 
achieved as follows. The node n

i+1
 will be d-recognized in Q as state s' of M, hence 

there must be a subpath (n
i+1

, n
k
; D/λ(s', D)) of P. This subpath of P will be used to 

construct a test segment for t = (s, s'; x/y), which is denoted t' = (n
i
, n

i+1
; x

i
/y

i
)(n

i+1
, n

k
; 

D/λ(s', D)) (or t' = (n
i
, n

k
; xiD/λ(s, xiD)) in short). The collection of test segments for 

all transitions of M will be denoted PC, i.e., PC = {(si, sj; x/y)(sj, δ(sj, D); D/λ(sj, D)): 
for all t = (si, sj; x/y) of M} (or PC = {(si, δ(si, xD); xD/λ(si, xD)): for all t = (si, sj; x/y) 
of M} in short). Table 2 shows PC for FSM M0.  

Table 2. Test Segments of FSM M0 with DS D = “aa” 

k 1 2 3 4 5 6 
tk (1, 2; a/0) (1, 3; b/1) (2, 3; a/0) (2, 1; b/0) (3, 1; a/1) (3, 3; b/1) 
tk' (1,1;aD 

/001) 
(1,2;bD 
/110) 

(2,2;aD 
/010) 

(2,3;bD 
/000) 

(3,3;aD/ 
100) 

(3,2;bD 
/110) 

 

The node n
i
 of P will be t-recognized in Q as state s of M, hence there must be 

subpaths (n
j
, n

k
; T) and (n

q
, n

i
; T) of P such that n

j
 and n

q
 are either d-recognized or t-

recognized as state s of M, and n
k
 is either d-recognized or t-recognized as state s' of 

M. These subpaths will be formed by using what is called α-elements. A set of α-
elements for M is a set of paths {αi = (si, δ(si, D); D/λ(si, D))(δ(si, D), δ(δ(si, D), D); 
D/λ(δ(si, D), D)): i = 1, …, n} (or {αi = (si, δ(si, DD); DD/λ(si, DD)): i = 1, …, n} in 
short), denoted by Pα  . For example, Table 3 shows Pα for FSM M0 with D = “aa”.  
Proposition 1: Let Q be the label of a path P of G (for FSM M with a distinguishing 
sequence D) such that Q contains n subsequences of the form DD/λ(si, DD), i = 1, …, 
n. If Q induces a path in N of Φ(M)  then D is also a distinguishing sequence for N 
and defines a bijection from the states of M to the states of N. 
Proof: Since D is a distinguishing sequence for M, each of these subsequences of the 
form D/λ(si, D), which is a prefix of DD/λ(si, DD), i = 1, …, n, is unique. If Q induces 
a path of N from Φ(M) then, since N has at most n states, D must also be a 
distinguishing sequence for N. This says that if n different responses to D are 
observed in N, then D defines a one-to-one correspondence between the states of M 
and N.  In this case, we say that the uniqueness of the response of each of the n states 
of N to D is verified and hence N has n distinct states [13].                  �  
Proposition 2: Let Q be the label of a path P of G (for FSM M with a distinguishing 
sequence D) such that each α-element αi = (si, δ(si, DD); DD/λ(si, DD)), i = 1, …, n, 
is a subpath P of G. Then, for each (si, δ(si, D); D/λ(si, D)), 1 ≤ i ≤ n, appearing in P 
as a subpath (n

j
, n

k
; D/λ(si, D)),  

1. the start node n
j
 of (n

j
, n

k
; D/λ(si, D)) is d-recognized   

2. the end node n
k
 of (n

j
, n

k
; D/λ(si, D)) is t-(or d-)recognized 

Proof: Part 1) is a direct consequence of the definition state recognition.  Part 2) can 
easily be shown as follows. The α-element αi = (si, δ(si, DD); DD/λ(si, DD)) appears 
in P as a subpath (n

q
, n

r
; D/λ(si, D))(n

r
, n

v
; D/λ(δ(si, D), D)). As n

q
, n

r
 and n

j
 are d-
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recognized, the end node n
k
 of (n

j
, n

k
; D/λ(si, D)) must be t-recognized as δ(si, D) if it 

is not d-recognized, by the definition of state recognition.             �  

Table 3. α-elements for FSM M0 (with D = “aa”) 

3. The Optimization Model  

We wish to pose the following optimization problem: Given an FSM M (represented 
by a digraph G= (V, E)) and DS D for M, generate a minimum-length checking 
sequence of M starting at the initial state s1 through composing an RCP path P of G 
which starts at v1  and contains every element of Pα∪PC. As in the earlier models for 
constructing reduced length checking sequences based on distinguishing sequences, it 
will be shown that since this RCP path P of G contains every element of Pα∪PC, it 
establishes that all states of M are recognized and all transitions of M are verified.  

In order to reduce the overall length of the resulting checking sequence, we will 
take advantage of the overlapping among elements of Pα∪PC in generating a 
minimum-length checking sequence in our model as follows: Let P1 and P2 denote 
two paths of G. If P1 has a suffix R that is a prefix of P2, namely, P1 = R1R and P2 = 
RR2 for some paths R1 and R2 of G, we say that P1 overlaps P2 by R. In this case, a 
new path P1,2 of G can be formed by overlapping P1 and P2 by R, namely, P12 = R1RR2, 
with |P12| = |P1| + |P2| − |R|. Furthermore, if label(P2) has D as the prefix of its input 
portion, we call overlap of this type D-overlap by R. This definition offers a way to 
check if P1 D-overlap P2 or not by first checking if D is the prefix of the input portion 
of label(P2) and then identifying the maximal overlapping portion R.  

D-overlap of a sequence of paths (of G) P1, P2, …, Pk, where k > 2, can be defined 
inductively as follows: If D-overlapping of the sequence P1, …, Pk-1 forms a new path 
P1,k-1 and if this P1,k-1 D-overlaps Pk forming a path P1,k, then D-overlapping of the 
sequence P1, P2, …, Pk forms P1,k.  

The proposed algorithm for the solution of the optimization problem augments G = 
(V, E) to form a digraph G* = (V*, E*) and then formulates the construction of a 
minimum-length checking sequence for M starting at the initial state s1 as finding an 
RCP path P of G* which starts at v1 and contains every element of Pα∪PC.   

The proposed algorithm is given as follows: 
Initially, G* = (V*, E*) ← G = (V, E) 

1. For every τ = (si, sj; Iτ /Oτ) that is either an α-element or a test segment,  
a) add to V* two new vertices s'iτ , s"jτ for the start and end states of τ, resp. 
b) add to E*  

• an edge (s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|  
• an edge (s"jτ , sj) with cost 0 
• an edge (si, s'iτ) with cost 0 

 Start state  si End state label(αi) = DD/λ(si, DD) 
α1 1 2 aaaa/0010 
α2 2 3 aaaa/0100 
α3 3 1 aaaa/1001 
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2. a) Add to V* an artificial node s1* (representing the initial state s1) 
 b) Add to E* an edge (s1*, s'1τ) with cost 0, for each of those τ = (s1, sj; Iτ /Oτ) ∈ 
Pα∪PC such that D is a prefix of Iτ  

3. For any pair of two different τ = (si, sj; Iτ /Oτ) and µ = (sk, sr; Iµ /Oµ), each being 
either an α-element or a test segment, such that τ D-overlaps µ by R (which can be 
determined by first checking if D is the prefix of Iµ and if yes then identifying the 
maximal overlapping portion R of τ and µ), add to E* an edge (s"jτ , s'kµ) with 
(negative) cost –|R| (which reflects the effect of D-overlapping).    

4. Find an RCP path P of G* starting from s1* traversing at least once the edges 
representing the α-elements and the test segments. Use the input portion of 
label(P) as a checking sequence of M.  
More specifically, the algorithm is as follows: 
Construct G* = (V*, E*) whose vertex-set and edge-set are   
V* = V ∪ V' ∪ V" ∪ { s1*} and E* = E ∪ E0 ∪ Eα ∪ EC ∪ E' ∪ E" ∪ ΕD 
from G = (V, E) representing a given FSM M, where 
 V' = {s'iτ : for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC},  
 V" = {s"jτ : for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC},  

E0 = {(s1*, s'1τ; ε) with cost 0: for all τ = (s1, sj; Iτ /Oτ) ∈ Pα∪PC  
  such that D is a prefix of Iτ }, 

 Eα = {(s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|: for all τ = (si, sj; Iτ /Oτ) ∈ Pα},  
 EC = {(s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|: for all τ = (si, sj; Iτ /Oτ) ∈ PC},  
 E' = {(si, s'iτ; ε) with cost 0: for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC}, 
 E" = {(s"jτ , sj; ε) with cost 0: for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC}, and 

ΕD = {(s"jτ , s'kµ; ε) with cost −|R|: for all τ = (si, sj; Iτ /Oτ), µ = (sk, sr; Iµ /Oµ) ∈ 
  P α∪P C such that τ D-overlaps µ by some R}.   

Find an RCP path P of G* that starts at s'1τ and contains all edges of Eα∪EC.  
The input portion of label(P) is a checking sequence of M.   

Example: For FSM M0 with D = “aa”, Table 4 shows D-overlapping between pairs of 
elements of Pα∪PC and the resulting negative cost from each overlapping. More 
specifically, it shows all pairs τ, µ ∈ Pα∪PC such that τ D-overlaps µ by R with 
negative cost −|R|. Figure 2 shows an example of the result of application of the 
proposed algorithm to G (for M0), using only part of D-overlapping in Table 4 (so that 
Figure 2 does not become too complicated to follow). In Figure 2, thick lines 
represent edges of Eα∪EC and for simplicity, s'i, s"j are used for s'iτ and s"jτ. Note that 
in Tables 4-6, we dropped output portion of the paths for ease of presentation. An 
RCP path P (starting at vertex 1* and ending at vertex 2") is found as  
P = (1*,1'; ε)t1'-α1-t3'-α2-t5'-α3 (1",1; ε)(1,1'; ε)t2'(2",2; ε)(2,2'; ε)t4'(3",3; ε)(3,3'; ε)t6' 
where each hyphen sign indicates an occurrence of D-overlapping. Its corresponding 
input sequence (without overlapping) is:  

 “εaaa-aaaa-aaa-aaaa-aaa-aaaaεεbaaεεbaaεεbaa”.  
The checking sequence obtained from P with D-overlapping starting at state 1 is 

  “εaaa-aaaa-aaa-aaaa-aaa-aaaa baa baa baa”   
whose length is 15.  

For the same example, a reduced length checking sequence was found to have 
length 32 in [11]. 
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Table 4. Overlapping among Pα∪PC for FSM M0 
 

τ = P1 µ = P2 R −|R| E ∈ ED Inuse* 
α1 = (1, 2, aaaa)  α2 = (2, 3; aaaa) (2, 2; aaa) −3 (2τ", 2µ') y 

    α1 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y 
    α1 t'1 = (1, 1; aaa)  (1, 2; a) −1 (2τ", 1µ')  
    α1 t'3 = (2, 2; aaa)  (2, 2; aaa) −3 (2τ", 2µ') y 
    α1 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ')  

α2 = (2, 3; aaaa) α1 = (1, 2, aaaa) (1, 3; aa)  −2 (3τ", 1µ') y 
    α2 α3 = (3, 1; aaaa) (3, 3; aaa) −3 (3τ", 3µ') y 
    α2 t'1 = (1, 1; aaa)  (1, 3; aa)  −2 (3τ", 1µ')  
    α2 t'3 = (2, 2; aaa)  (2, 3; a) −1 (3τ", 2µ')  
    α2 t'5 = (3, 3; aaa) (3, 3; aaa)  −3 (3τ", 3µ') y 

α3 = (3, 1; aaaa) α1 = (1, 2, aaaa) (1, 1; aaa) −3 (1τ", 1µ') y 
    α3 α2 = (2, 3; aaaa) (2, 1; aa)  −2 (1τ", 2µ') y 
    α3 t'1 = (1, 1; aaa)  (1, 1; aaa) −3 (1τ", 1µ') y 
    α3 t'3 = (2, 2; aaa)  (2, 1; aa) −2 (1τ", 2µ')  
    α3 t'5 = (3, 3; aaa) (3, 1; a) −1 (1τ", 3µ')  

t'1 = (1, 1; aaa)  α1 = (1, 2, aaaa)  (1, 1; aaa)  −3 (1τ", 1µ') y 
    t'1 α2 = (2, 3; aaaa) (2, 1; aa)  −2 (1τ", 2µ') y 
    t'1 α3 = (3, 1; aaaa) (3, 1; a) −1 (1τ", 3µ')  
    t'1 t'3 = (2, 2; aaa)  (2, 1; aa) −2 (1τ", 2µ') y 
    t'1 t'5 = (3, 3; aaa) (3, 1; a) −1 (1τ", 3µ')  

t'2 = (1, 2; baa)  α1 = (1, 2, aaaa) (1, 2; a) −1 (2τ", 1µ')  
    t'2 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y 
    t'2 t'1 = (1, 1; aaa)  (1, 2; a) −1 (2τ", 1µ')  
    t'2 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ') y 

t'3 = (2, 2; aaa)  α1 = (1, 2, aaaa)  (1, 2; a) −1 (2τ", 1µ')  
    t'3 α2 = (2, 3; aaaa) (2, 2; aaa) −3 (2τ", 2µ') y 
    t'3 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y 
    t'3 t'1 = (1, 1; aaa) (1, 2; a) −1 (2τ", 1µ')  
    t'3 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ') y 

t'4 = (2, 3; baa)  α1 = (1, 2, aaaa) (1, 3; aa) −2 (3τ", 1µ') y 
   t'4 α2 = (2, 3; aaaa) (2, 3; a) −1 (3τ", 2µ')  
   t'4 t'1 = (1, 1; aaa)  (1, 3; aa) −2 (3τ", 1µ') y 
   t'4 t'3 = (2, 2; aaa)  (2, 3; a) −1 (3τ", 2µ')  

t'5 = (3, 3; aaa) α1 = (1, 2, aaaa) (1, 3; aa) −2 (3τ", 1µ')  
   t'5 α2 = (2, 3; aaaa) (2, 3; a) −1 (3τ", 2µ')  
   t'5 α3 = (3, 1; aaaa) (3, 3; aaa)  −3 (3τ", 3µ') y 
   t'5 t'1 = (1, 1; aaa)  (1, 3; aa)  −2 (3τ", 1µ') y 
   t'5 t'3 = (2, 2; aaa)  (2, 3; a) −1 (3τ", 2µ')  

t'6 = (3, 2; baa)  α1 = (1, 2, aaaa) (1, 2; a) −1 (2τ", 1µ')  
   t'6 α3 = (3, 1; aaaa) (3, 2; aa)  −2 (2τ", 3µ') y 
   t'6 t'1 = (1, 1; aaa)  (1, 2; a) −1 (2τ", 1µ')  
   t'6 t'5 = (3, 3; aaa) (3, 2; aa)  −2 (2τ", 3µ') y 
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The last column with “y” indicates the overlapping is used in Figure 2 for 
generating an RCP path. The ones with blank space indicated the overlapping is not 
considered in Figure 2 as we do not want the Figure too complicated.    
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Fig. 2. Optimization Model for FSM M0 

Note that D-overlapping between two elements Pα∪PC is shown explicitly in the 
optimization model whereas D-overlapping among a sequence of elements are formed 
automatically in the process of finding an RCP path P and can be identified in P. To 
prove the correctness of the proposed algorithm, let Π denote a set paths (of G) 
obtained from D-overlapping among elements (paths) of Pα∪PC, such that every 
element of Pα∪PC is a subpath of a path of Π. In G*, such a Π is naturally formed to 
consist of the maximal paths generated from D-overlapping among elements of 
Pα∪PC and those elements of Pα∪PC not contained in any D-overlapping path. Let Eπ 
be a set of edges, whose end vertices are in V of G, that represent the paths of Π.  
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Theorem 2: Let P be an RCP path of G0 = (V, E ∪ Eπ) such that P starts at v1 and 
contains every edge of Eπ and D is the prefix of the input portion of its label Q. Let E1 
denote the set of edges of P after excluding Eπ, i.e., E1 = E(P) ∩ E. If G1 = (V, E1) 

does not contain a cycle, then the input portion of Q forms a checking sequence of M.  
Proof: Suppose that P = (n

1
, n

2
; L

1
)… (n

r
, n

r+1
; L

r
) and its label Q = L

1
L

2
...L

 r
, where 

each (n
j
, n

j+1
; L

j
), 1 ≤ j ≤ r, is an edge (of G0) representing either a single edge or a 

subpath of G = (V, E). First we claim that every n
j
 of P, 1 ≤ j ≤ r, is recognized (in Q).  

Suppose the claim is not true. Since G1 = (V, E1) does not contain a cycle, it is well 
known [2] that the vertices of V can be assigned an order "∝" such that u ∝ v if there 
exists a path from u to v in G1. Let n

i
 be a node corresponding to the smallest member 

of V (with respect to "∝") such that n
i
 is not recognized. Note that i > 1 as n

1
 is d-

recognized. We consider (n
i-1

, n
i
; L

i-1
) of P and derive a contradiction for each of all 

possible cases below.  
If (n

i-1
, n

i
; L

i-1
) corresponds to an edge of Eπ, then n

i
 corresponds to the end of either 

an α-sequence or a test segment, which must be t-recognized, a contradiction. If (n
i-1

, 
n

i
; L

i-1
) ∈ E1, i.e., (n

i-1
, n

i
; L

i-1
) = (u, v; x/y) ∈ E, then n

i-1
 is recognized as u ∝ n

i
. Note 

that P contains the test segment for this edge of E, say (n
j
, n

j+1
; L

j
) where L

j
 = 

(xDv)/λ(u, xDv). As n
j
 corresponds to u ∝ n

i
, n

j
 is recognized. Also the node adjacent 

to n
j
 in the subpath (n

j
, n

j+1
; L

j
), δ(n

j
, x), is d-recognized. Thus, n

i
 is t-recognized as 

δ(u, x) of M, another contradiction. Therefore, every n
i
 is recognized.  

For every transition t of M, its test segment t' is contained in a subpath Pi (of P) 
represented by an edge (n

i-1
, n

i
; L

i-1
) of P. If the start state of t' is n

i-1
, from the 

argument above, n
i-1

 recognized; otherwise, t' is contained through D-overlapping, its 
start state is d-recognized. Hence, t' is verified in Q, and by Theorem 1, the input 
portion of Q is a checking sequence of M.               �   

Correctness of the proposed algorithm is a direct consequence of Theorem 2. 
Notice that Eπ is formed naturally in the process of solving for an RCP path P of G*. 
The RCP path P of G* can be viewed as a path of G0 = (V, E∪Eπ), by mapping the 
nodes of P into the corresponding vertices of G. Thus, as long as the premise of 
Theorem 2 holds, the correctness of the proposed algorithm is guaranteed. 

Up to this point, we have presented the proposed optimization model with a 
simplification for ease of presentation. This simplification is in the formation of α-
elements, that is, instead of using a more general form DTiDTj, where Ti, Tj are 
transfer sequences, we used DD (equivalently, assumed Ti = Tj = ε). In the previous 
models [11, 16] for constructing reduced-length checking sequences, a given set of 
transfer sequences Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n, is used for two main 
purposes. First, it is used to redefine a set of test segments as PC = {(si, sj; x/y)(sj, λ(sj, 
DIj); DIj/λ(sj, DIj)): for all t = (si, sj; x/y) of M}, so that every state can be reached by 
at least one of these test segments. Second, it is used to increase the flexibility of the 
models to obtain a possible further reduction in the lengths of checking sequences.  

Now we present a generalization of the optimization model that incorporates a 
given set of transfer sequences Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n through 
an adjustment of α-elements and test segments as follows.  
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Let  Pα =  {(si, sj; DIi/λ(si, DIi))(sj, δ(sj, DIj); DIj/λ(sj, DIj)): i = 1, …, n} and PC = 
{(si, sj; x/y)(sj, λ(sj, DIj); DIj/λ(sj, DIj)): for all t = (si, sj; x/y) of M}.  

This adjustment amounts to replacing subsequences of the form DD/λ(si, DD) with 
subsequences of the form DIiDIj/λ(si, DIiDIj), i = 1, …, n,  1≤ j ≤ n as the labels of α-
elements; and replacing subsequences of the form xD/λ(si, xD) with subsequences of 
the form xDIj/λ(si, xDIj), i = 1, …, n,  1≤ j ≤ n as the labels of test segments. As such, 
the adjustment does not alter the validity of the Propositions 1 and 2, and Theorem 2: 
Their proofs are similar to the proofs of those given for the optimization model 
presented in the previous section. With these new Pα and PC, we can apply the 
proposed algorithm to solve the same optimization problem as the one given earlier. 
Example: For FSM M0, D = “aa”, and a given set of transfer sequences T1 = a/1, T2 = 
T3 = ε, the set Pα of α-elements and the set PC of test segments are listed in Table 5 
and Table 6 below. Figure 3 shows the general optimization model for FSM M0 with 
the given Ti, i = 1, 2, 3. (Note that t1' and t3' are prefixes of α-elements, and thus, they 
are eliminated from the model.) We obtain the optimal solution to the general model 
as an RCP path P of G* starting at 1* (and ending at state 2"), which is:   
P = (1*,1'; ε)t1'-α1-α2-α3-t3'-t5'(1",1; ε)(1,1'; ε)t2'(2",2; ε)(2,2'; ε)t4'(1",1; ε)t2(3,3'; ε)t6' 
where each hyphen sign indicates an occurrence of D-overlapping. Its corresponding 
input sequence (without overlapping) is:  

 εaaa-aaaaaa-aaaaa-aaaa-aaa-aaaεεbaaεεbaaεbεbaa 
The checking sequence obtained from P with D-overlapping starting at state 1 is 
 aaa-aaaaaa-aaaaa-aaaa-aaa-aaa baa baa b baa 
whose length is: 3+3+1+1+3+3+1+3 = 18.  
This result is longer than the checking sequence produced by the optimization 

model presented earlier where all Ti = ε, i = 1, 2, 3. Indeed, an experimental study 
reported in [12] confirms the intuitive hypothesis that using empty transfer sequences 
results in shorter checking sequences based on distinguishing sequences. 

Table 5. α-elements for FSM M0 (with D = “aa”, T1 = a/1, T2 = T3 = ε) 

Table 6. Test Segments of FSM M0 (with D = “aa”, T1 = a/1, T2 = T3 = ε) 

k   1 2 3 4 5 6 
tk (1,2; a/0) (1,3; b/1) (2,3; a/0) (2,1; b/0) (3,1; a/1) (3,3; b/1) 
tk' (1,1;aD/ 

001) 
(1,2;bD/ 
110) 

(2,2;aD/ 
010) 

(2,1;bDa/ 
0001) 

(3,1;aDa/ 
1001) 

(3,2;bD/ 
110) 

 
Theorem 3. Given an FSM M represented by graph G, a DS D for M and a set of TS 
Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n, the minimum-length checking sequence 
constructed by our general model is at least as short as the ones constructed by the 
previous optimization models of [11, 16].  

start si λ(si, DIi) sj = δ(si,DIi) λ(sj, DIj) end δ(sj,DIj) 
1 001 1 001 1 
2 01 1 001 1 
3 10 2 01 1 
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Fig. 3. The General Model for FSM M0 

Proof: In the previous models [11, 16], a set of I/O sequences of M is first generated, 
where each I/O sequence, called an α-sequence αk in [16], α'-sequence αk' in [11], is 
the label of a path Pk (of G, k = 1,…, q) that is formed by concatenating some of the 
paths {(si, δ(si, DIi); D/λ(si, DIi)): i = 1,…, n}, such that, by including all P1, …, Pq in 
a path P of G, the following requirements are satisfied:  
• For each D/λ(si, D)Ti in label(P), 1 ≤ i ≤ n, its start node is d-recognized;   
• For each D/λ(si, D)Ti in label(P), 1 ≤ i ≤ n, its end node is t-(or d-)recognized.  
αk (or α'k) = label(Pk), 1 ≤ k  ≤ q which is formed as follows: Let V={v1, v2, ..., vn} 

and let V1, V2, ..., Vq,    q ≥ 1, be subsets of V, i.e., Vk ⊆ V, 1 ≤ k ≤ q, whose union is V.  
Without loss of generality, assume that Vk = {v k

1
, v k

2
, ..., v k

mk
}, 1 ≤ k ≤ q, and for Vk,  

define αk [16] as:α
k =D/λ(v k

1
, D)T k

1
D/λ(v k

2
, D)T k

2
...D/λ(v k

mk
, D)T k

mk
D/λ(v k

w
, D)T k

w
 

where T k

j =(I kj /O k

j ) is a transfer sequence from δ(v kj , D) to v kj 1+ for j = 1, 2, ..., m
k-1
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T k

mk
=(I k

mk
/O k

mk
) is a transfer sequence from δ(v k

mk
, D) to v k

w
, w ∈{1, 2, ..., m

k
}  

T k
w

=(I k
w

/O k

w
) is some T k

j , 1≤ j≤ mk, where T k

j , T k

mk
, and T k

w
 may be empty 

sequences; or define α'k [11] as above except that v k
w

 may not necessarily be in Vk.  
In both models [11, 16], the set of paths P1, ..., Pq is included in the augmented 

digraph G* = (V*, E*) as edges in Eα ⊂ E*.  The set of test segments, which is {( v
i
, 

(δ(v
i
, xDI kj )); (xDI kj )/λ(v

i
, xDI kj )): for every (vi, vj; x/y) ∈ Ε} in [16],  is included as 

edges in Ec  ⊂ E*. The set of test segments is not explicitly formed in [11]. However, 
it is implicitly formed since each element of  Ec = {(vi, vj; x/y): (vi, vj; x/y) ∈ Ε } is 

followed by  a (DI kj )/λ(vj, D I kj )) or an α'k. An RCP path P is sought in G* over 
Eα ∪ Ec (without considering their overlapping) and the input portion of label(P) 
obtained is used as a checking sequence. On the other hand, the general model makes 
use of the best available combination of α-elements and makes use of overlapping not 
only among Pα but also among Pα∪PC, and thus generates a checking sequence that is 
at least as short as the one generated by [11, 16]. 

4. Conclusions  

We have presented an optimization model (and its generalization) that allow any 
possible overlapping of α-elements and test segments to construct a minimal-length 
checking sequence of a given deterministic, completely specified, minimal and 
strongly connected FSM M. The optimal solution of the model is based on all possible 
combinations rather than a single a priori selection of a set of state recognition 
sequences and on all possible overlapping between the α-elements and test segments. 
This model generates a checking sequence that is at least as short as the ones 
generated by the previous models [11, 16].   

Potential simplifications of the proposed optimization model include the following: 
(i) In the model, if a vertex v of G* has only one incoming edge (s, v) and one 

outgoing edge (v, s'), it may be merged into another vertex, which simplifies the 
model. This is particularly useful when a test segment is not involved in D-
overlapping. This simplification is clearly applicable to both the proposed model and 
its generalization.  

(ii) Further simplification may also be achieved by eliminating some test segments 
from the model as they are part of the α-elements. The elimination of test segments 
that are related to the transitions traversed as the last transition of a path induced by D 
in an α-sequence, formed by concatenated DIi/λ(si, DIi)’s where Ii= ε, has been 
proposed in [3]. Such elimination can be incorporated into the model as follows: First, 
identify the test segments that are covered by α-elements and do not include them in 
PC. Then, find an RCP P in the simplified model that contains all α-elements and 
those remaining test segments, and use the input portion of label(P) as a checking 
sequence. Since the generalization of the proposed model utilizes DIi/λ(si, DIi)’s 
where Ii ≠ ε, incorporation of this simplification requires further study.   
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It must be noted that the RCP problem is NP-complete [7]. However, for some 
systems, the given FSM M has a reset feature, i.e. there is input r such that δ(si, r) = s1 
for every state si. With this reset feature, an optimal solution of our proposed model 
can be found in polynomial-time and is guaranteed to be a checking sequence for M 
as follows. For each transition t of form (si, s1; r/λ(si, r)), i.e., t is triggered by r, its 
test segment t' = (si, δ(s1, DI1); (rDI1)/λ(si, rDI1)) is added to the graph G* with both 
vertices in V (as no overlapping is involved). These edges consist of a connected 
spanning subgraph of G. In this case, the problem of finding an RP path with 
minimum cost is reduced to a min-cost flow problem as in [1, 16], which can be 
solved in polynomial-time [5].  

In the generalized model, a given set of transfer sequences {Ti: i = 1, …, n} is used 
together with a DS in forming α-elements and test segments. Although it was shown 
experimentally that empty TS (i.e., Ti = ε, i = 1, …, n) leads to shorter checking 
sequences [12], the best selection of such a set is unknown and worth further study. 
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