A Logic for Assessing Sets of Heterogeneous
Testing Hypotheses *

Ismael Rodriguez, Mercedes G. Merayo and Manuel Nufiez

Dept. Sistemas Informéaticos y Programacion
Universidad Complutense de Madrid, 28040 Madrid, Spain
isrodrig@sip.ucm.es,mgmerayo@fdi.ucm.es,mn@sip.ucm.es

Abstract. To ensure the conformance of an implementation under test
(IUT) with respect to a specification requires, in general, the application
of an infinite number of tests. In order to use finite test suites, most
testing methodologies add some feasible hypotheses about the behavior
of the IUT. Since these methodologies are designed for considering a
fiz set of hypotheses, they usually do not have the capability of dealing
with other scenarios where the set of assumed hypotheses varies. We
propose a logic to infer whether a set of observations (i.e., results of test
applications) allows to claim that the IUT conforms to the specification
if a specific set of hypotheses (taken from a repertory) is assumed.

1 Introduction

The time a tester can spend testing an IUT with respect to a specification
is finite, whereas IUTs define, in general, arbitrarily long behaviors. Hence, it
takes infinite time to assess the validity of all these behaviors with respect to
a specification. In order to overcome this problem, testers add some reasonable
assumptions about the implementation regarding the knowledge about its con-
struction. For example, the tester can suppose that the implementation can be
represented by means of a deterministic finite state machine, that it has at most
n states, etc. A lot of testing methodologies have been proposed which, for a
specific set of initial hypotheses, guarantee that a test suite extracted from the
specification is correct and complete to check the conformance of the IUT with
respect to the specification (e.g. [2,8,15,12]).

However, a framework of hypotheses established in advance is very strict
and limits the applicability of a specific testing methodology. For example, in
a concrete environment, the tester could assume that the behavior in four spe-
cific states of the implementation is deterministic and that two of them repre-
sent equivalent states of the implementation. The tester could also make more
complex assumptions such as “non-deterministic states of the IUT cannot show
outputs that the machine did not show once the state has been tested 100 times.”

* Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,
the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

In a different scenario the tester could not believe this but think that “if she ob-
serves two sequences of length 200 and all their inputs and outputs coincide then
they actually traverse the same IUT states.” If the tester assumes the validity
of a set of hypotheses to test a given IUT, then a specific test suite would be
appropriate, while by using other hypotheses, the test suite could not be so.

It would be desirable to provide the tester with a tool to let her analyze the
impact of considering a given set of hypotheses in the testing process, as well as
the consequences of adding/eliminating hypotheses from the set. The goal of this
methodology would be to ascertain if a given finite set of observations extracted
by a test suite is complete in the case that the considered hypotheses hold, that
is, we assess whether obtaining these observations from the TUT implies that
the IUT conforms to the specification if the hypotheses hold. In this paper we
propose a logic called HOT L (Hypotheses and Observations Testing Logic). Its
aim is to assess whether a given set of observations implies the correctness of
the IUT under the assumption of a given set of hypotheses. In order to allow the
tester to compose sets of hypotheses, the logic provides a repertory of hypotheses,
including some of the ones appearing in known testing methodologies.

Our logic allows to perform at least three different tasks. First, a tester can
use it to customize the testing process to her specific environment. By using the
logic, she can infer not only the consequences of adding a new test, but also the
consequences of adding a new hypothesis. In this way, the tester has control over
a wide range of testing variables. In particular, the construction of test suites to
extract observations and the definition of hypotheses can influence each other.
This provides a dynamic testing scenario where, depending on the specification
and the tester’s knowledge of the TUT, different sets of tests and hypotheses
can be considered. Second, such logic allows the tester to evaluate the quality
of a test suite to discover errors in an implementation: If the observations that
could be extracted by the test suite require (for their completeness) a set of
hypotheses that is harder to be accepted than those required by another suite,
then the latter suite should be preferred. This is because this suite could allow
the tester to reach diagnostics in a less restrictive environment. Finally, our logic
provides a conceptual bridge between different testing approaches. In particular,
we may use it to represent the (fix) sets of hypotheses considered by different
approaches. Then, by considering the observations each test suite could obtain,
a test suite that is complete in an approach could be turned into a complete
suite in another. Similarly, we can analyze how the size of test suites is affected
by hypotheses. Moreover, we can use the logic to create intermediate approaches
where sets of hypotheses are appropriately mixed.

Let us concentrate on how our logic is applied to perform the first of the
previous tasks, that is, serving as core of a (dynamic) testing methodology. The
methodology is applied in two phases. The first phase consists in the classical
application of tests to the IUT. By using any of the available methods in the
literature, a test suite will be derived from the specification. If the application
of this test suite finds an unexpected result then the testing process stops: The
IUT is not conforming. However, if such a wrong behavior is not detected then

the tester cannot be sure that the IUT is correct. In this case, the second phase
begins, that is, the tester applies the logic described in this paper to infer whether
passing these tests implies that the IUT is correct if a given set of hypotheses is
assumed. If it does then the IUT is assumed to be correct; otherwise, the tester
may be interested in either applying more tests or in assuming more hypotheses
(in the latter case, on the cost of feasibility) and then applying the logic again
until the correctness of the IUT is effectively granted. In order to appropriately
apply the logic, the behavior of the IUT observed during the application of tests
must be properly represented. For each application of a test to the IUT, we
construct an observation, that is, a sequence of inputs and outputs denoting
the test and the response produced by the IUT, respectively. Both observations
and the assumed hypotheses will be represented by appropriate predicates of the
logic. Then, the deduction rules of the logic will allow to infer whether we can
claim that the IUT conforms to the specification (actually, the logic will check
whether all the implementations that could produce these observations and fulfill
the requirements of the hypotheses conform to the specification).

We distinguish two kinds of hypotheses in the predefined repertory: Hypothe-
ses concerning specific parts (states) of the IUT and hypotheses concerning the
whole IUT. In order to unambiguously denote the states regarded by the former,
they will be attached to the corresponding observations that reached these states.
For example, if the IUT was showing the sequence of outputs 01,09, ...,0, as
answer to the sequence of inputs i1, 1o, ...,%, provided by the tester, the tester
may think that the state reached after performing i1 /01 is deterministic or that
the state reached after performing the sequence i1/01,i2/02 is the same as the
one reached after performing the whole sequence i1/01,i2/02,...,in/0,. Let us
remark that these are hypotheses that the tester is assuming. Thus, she might be
wrong and reach a wrong conclusion. However, this is similar to the case when
the tester assumes that the implementation is deterministic or that it has at
most n states and, in reality, this is not the case. In addition to using hypothe-
ses associated to observations, the tester can also consider global hypotheses
that concern the whole IUT. These are assumptions such as the ones that we
mentioned before: Assuming that the IUT is deterministic, that is has at most n
states, that is has a unique initial state, etc. In order to denote the assumption
of this kind of hypotheses, specific logic predicates will be used.

Regarding related work, there are several papers where testing hypotheses
are used to perform the testing process. For example, we may consider that the
implementation is deterministic (e.g. [13]), that we are testing the coupling of
several components by assuming that all of them are correct or that at most
one of them is incorrect (e.g. [9]), etc. Our methodology provides a generaliza-
tion of these frameworks because it allows to decide the specific hypotheses we
will consider. In this line, we can compare the suitability of different test suites
or test criteria in terms of the hypotheses that are considered (e.g. [10]); some
formal relations to compare them have been defined [6]. Since our logic provides
a mechanism to effectively compare sets of hypotheses, it may help to compute
relations defined in these terms. Even though we work with rules and properties,

our work is not related to model checking [4] since we do not check the validity of
properties: We assume that they hold and we infer results about the conformity
of the IUT by using this assumption. In the same way, this work is not related to
some recent work on passive testing where the validity of a set of properties (ex-
pressed by means of invariants) is checked by passively observing the execution
of the system (e.g. [7,3,1]).

The rest of the paper is organized as follows. In Section 2 we present some
basic concepts related to the formalisms that we will use. In Section 3 we intro-
duce the predicates of HO7T L, while in Section 4 we present the deduction rules.
Finally, in Section 5 we present our conclusions and some directions for further
research. Due to the lack of space, some auxiliary definitions and rules have not
been included in this paper. All of them can be found in [14].

2 Formal Model

In this section we introduce some basic concepts that will be used along the
paper to formally present our methodology. Specifically, we introduce the notion
of finite state machine and a conformance relation.

Definition 1. A finite state machine, in short FSM, is a tuple of five elements
M = (S, inputs, outputs,Z,7) where S is the set of states, inputs is the set
of input actions, outputs is the set of output actions, T C S is the set of initial
states, and T is the set of transitions. A transition is a tuple (s,i,0,8") € T
where 5,5’ € S are the initial and final states, respectively, 7 € inputs is the
input that activates the transition, and o € outputs is the output produced in
response. A transition (s,i,0,s") € 7 is also denoted by s L s

We say that (i1/01,...,in/0p) is a trace of M if there exists s; € Z and

i1 /01 i2/02 in/on
52y, Sn41 € S such that s ——— s9,59 ——— 83,...,8, ——— Spq1

are transitions of 7. The set of all traces of M is denoted by traces(M).

Let us consider s,s’ € S. We say that s’ is reachable from s, denoted by

isReachable(M, s, s'), if either there exist u,4,0 such that s e, u € 7T and

isReachable(M, u,s’) holds, or s = s’. The set reachableStates(M,s) con-
tains all 8’ € S such that isReachable(M, s, s’).
Let s € S and i € inputs. outs(M, s,4) denotes the set of outputs that can

be produced in s in response to 4, that is, the set {o|3s" : s _He, s'eTh.
We say that s € S is deterministic, denoted by isDet(M, s), if there do not

i/o’ , i/o"

exist s s s s"” € T such that o # 0" or s’ # 5. O

In the previous definition, let us note that machines are allowed to be non-
deterministic. In order to fix the kind of formalisms our logic will deal with, the
following hypothesis will be imposed: Both implementations and specifications
can be represented by appropriate FSMs. As a consequence, we have that when
an input is offered to an IUT it always produces an observable response (that is,
quiescent states not producing any output are not considered). Next we present

the basic conformance relation that will be considered in our framework. This
relation is similar to ioco [15] but in the framework of FSMs. This relation has
been used in [11] as a preliminary step to define timed conformance relations.
Intuitively, an IUT is conforming if it does not invent behaviors for those traces

that can be executed by the specification. We will assume that the IUT is input-

enabled, that is, for all state s and input 7 there exist o, s’ such that s _ile, s’

belongs to the set of transitions of the IUT. During the rest of the paper, and
when no confusion arises, we will assume that the FSM representing a generic

specification is given by spec = (Sspee, inputs,,,., outputs,,,., Zspec, Tspec)-

Definition 2. Let S and I be two FSMs. We say that I conforms to S, denoted
by I'cont S, if for all py = (i1/01,...,in—1/0n—1,in/0n) € traces(S), withn > 1,
we have pa = (i1/01,. .. ,in—1/0n—1,1in/0}) € traces(I) implies ps € traces(S).

O

Ezample 1. A simple example, adapted from [5], will be used along the paper to
illustrate our framework. A medical ray beaming system is controlled by using
three buttons: A button for charging the machine (a single button press increases
the voltage by 10 mV), another one for the beam activation, and the last one for
resetting the machine at any time. The system will only charge the machine twice
(increasing the voltage up to 20 mV) and it only lets to beam twice. Any further
attempt to either increase the charge of the machine or to activate the beam-
ing will be rejected because there is a danger of seriously injuring the patient.
The FSM specifying this behavior is depicted in Figure 1 (left) and it is defined as
spec_ray = (Sspec_rays INPULSpee gy OUEPUES o rays Lspee rays Tspee _ray)-
We have Sspec ray = {7, c1,¢2,b1, b2}, where 7 denotes the ready state, c1/c2 de-
note the states where the beamer has been charged one/two times, and b1/b2 de-

note the states where the first/second beaming is performed. inputsg,.. ,qp =
{br, be, bb}, where br/bc/bb respectively denote that the reset/charging/beaming
button has been pressed. outputs y = {mr,me, mb, re}, where mr/mc/mb
respectively denote that the machine is ready/charging/beaming while re de-
notes that the command has been rejected. Finally, Zspee ray = {7}, that is, the

initial state is ready. O

spec ra

3 Predicates of the Logic

In this section we present the predicates that will be part of HO7T L. These
predicates allow to represent our knowledge and assumptions about the IUT. In
particular, they will allow us to represent the observations that we have obtained
from the IUT during the preliminary classical testing phase. Observations de-
note that, in response to a given sequence of inputs, the IUT produced a given
sequence of outputs. Let us remark that if one of the sequences shows a behav-
ior that is forbidden by the specification, then the IUT does not conform to the
specification and no further analysis is required, that is, there is no need to apply
our logic. As we said before, our notion of observation will be able to include
some assumptions about the IUT as well as the observed behavior.

©

br/error beferror) bb/error

br/mr
/ I)I) /mb

br/mr br/my
bb/ T€ bbjerror hr/rr br/mr bb/mb hh/mb
Mﬂzrw

bb/mb
b be/me ba/z e
br, /mr m /e rror

b(error
br/mr /

be/me _br/mr

br/mr

brfmr Cl\ bb/mb
_J

bb/mb

befme

bb/re

be/error

2 -—
br/error
be/re S~~~
bb/error

Fig. 1. Finite State Machines spec_ray (left) and worstspec _ray (right).

3.1 Manipulating Observations

During the rest of the paper, O0bs denotes the set of all the observations collected
during the preliminary interaction with the IUT, while Hyp denotes the set of
hypotheses the tester has assumed. In this latter set, we will not consider the
hypotheses that are implicitly introduced by means of observations.
Observations follow the form ob = (a1,i1/01,0a2,...,an,%n/0n, ant1) € Obs,
where ob is a unique identification name. It denotes that when the sequence
of inputs iy,...,4, was proposed from the initial configuration of the imple-
mentation, the sequence o1,...,0, was obtained as response. In addition, for
all 1 < j < n+1, a; represents a set of special attributes concerning the state
of the implementation that we reached after performing i1 /01,...,4;—1/0j-1 in
this observation. Attributes denote our assumptions about this state. For all
1 < j < n the attributes in the set a; are of the form imp(s) or det, where
imp(s) denotes that the state reached after i1/01,...,7;_1/0;_1 is associated to
a state identifier s and det denotes that the implementation state reached after
i1/01,...,1j—1/0j—1 in this observation is deterministic. State identifiers are used
to match equal states: If two states are associated with the same state identifier
then they represent the same state of the implementation.! Besides, attributes
belonging to a,+1 can also be of the form spec(s), with s € Sspec, denoting
that the state reached after i1 /01,...,4,/0, is such that the subgraph that can
be reached from it is isomorphic to the subgraph that can be reached from the
state s of the specification. We assume that attributes of the form spec(s) can
appear only at the end of the observation, meaning that the behavior of the

! Let us remark that, since we consider the IUT to be a black-box, a tester cannot al-
ways be sure of the state where the IUT is placed. However, she may still hypothesize
that the reached states after performing two subsequences are in fact the same.

implementation from that point on is known and there is no need to check its
correctness.

Ezample 2. For our case study we will consider that the set of observations
Obs={ob;|1 < i < 11} was obtained. As illustration, we show the following ones
(the full set is given in [14]).

obi = ({det}, bc/me, {imp(q1)}, bb/mb, {imp(qz2)}, bb/mb,)

obg = (07 bc/mc, {Zmp(ql)}v bb/mbv {’me(QQ)}, bb/mb7 {Zmp(q:‘})}v br/mr, Q)? bc/mc,
{imp(q1)}, bb/mb, {imp(g2)})

obio = (0, be/me, {imp(q1)}, bb/mb, {imp(qz), det}, bb/mb, {imp(g2)}, bb/re, D)

For example, obyy denotes that we initially do not make assumptions about
the state the IUT selected as initial for this observation (its set of attributes
is). After pressing the charging button, the beaming system is charged and the
state reached is identified by a specific state identifier (denoted by ¢1). Next, by
pressing the beaming button, the beaming is performed and we reach a certain
state, in principle different to previous ones, which is assumed to be deterministic
and is denoted by the identifier go. After pressing again the beaming button, the
beaming action is performed and we assume that we reach again the same state
as before (note that it is denoted by the same identifier ¢2). We press once
again the beaming button but this time the action is rejected, and we make no
assumptions about the state reached afterwards. O

3.2 Model Predicates

Observations will allow to create model predicates. A model predicate denotes
our knowledge about the implementation. Models will be constructed according
to the observations and hypotheses we consider. In particular, they induce a
graph consistent with the observations and hypotheses considered so far. As more
information is retrieved, models will be refined and particularized. We denote
model predicates by model (m), where m = (S,7,Z,A,&,D,O). The meaning
of the different components of the tuple are the following. S (states) is the set
of states that appear in the graph of the model. Despite the fact that this graph
attempts to represent (a part of) the behavior of the implementation, any name
belonging to S is fresh and by no means is related to the corresponding state
of the implementation. Let us note that after more information is considered, it
could turn out that some states belonging to S coincide. Next, 7 (transitions)
is the set of transitions appearing in the graph of the model. Z (initial states)
is the set of states that are initial in the model. A (accounting) is the set of
accounting registers. A register is a tuple (s, i, outs,n) denoting that in the state
s € S the input 7 has been offered n times and we have obtained the outputs
belonging to the set outs. This information allows to handle some hypotheses
about nondeterminism. If, due to the hypotheses that we consider, we infer
that the number of times we observed an input is enough to believe that the
implementation cannot react to that input in a way that has not happened
before (that is, either with an output that was not produced before or leading

to a state that was not taken before), then the value n is set to T. In this case,
we say that the behavior of the state s for the input i is closed. Next, £ (equality
relations) is the set of equalities relating states in S. Equalities have the form
s is s'. For exampleif s; is s € £ and s5 is s € £ then we infer that s; = s and
that one of the names could be eliminated afterwards. D (deterministic states) is
the set of states that are deterministic (according to the hypotheses considered
so far). Finally, O (used observations) is the set of observations we have used
so far for the construction of this model. The aim of recording them is to avoid
considering the same observation several times, which could ruin the information
codified, for instance, in A.

In HOT L, conclusions about the conformance of a model (that is, of the
possible IUTs it represents) with respect to a specification will be established only
after the full set of observations Obs has been considered. Besides, we will require
that no other rule concerning hypotheses in Hyp can be applied. In Section 4 we
introduce some of the hypotheses a tester might consider in this set. These
hypotheses include usual ones such as to assume an upper bound on the number
of states of the IUT, the uniqueness of the initial state, the determinism of the
IUT, etcetera.

3.3 Other Predicates

We will also consider other predicates related to the correctness of models. The
correct(m) predicate denotes that m is a correct model, that is, it denotes a
behavior that has to be conforming to the specification. The al1ModelsCorrect
predicate represents a set of correct models. This predicate is the goal of the logic:
If it holds then all the IUTs that could produce the observations in 0bs and meet
all the requirements in Hyp conform to the specification. The consistent(m)
predicate means that the model m does not include any inconsistency. Note that
the requirements imposed by Obs and Hyp could lead to inconsistent models. For
example, let us consider a model where a state s is assumed to be deterministic,
s is equal to another state s’, and s’ produces either o; or o, when 7 is offered,
with 01 # 02. There is no FSM that meets the requirements of this model. Since
a user of the logic can create a set of observations and hypotheses leading to
that model, inconsistent models may indeed appear. As we will see, the rules of
the logic will eliminate inconsistent models by deducing an empty set of models
from them. In addition, we will be provided with rules that allow to guarantee
the consistency of a model.

In general, several models can be constructed from a set of observations and
hypotheses. Hence, our logic will deal with sets of models. If M is a set of models
then the predicate models (M) denotes that, according to the observations and
hypotheses considered, M contains all the models that are valid candidates to
properly describe the implementation. Besides, modelsSubset (M’) denotes that
for some set M we have models (M) and M’ C M.

The formal semantics of predicates, which is defined in terms of the set
of FSMs that fulfill each predicate, is introduced in [14]. These concepts are
considered there to prove the soundness and completeness of the logic.

4 Deduction Rules of the Logic HOT L

The rules will be presented in the form % If B can be deduced from
A then we write A = B. If we want to be more specific, we write A -, B to
denote that B is deduced from A by applying the rule r. The ultimate goal is to
deduce the conformance of a set of observations Obs and hypotheses Hyp, that
is, whether all the FSMs that meet these conditions conform to the specification.
Since inconsistent models may appear, conformance will be granted only if there
exists at least one consistent model that meets these conditions. Some formal
definitions and rules could not be included in this version of the paper and can
be found in [14]. In these cases, brief informal explanations will be provided.

HOT L will consider observations and hypotheses in two phases. First, obser-
vations, as well as the hypotheses they can implicitly express, will be collected.
Once all of them have been considered (i.e., we have a model predicate with
O = 0bs) a second phase, to add the rest of hypotheses, will start.

First, we present a rule to construct a model from an observation. Given
a predicate denoting that an observation was collected, the rule deduces some
details about the behavior of the implementation. These details are codified by
means of a model that shows this behavior. Basically, new states and transitions
will be created in the model so that it can produce the observation. Even though
some model states could actually coincide, we will not consider it yet. Thus,
we take fresh states to name all of them. Besides, the hypotheses denoted by
the attributes of the observation will affect the information associated to the
corresponding model states. In particular, if the tester assumes that the last
state of the observation is isomorphic to a state of the specification (i.e., spec(s),
for some s € Sspec) then the sets of states, transitions, accounting registers, and
deterministic states will be extended with some extra elements taken from the
specification and denoted by &, 7/, A’, and D’, respectively. The new states and
transitions S’ and 7", respectively, will copy the structure existing among the
states that can be reached from s in the specification. The new accounting, A’,
will denote that the knowledge concerning the new states is closed for all inputs,
that is, the only transitions departing from these states are those we copy from
the specification and no other transitions will be added in the future. Finally,
those model states that are images of deterministic specification states will be
included in the set D’ of deterministic states of the model.

(obser) ob = (a1,i1/01,a2,...,Gn,%n/0n,ant1) € Obs A s1,...,Sn41 are fresh states
{813---a5n+1}U8/,
{s1 =220 s s 2L s Y UT {s1),
model {(Sj7ij7{0j},1)|1§j§n}UA/7

{sjissj|1 <j<n+1 A imp(s)) € a;},
{s;11<j<mn+1 A det €a;}UD’, {ob}
The formal definition of &', 7/, A’, and D’ follows. If there does not exist

s’ such that spec(s’) € ap41 then (8,7, A, D) = (0,0,0,0). Otherwise, that
is, if spec(s) € an41 for some s € Sgpec, let us consider the following set of

states: U = {u; | u;jisafreshstate A 1 < j < |reachableStates(spec,s)|}
and a bijective function f : reachableStates(spec,s) — U U {s,4+1} such that
f(s) = spy1- Then, (8", 7", A, D) is equal to
U, {f(s) =L £(s") |8 —L% 8" € Tepee A isReachable(spec,s,)},
{(u, 4, outs(spec,s,i), T)lu € U U{sn41} A i€ inputs , },
{f(s")|isReachable(spec,s,s’) A isDet(spec,s’)}

Example 3. If we apply the obser deduction rule to the observation obg given in
Example 2 then we obtain a model mg = (Sg, 76, Zs, A6, €6, D, Og), where

Sg = {826,82775287529753075317532} and Zg = {526}

be/mc bb/mb bb/mb br/mr
S§26 ——— S27,827 — > S28,828 — > §29,S529 ———— S30,
7'(; =
be/mc bb/mb
8§30 — 831,831 ——— S32

Ag = { (s26,be, {mc}, 1), (s27, bb, {mb}, 1), (s28, bb, {mb}, 1), (s20, br,{mr}, 1), }
(830, bc, {mc}, 1), (s21, bb, {mb}, 1)

56 = {827 is q1, S28 is q2, S29 is q3, S31 is q1, 832 is q2},D6 = (Z), and 06 = {Obﬁ}

Similarly, for all 1 < ¢ < 11 we can obtain a model m; by applying the
deduction rule obser to ob;. O

We will be able to join different models created from different observations
into a single model. The components of the new model will be the union of the
components of each model.

model (S1,71,Z1,A1,&1,D1,01) A
model (82, E,IQ7A27 SQ,DQ, 02) AN O1NOy =
model (81 US2, 71 UT3, 71 UZs, Ay U A2, E1 U E2, D1 UDy, 01 U 02)

(fusion)

The condition O N Oz = () appearing in the previous rule avoids to include
the same observation in a model more than once, which would be inefficient.
Besides, since models in the second phase must fulfill © = 0Obs, we avoid to use
the previous rule in the second phase.

By iteratively applying these two first rules, we will finally obtain a model
where O includes all the observations belonging to the set Obs.

Ezxample 4. The deduction rule fusion allows to join all the models obtained after
applying the deduction rule obser to the set of observations given in Example 2.
After it, we have a new model my defined as follows:

11 11 11 11 11 11
m7p = model (U]’:l Sj, U]’:l 7, Uj:l Zj, U]’:l Aj, U]’:l & U]’:l Dj, Obs)
O

At this point, the inclusion of those hypotheses that are covered by observa-
tions will begin. During this new phase, in general, we will need several models
to represent all the FSMs that are compatible with a set of observations and

hypotheses. The next simple rule allows to represent a single model by means of
a set containing a single element. Since the forthcoming rules will concern only
the second phase, in all cases we will have O = Obs.
(set) model (S§,7,Z, A, E,D,0bs)
models ({(S,7,Z,A,&,D,0bs)})

In order to reflect how a rule that applies to a single model affects the set in-
cluding this model, we provide the following rule. Let ¢ denote a logical predicate
(in particular, true) and m = model (S,7,Z, A, &, D, 0bs). Then,
models (M U{m}) A ¢ A ((model(m) A)t modelsSubset (M)

models (M U M’)

(propagation)

By using the previous rule, we will be able to use other rules that apply
to a single model and then propagate its change to the set where the model is
included as expected: As the previous rule states, this model changes while other
models belonging to the set remain unchanged. Most of the forthcoming rules
will apply to single models. After each of them is used, the rule propagation will
be applied to propagate its effect to the corresponding set of models.

Our logic will allow to discover that a state of the model coincides with an-
other one. In this case, we will eliminate one of the states and will allocate all of
its constraints to the other one. This will modify all the components that define
the model. This functionality is provided by the modelElim function. Specifically,
modelElim(m, s1, s2) denotes the elimination of the state sy and the transference
of all its responsibilities to state s; in the model m. This function returns a set
of models. If the transference of responsibilities creates an inconsistency in the
rest of the model, an empty set of models is returned. Sometimes we will use a
generalized version of this function to perform the elimination of several states
instead of a single state: modelElim(m, s, {s1,...,s,}) represents the substitu-
tion of s; by s, followed by the substitution of so by s, and so on up to s,. The
formal definitions of both forms of the modelElim function are given in [14].

Next we present some rules that use this function. In the first one, we join
two states if the set of equalities allows to deduce that both coincide.
model (S§,7,Z,A,E,D,0bs) A s1,52 €S A {s1iss,s20iss} CE

modelsSubset (modelElim((S,7,Z, A, &, D, 0bs), s1, s2))

(equality)

Another situation where two states can be fused appears when a determin-
istic state shows two transitions labelled by the same input. Since the state is
deterministic, they must also be labelled by the same output. The determinism of
the state implies that both destinations are actually the same state. Hence, these
two reached states can be fused. Note that if both outputs are different then the
model is inconsistent, because the determinism of the state is not preserved. In
this case, an empty set of models is produced.

model (S,7,Z, A,E,D,0bs) A
$,81,82 €S N seD A {sﬂshsﬂ&}g’f
modelsSubset (M) [if 01 = 02 then M’ = modelElim(m, s1, s2) else M’ = {J]

(determ)

Next we present the first rule dealing with an hypothesis that is not implicitly
given by an observation. This hypothesis allows to assume that the initial state
of the implementation is unique.
model (S§,7,Z,A,E,D,0bs) A Z={s1,...,5»} A singleInitial € Hyp

modelsSubset (modelElim((S7 7,7,A,E,D,0bs), s1, {s2, ..., sn}))

(singlelnit)

If the tester adds the hypothesis that all the states are deterministic, then
the complete set of states S coincides with the set of deterministic states D.
model (S,7,Z,A,E,D,0bs) A allDet € Hyp

(allDet) modelsSubset ({(S,7,Z, A,&,S,0bs)})

The logic HOT L allows to consider other hypotheses about the IUT. For
example, the predicate allTranHappenWith(n) assumes that for all state s and
input ¢ such that the IUT behavior has been observed at least n times, all the
outgoing transitions from s having as input ¢, have been observed at least once.
This means that the IUT state s cannot react to ¢ with an output that has not
produced so far or moving to a state it has not moved before. If the hypoth-
esis is assumed then some accounting registers of the model will be set to the
value T, denoting that our knowledge about this state and input is closed. De-
pending on the compatibility of the hypothesis with the current model, several
models can be produced by this rule. If no model is returned then we infer that
the resulting model is inconsistent with the current model requirements. The
upperBound0fStates(n) hypothesis allows to assume that the IUT uses at most
n states. The reduction of states, based on the identification of several states
with the same state identifiers, will be performed by means of new equalities
s is ¢’ € £. The longSequencesSamePath(n) hypothesis assumes that if two
sequences of n transitions produce the same inputs and outputs, then they ac-
tually go through the same states. The set £, containing the assumed equalities
between states, will be also used in this case. The formal definition of the rules
that allow to consider the allTranHappenWith(n), upperBound0fStates(n),
and longSequencesSamePath(n) hypotheses can be found in [14].

We have seen some rules that may lead to inconsistent models. In some of
these cases, an empty set of models is produced, that is, the inconsistent model
is eliminated. Before granting conformance, we need to be sure that at least one
model belonging to the set is consistent. Next we provide a rule that labels a
model as consistent. Let us note that the inconsistences created by a rule can be
detected by the forthcoming applications of rules. For instance, the determ rule
can detect that a previous rule matched a deterministic state with another state
in such a way that both react to the input ¢ with a different output. Actually, all
inconsistencies can be detected by applying suitable rules. Thus, a model is free
of inconsistencies if for any other rule either it is not applicable to the model
or the application does not modify the model (i.e., it deduces the same model).
Next we introduce this concept. In the following definition, R denotes the set of
all rules in HOT L that follow the form required to apply the propagation rule.

In particular, it consists of all previous rules from equality up to the forthcoming
correct rule.

Definition 3. We denote the set of all rules in HO7 L that follow the form
(model (m) A ¢) b modelsSubset (M’) by R.

Let r = (model(m’) A ¢) I modelsSubset(M’) € R an m be a model.
The wunable predicate for m and r, denoted by unable(m,r), is defined by the
expression unable(m,r) = - V ((model(m) A) b, modelsSubset ({m})).
We extend this predicate to deal with sets of rules as follows: unable(m, Q) =
A{unable(m,r)|r € Q}. O

The next rule detects that a model is consistent. It requires that no other
rule that manages hypotheses can modify the model. These rules consist of all
the rules in R we have seen so far.

m=(S,7,Z,A,E,D,0bs) A model (m) A

unable(m, R\{consistent, correct})
modelsSubset ({consistent(S,7,Z, A, E,D,0bs)})

(consistent)

Since a model is a (probably incomplete) representation of the IUT, in order
to check whether a model conforms to the specification, two aspects must be
taken into account. First, only the conformance of consistent models will be
considered. Second, given a consistent model, we will check its conformance
with respect to the specification by considering the worst instance of the model,
that is, if this instance conforms to the specification then any other instance
extracted from the model does so. This worst instance is constructed as follows:
For each state s and input i such that the behavior of s for i is not closed and
either s is not deterministic or no transition with input 7 exists in the model, a
new malicious transition is created. The new transition is labelled with a special
output error, that does not belong to outputs,,... This transition leads to a new
state L having no outgoing transitions. Since the specification cannot produce
the output error, this worst instance will conform to the specification only if the
unspecified parts of the model are not relevant for the correctness of the IUT it
represents.

Definition 4. Let m = (S,7,Z,A, &, D, 0bs) be a model. We define the worst
instance of the model m with respect to the considered specification spec, de-

noted by worstCase(m), as the FSM

SU{Ll}, inputs outputs U {error},

spec’? spec

§ €S A i €inputs,,,, A

TU g Herror Aouts : (s,i,outs, T) € AN s

(sgDV ,le',o:s&s’)

Thus, the rule for indicating the correctness of a model is
m=(S,7,Z,A,E,D,0bs) A consistent(m) A worstCase(m) conf spec
modelsSubset ({correct(m)})

(correct)

Now we can consider the conformance of a set of models. A set conforms
to the specification if all the elements do so and the set contains at least one
element. Note that an empty set of models denotes that all the models were
inconsistent. Hence, granting the conformance of an empty set would imply
accepting models that do not represent any implementation. In fact, although
false implies anything, accepting inconsistent models is useless for a tester.
models (M) A M # () A M = {correct(m1),...,correct(mn)}

allModelsCorrect

(allCorrect)

Ezample 5. We consider the model mp obtained after applying the determ,
equality, long (see [14]), and singleInit deduction rules. The long rule is ap-
plied to introduce the hypothesis longSequencesSamePath(1l). The singlelnit
and long rules are applied once, while determ and equality are applied as long
as we can. Let us recall that, after each of these rules is used, the propagation
rule must be applied as well. When the determ and equality rules cannot be
applied anymore, our model cannot be further manipulated to produce new in-
consistencies. Then, we can use the consistent and propagation rules to deduce
models ({consistent(mg)}).

We build an FSM by applying the function worstCase to mpr and we verify
its conformance with respect to the specification. The obtained FSM, denoted by
WOrstspec ray, 18 graphically depicted in Figure 1 (right). For the sake of clarity,
we have included four states |, even though they correspond to only one state.

We have worstspec ray conf spec_ray and, by successively applying the
correct and propagation rules, we obtain models ({correct(mpz)}) and deduce,
by means of the allCorrect deduction rule, al1ModelsCorrect. A more detailed
description of the application of rules to this example can be found in [14]. O

Now that we have presented the set of deduction rules, we introduce a cor-
rectness criterion. In the next definition, in order to uniquely denote observa-
tions, fresh names are assigned to them. Besides, let us note that all hypothesis
predicates follow the form h € Hyp for some h belonging to Hyp.

Definition 5. Let spec be an FSM, Obs be a set of observations, and Hyp be
a set of hypotheses. Let A = {0b = o | obisa freshname A o € 0Obs} and
B ={hy € Hyp, ..., h, € Hyp}, where Hyp = {hy, ..., h,}. If the deduction rules
allow to infer allModelsCorrect from the set of predicates C = AU B, then we
say that C' logically conforms to spec and we denote it by C'logicConf spec. O

In order to prove the validity of our method, we have to relate the deductions
that we make by using our logic with the notion of conformance introduced in
Definition 2. The semantics of a logic predicate is described in terms of the set
of FSMs that fulfill the requirements given by the predicate; given a predicate
p, we denote this set by v(p). As illustration, the semantics of some predicates
is formally defined in [14] by means of the function v. Let us consider that P
is the conjunction of all the considered observation and hypothesis predicates.

Then, the set v(P) denotes all the FSMs that can produce these observations and
fulfill these hypotheses, that is, it denotes all the FSMs that, according to our
knowledge, can define the IUT. So, if our logic deduces that all of these FSMs
conform to the specification (i.e., al1ModelsCorrect is obtained), then the IUT
actually conforms to the specification.

Theorem 1. Let spec be an FSM and C' be a set of predicates including at least
one observation predicate. Then, C logicConf spec iff for all FSM f € I/(/\pec)
we have f conf spec and v(/\ o) # 0. 0

Corollary 1. Let IUT and spec be FSMs and C' be a set of predicates including
at least one observation predicate. If IUT € v(/\) then C logicConf spec
implies JUT conf spec. If there exists f € v(/\) such that f conf spec does
not hold then C logicConf spec does not hold.

5 Conclusions and Future Work

In this paper we have presented a logic to infer whether a collection of obser-
vations obtained by testing an IUT together with a set of hypotheses allow to
deduce that the IUT conforms to the specification. A repertory of heterogeneous
hypotheses providing a tester with expressivity to denote a wide range of testing
scenarios has been presented. By considering those observations and hypotheses
that better fit into her necessities, the tester can obtain diagnosis results about
the conformance of an IUT in a flexible range of situations. Besides, our logic
allows her to iteratively add observations (i.e., the results of the application of
tests) and/or hypotheses until the complete set of predicates guarantees the con-
formance. In this sense, our logic can be used to dynamically guide the steps of
a testing methodology.

As future work, we will study some ways to improve our logic. We plan to
include an incorrectness rule, that is, a rule that detects whether a model is
necessarily incorrect. If an incorrect model is detected then the calculus can be
early terminated, which improves the efficiency. Moreover, the rule could be used
to detect which observations/hypotheses made the model incorrect. Besides, we
want to develop a more complex application example in the context of Internet
protocols. We would also like to introduce a feasibility score for each of the logic
rules. For example, for a given framework, we can consider that assuming that
all the states are deterministic is harder than assuming that the implementation
has less that 50 states. In this case, a lower feasibility score will be assigned
to the first hypothesis. By accounting the feasibility of all the hypotheses that
we have to add before ensuring conformance, we will obtain a measure of the
suitability of the considered observations and, indirectly, of the tests that we
used to obtain them. Hence, our logic can help a tester to choose her tests so
that more trustable diagnosis results are obtained. We also consider to extend
the repertory of hypotheses. Finally, we want to extend the logic so that it can

deal with extended finite state machines. In this case, different formalisms to
work with models and different sets of hypotheses will be considered.

Acknowledgements We would like to thank the anonymous referees for their
valuable comments. Though they proposed very interesting ideas to improve our
paper (some are commented above), we could not apply all of them due to the
lack of space. Certainly, these ideas will be considered in the future.

References

1.

2.

10.

11.

12.

13.

14.

15.

E. Bayse, A. Cavalli, M. Nuilez, and F. Zaidi. A passive testing approach based
on invariants: Application to the WAP. Computer Networks, 48(2):247-266, 2005.
B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7-33, 1991.

A. Cavalli, C. Gervy, and S. Prokopenko. New approaches for passive testing using
an extended finite state machine specification. Journal of Information and Software
Technology, 45:837-852, 2003.

E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

G. Eleftherakis and P. Kefalas. Towards model checking of finite state machines
extended with memory through refinement. In Advances in Signal Processing and
Computer Technologies, pages 321-326. World Scientific and Engineering Society
Press, 2001.

R. Hierons. Comparing test sets and criteria in the presence of test hypotheses
and fault domains. ACM Transactions on Software Engineering and Methodology,
11(4):427-448, 2002.

D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. A formal approach for
passive testing of protocol data portions. In 10th IEEE Int. Conf. on Network
Protocols, ICNP’02, pages 122-131. IEEE Computer Society Press, 2002.

D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

L.P. Lima and A. Cavalli. A pragmatic approach to generating tests sequences
for embedded systems. In 10th Workshop on Testing of Communicating Systems,
pages 288-307. Chapman & Hall, 1997.

S.C. Ntafos. A comparison of some structural testing strategies. IEFE Transactions
on Software Engineering, 14:868-874, 1988.

M. Nuifiez and I. Rodriguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1-16. Springer, 2002.

A. Petrenko. Fault model-driven test derivation from finite state models: An-
notated bibliography. In 4th Summer School, MOVEP 2000, LNCS 2067, pages
196-205. Springer, 2001.

A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing deterministic imple-
mentations from their nondeterministic specifications. In 9th Workshop on Testing
of Communicating Systems, pages 125-140. Chapman & Hall, 1996.

I. Rodriguez, M.G. Merayo, and M. Nuiez. A logic for assessing
sets of heterogeneous testing hypotheses: Extended version. Available at:
http://dalila.sip.ucm.es/“manolo/papers/logic-extended.pdf, 2006.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware — Concepts and Tools, 17(3):103-120, 1996.

