
Controllable combinatorial coverage
in grammar-based testing

Ralf Lämmel1 and Wolfram Schulte2

1 Microsoft Corp., Webdata/XML, Redmond, USA
2 Microsoft Research, FSE Lab, Redmond, USA

Abstract. Given a grammar (or other sorts of meta-data), one can triv-
ially derive combinatorially exhaustive test-data sets up to a specified
depth. Without further efforts, such test-data sets would be huge at the
least and explosive most of the time. Fortunately, scenarios of grammar-
based testing tend to admit non-explosive approximations of naive com-
binatorial coverage.

In this paper, we describe the notion of controllable combinatorial cov-
erage and a corresponding algorithm for test-data generation. The ap-
proach is based on a suite of control mechanisms to be used for the
characterization of test-data sets as well-defined and understandable ap-
proximations of full combinatorial coverage.

The approach has been implemented in the C#-based test-data gener-
ator Geno, which has been successfully used in projects that required
differential testing, stress testing and conformance testing of grammar-
driven functionality.

1 Introduction

This paper is about grammar-based testing of software. We use the term ‘gram-
mar’ as a placeholder for context-free grammars, algebraic signatures, XML
schemas, or other sorts of meta-data. The system under test may be a virtual
machine, a language implementation, a serialization framework for objects, or a
Web Service protocol with its schema-defined requests and responses. It is gener-
ally agreed that manual testing of grammar-driven functionality is quite limited.
Grammar-based test-data generation allows one to explore the productions of the
grammar and grammatical patterns more systematically. The test-oracle prob-
lem has to be addressed in one of two ways: either multiple implementations are
subjected to differential testing (e.g., [20]), or the intended meaning of each test
case is computed by an extra model (e.g., [23]).

Prior art in grammar-based testing uses stochastic test-data generation (e.g.,
[19, 20, 23]). The canonical approach is to annotate a grammar with probabilistic
weights on the productions and other hints. A test-data set is then generated us-
ing probabilistic production selection and potentially further heuristics. Stochas-
tic approaches have been successfully applied to practical problems. We note that
this approach requires that coverage claims are based on stochastic arguments.



In our experience, the actual understanding of coverage may be challenging due
to intricacies of weights and other forms of control that ‘feature-interact’ with
the basic stochastic model.

The work reported in this paper adopts an alternative approach to test-data
generation. The point of departure is full combinatorial coverage of the grammar
at hand, up to a given depth. Without further efforts, such test-data sets would
be huge at the least and explosive most of the time. Hence, approximations of
combinatorial coverage are needed. To this end, our approach provides control
mechanisms which can be used in modeling the test problem. For instance, one
may explicitly limit the recursive applications for a given sort (‘nonterminal’)3,
and thereby scale down the ‘productivity’ of that sort. The control mechanisms
are designed in such a way that the approximations of combinatorial coverage are
intelligible. In particular, the effect of each use of a mechanism can be perceived
as a local restriction on the operation for term construction.

The approach has been implemented in the C#-based test-data generator
Geno.4 The input language of Geno is a hybrid between EBNF and algebraic
signatures, where constructors and sorts can be annotated with control param-
eters. Geno has been successfully used in development projects over the last 2+
years at Microsoft. These projects required differential testing, stress testing and
conformance testing of grammar-driven functionality.

The paper is structured as follows. The overall approach is motivated and
illustrated in Sec. 2. The basics of combinatorial test-data generation are laid
out in Sec. 3 – Sec. 5. The control mechanisms are defined in Sec. 6. A grammar-
based testing project is discussed in Sec. 7. Related work is reviewed in Sec. 8.
The paper is concluded in Sec. 9.

2 Controllable combinatorial coverage in a nutshell

The following illustrations will use a trivial expression language as the running
example, and it is assumed that we want to generate test-data for testing a
code generator or an interpreter. We further assume that we have access to a
test-oracle; so we only care about test-data generation at this point. Using the
grammar notation of Geno, the expression language is defined as follows:

Exp = BinExp ( Exp , BOp, Exp ) // Binary expressions

| UnaExp ( UOp , Exp ) // Unary expressions

| LitExp ( Int ) ; // Literals as expressions

BOp = "+" ; // A binary operator

3 We use grammar- vs. signature-biased terminology interchangeably.
That is, we may say nonterminal vs. sort, production vs. constructor, and word vs.
term.

4 Geno reads as “Generate objects” hinting at the architectural property that test
data is materialized as objects that can be serialized in different ways by extra
functionality.



Depth Ga Gb Gc Gd

1 0 0 0 1

2 1 3 6 29

3 2 42 156 9.367

4 10 8.148 105.144 883.148.861

5 170 268.509.192 – –

6 33.490 – – –

7 – – – –

Fig. 1. Number of terms with the given depth for different grammars (‘–’
means outside the long integer range 2.147.483.647); Ga is the initial grammar from the
beginning of this section; Gb comprises 3 integer literals (0, 1, 2), 2 unary operators (‘+’,
‘−’), and 4 binary operators (‘+’, ‘−’, ‘∗’, ‘/’); Gc further adds variables as expression
form along with three variable names (x, y, z); Gd further adds typical expression
forms of object-oriented languages such as C#.

UOp = "-" ; // A unary operator

Int = "1" ; // An integer literal

We can execute this grammar with Geno to generate all terms over the grammar
in the order of increasing depth. The following C# code applies Geno program-
matically to the above grammar (stored in a file "Expression.geno") complete
with a depth limit for the terms (cf. 4). The foreach loop iterates over the
generated test-data set such that the terms are simply printed.

using Microsoft.AsmL.Tools.Geno;

public class ExpressionGenerator {

public static void Main (string[] args) {

foreach(Term t in new Geno(Geno.Read("Expression.geno"), 4))

Console.WriteLine(t);

}

}

Let us review the combinatorial complexity of the grammar. It is easy to see
that:

– there is no term of sort Exp with depth 1 (we start counting depth at 1);
– there is 1 term of sort Exp with depth 2: LitExp(“1”);
– ... 2 terms ... with depth 3:

• UnaExp(“-”,LitExp(“1”)),
• BinExp(LitExp(“1”),”+”,LitExp(“1”));

– ... 10 terms ... with depth 4;
– hence, there are 13 terms of sort Exp up to depth 4;
– the number of terms explodes for depth 6 — 7.

In Fig. 1, the number of terms with increasing depth is shown. We also show
the varying numbers for slightly extended grammars. We note that all these
numbers are about expression terms alone, neglecting the context in which such



expressions may occur in a non-trivial language. Now suppose that we consider a
grammar which has nonterminals for programs, declarations and statements —
in addition to expressions that are used in statement contexts. With full com-
binatorial exploration, we cannot expect to reach expression contexts and to
explore them for some non-trivial depth.

Combinatorial coverage can be approximated in a number of ways. One option
is to give up on combinatorial completeness for the argument domains when
constructing terms. In particular, one could choose to exhaust the argument
domains independently of each other. Such an approximation is justified when
the grammar-driven functionality under test indeed processes the corresponding
arguments independently, or when the test scenario is not concerned with the
dependencies between the arguments.

In reference to pairwise testing [18] (or two-way testing), we use the term one-
way testing for testing argument domains independently of each other. Combi-
natorially exhaustive testing of arguments domains is then called all-way testing.
In the running example, we want to require one-way testing for the the construc-
tor of binary expressions. Here we assume that the system under test is a simple
code generator that performs independent traversal on the operands of BinExp.

A Geno grammar can be directly annotated with control parameters:

Exp = [Oneway] BinExp ( Exp , BOp, Exp )

| UnaExp ( UOp , Exp )

| LitExp ( Int ) ;

Alternatively, one may also collect control parameters in a separate test specifi-
cation that refers to an existing grammar. The above example is then encoded
as follows:

[Oneway] Exp/BinExp ;

Let us consider another opportunity for approximation. We may also restrict
the normal or recursive depth of terms on a specific argument position of a
specific constructor. By the latter we mean the number of nested applications
of recursive constructors. Such an approximation is justified when the grammar-
driven functionality under test performs only straightforward induction on the
argument position in question, or when the specific test scenario is not concerned
with that position. In the running example, we want to limit the recursive depth
of expressions used in the construction of unary expressions:

[MaxRecDepth = 1] Exp/UnaExp/2 ;

Here “2” refers to the 2nd parameter position of UnaExp. The helpful effect of the
Oneway and MaxRecDepth approximations is calculated in Fig. 2. We showcase
yet another form of control, for which purpose we need to slightly extend the
grammar for expressions. That is, we add a nonterminal, Args, for sequences of
arguments, just as in a method call.

Args = (Exp*) ;



Grammar Depth = 1 Depth = 2 Depth = 3 Depth = 4 Depth = 5 Depth = 6

Full 0 1 2 10 170 33490

Oneway 0 1 2 5 15 45

MaxRecDepth 0 1 1 3 21 651

Fig. 2. Impact of control mechanisms on size of test-data sets; 1st row: uncon-
strained combinatorial coverage (same as Ga in Fig. 1); 2nd row: one-way testing for
binary expressions — the resulting numbers reflect that we have eliminated the only
source of explosion for this trivial grammar; 3rd row: the recursive depth for operands
of unary operators is limited to 1 — explosion is slightly postponed.

Now suppose that we face a test scenario such that we need to consider argument
sequences of different length, say of length 0, 1 and 2. We may want to further
constrain the sequences in an attempt to obtain a smaller data set or simply
because we want to honor certain invariants of the grammar-driven functionality
under test. Suppose that the order of arguments is irrelevant, and that duplicate
arguments are to be avoided. The following annotations express these different
approximation intents:

[MinLength = 0, MaxLength = 2, NoDuplicates, Unordered] Args ;

To enforce a finite data-set, we may impose a depth constraint on expressions:

[MaxDepth = 5] Exp ;

To summarize, we have illustrated several control mechanisms for combinatorial
coverage. These mechanisms require that the test engineer associates approxi-
mation intents with sorts, constructors or constructor arguments. The control
parameters can be injected into the actual grammar productions, and they can
also be given separately.

3 Definition of combinatorial coverage

For clarity, we will briefly define combinatorial coverage. (We will use folklore
term-algebraic terminology for some formal bits that follow.) Given is a signature
Σ and a distinguished root sort, root (the latter in the sense of a start symbol
of a context-free grammar). As common, we use TΣ(σ) to denote the set of all
ground terms of sort σ. A test-data set for Σ is a subset of TΣ(root). (We may
also consider test-data sets for sorts other than root , but a complete test datum
is of sort root .)

We say that T ⊆ TΣ(σ) achieves combinatorial coverage up to depth d for σ
if:

T ⊇ {t | t ∈ TΣ(σ), depth(t) ≤ d}
Depth of terms is defined as follows; each term is of depth 1 at the least:

depth(c) = 1

depth(c(t1, . . . , tn)) = max ({depth(t1), . . . , depth(tn)}) + 1



UOp

Stm

Block

Var Int BOpType

Dec

Exp Type

UOpInt BOp

"1" "−" "+"

NoDecDecs Nest

Exp

"x" LitExp UnaExp BinExpVarExp

Var

Int

VDec Assign Seq Skip

Block

BlockDec Stm

Fig. 3. Sort and constructor graphs for an imperative programming lan-
guage; there are sorts for program blocks, declarations, statements, expressions, etc.
with all the usual constructors; the sort graph is clearly an abstraction of the construc-
tor graph.

It is clear that terms over a signature can be enumerated in increasing depth —
the basic algorithm, given below, does just that, in a certain way. More notation:
We use T d

Σ(σ) to denote the set of all terms of sort σ at a given depth d, and we
use T ≤d

Σ (σ) to denote the set of all terms of sort σ up to a given depth d — the
latter being the union over all T i

Σ(σ) for i = 1, . . . , d. By definition, T ≤d
Σ (σ) is

the smallest set that achieves combinatorial coverage up to depth d for sort σ.

4 Grammar properties related to combinatorial coverage

We will discuss several grammar properties in this section. They are meant to
be useful for two purposes: (i) for the implementation of test-data generation;
(ii) as a feedback mechanism for the test engineer who needs to understand
the combinatorial complexity of a grammar in the process of modeling the test
scenario.

Example. The grammar of expressions in Sec. 2 did not admit any expression
terms of depth 1 since all constructors of sort Exp have one or more arguments;
the minimum depth for expression terms is 2. We call this the threshold of a sort.
Clearly, one should not attempt to specify a depth limit below the threshold.

All the properties of this section are conveniently described in terms of sort
and constructor graphs, which can be derived from any grammar; cf. Fig. 3
for an illustration. The nodes in the sort graph are the sorts, while an edge
from σ to σ′ means that σ′ occurs as argument sort of some constructor of
sort σ. The constructor graph provides a more detailed view with two kinds of
nodes, namely constructors and sorts. There are edges from each sort to all of its



constructors. There is one edge for each argument of a constructor — from the
constructor node to the node of the argument’s sort. Our implementation, Geno,
compiles the input grammar into an internal representation containing the sort
and constructor graph. It uses this graph to direct the generation of objects.

Reachability of sorts from other sorts is extractable from the sort graph.
Sort σ′ is reachable from σ, denoted by ρΣ(σ, σ′), if there is a path from σ to σ′.
In similarity to terminated context-free grammars, we require that all sorts are
reachable from root , except perhaps root itself. Based on reachability, we can
define recursiveness of sorts. A sort σ is recursive, denoted by µ(σ), if ρΣ(σ, σ).
(For a mutually recursive sort, there is a path through other sorts, thereby
uncovering a recursive clique. For a directly recursive sort, there is a self-edge.)
A stricter form of reachability is dominance. Sort σ dominates σ′, denoted as
δΣ(σ, σ′), if all paths from root to σ′ go through σ. (root trivially dominates
every sort.) If σ′ is reachable from σ, then there is a distance between the sorts,
denoted as εΣ(σ, σ′), which is defined as the shortest path from σ to σ′.

Example. Suppose that the test engineer aims at combinatorial coverage of a
specific sort σ up to a given depth dσ. This implies that the root depth must
be at least dσ + εΣ(root , σ). In case of explosion, the test engineer may review
all dominators of σ and limit the recursive depth for them so that the sort of
interest, σ, is reached more cheaply.

Using the constructor graph, we can extract the threshold of a sort σ, denoted
as θΣ(σ); it is the smallest i such that T i

Σ(σ) 6= ∅. A more specific threshold can
be inquired for each constructor c as denoted by θΣ(c). The constructor graph
also facilitates shortest term completions both top-down and bottom-up.

5 The basic algorithm for test-data generation

There are two overall options for test-data generation: top-down vs. bottom-up.
The top-down approach would lend itself to a recursive formulation as follows.
Given a depth and a sort, the recursive function for test-data generation con-
structs all terms of the given sort by applying all possible constructors to all
possible combinations of subterms of smaller depths; the latter are obtained
through recursive calls.

In Fig. 4, we define an algorithm that adopts the bottom-up approach instead.
This formulation is only slightly more complex than a top-down recursive for-
mulation, while it offers one benefit. That is, an implementation (using reference
semantics for terms) can immediately use sharing for the constructed terms; each
term construction will be effectively a constant-time operation then (given that
the arities of constructors are bounded). It is true that the top-down approach
could employ some sort of memoization so that sharing is achieved, too. The
bottom-up approach also happens to provide useful feedback to the test engi-
neer. That is, the various sorts are inhabited in increasing depth; so “one can
observe explosion”, right when it happens.

We denote the combinatorial construction of terms by combine(c, kids, len);
cf. Fig. 4. Initially, this operation calculates the Cartesian product over the term



Arguments
– Signature Σ with root sort, root
– Depth d ≥ 1 for combinatorial coverage

Result Test-data set T that covers Σ up to depth d

Variables
– at i

σ — terms of sort σ at depth i (i.e., T i
Σ(σ))

– kids — an array of sets of terms for building new terms
– len — current length of the kids array

Notation
– Σσ — the set of constructors from Σ that are of sort σ
– args(c) — the sequence of argument sorts for the constructor c
– kids[1], kids[2], . . . — array subscripting
– combine(c, kids, len) — build terms with constructor c and subterms from

kids

Algorithm

for i = 1, . . . , d do begin // Term construction in increasing depth
for each σ in Σ do begin // Iterate over all sorts

at i
σ := ∅;

if d− εΣ(root , σ) ≥ i then begin // Skip depth depending on distance from
root

if i ≥ θΣ(σ) then begin // Skip depth if threshold has not been reached yet
for each c in Σσ do begin // Iterate over all constructors of sort

len := 0;
for each a in args(c) do begin // Iterate over all arguments of c

len := len + 1;
kids[len] := at1a ∪ · · · ∪ at i−1

a ; // Determine argument terms
end;
at i

σ := at i
σ ∪ combine(c, kids, len); // Build and store terms

end;
end;

end;
end;

end;

T := at1root ∪ · · · ∪ atd
root ; // Compose result

Fig. 4. Basic algorithm for bottom-up test-data generation

sets for the argument sorts of a constructor (i.e., over kids) — modulo a slight
detail. That is, a legal combination must involve at least one term of depth i−1
(as opposed to 1, . . . , i−2); otherwise we were not constructing a term of depth
i. Controlled combinatorial coverage caters for options other than the Cartesian
product. Hence, combine(c, kids, len) is subject to redefinition by dependence
control; cf. Sec. 6.4.



6 Control mechanisms for combinatorial coverage

We will now define the mechanisms for controlling combinatorial coverage. The
basic algorithm, as presented above, will only need simple and local amendments
for each mechanism. The following mechanisms will be described:

– Depth control — limit depth of terms; not just for the root sort.
– Recursion control — limit nested applications of recursive constructors.
– Balance control — limit depth variation for argument terms.
– Dependence control — limit combinatorial exhaustion of argument domains.
– Construction control — constrain and enrich term construction.

Several of these mechanisms were illustrated in Sec. 2 complete with additional
mechanisms for lists (cf. MinLength, MaxLength, Unordered, NoDuplicates).
The latter mechanisms will not be formalized here because they are just list-
specific instantiations of depth control and dependence control.

6.1 Depth control

With d as the limit for the depth of terms of the root sort, the depth limits
for all the other sorts are implied. For any given σ, the implied depth limit is
d − εΣ(root , σ), and the actual depth may actually vary per occurrence of the
sort. This fact suggests a parameterization of the basic algorithm such that a
depth limit, dσ, can be supplied explicitly for each sort σ. The algorithm evolves
as follows:

Before refinement
if d− εΣ(root , σ) ≥ i then begin // Skip depth depending on distance from

root

After refinement
if dσ ≥ i then begin // Skip depth depending on sort-specific limit

All but the depth limit for the root sort are considered optional. (Per notation, d
becomes droot .) One should notice that per-sort limits can only lower the actual
depth limit beyond the limit that is already implied by the root limit. More
generally, the depth limit for any sort is also constrained by its dominators.
Hence, we assume that the explicit depth limits respect the following sanity
check:

∀σ, σ′ ∈ Σ. δΣ(σ, σ′) ⇒ dσ′ ≤ dσ − εΣ(σ, σ′)

Any control mechanism that works per sort, works per argument position of
constructors, too. We can view the control-parameter value for a sort as the
default for the control parameters for all argument positions of the same sort.
Let us generalize control depth in this manner. Hence, we parameterize the
algorithm by depth limits, dc,j , where c is a constructor and j = 1, . . . , arity(c).
The algorithm evolves as follows:



Before refinement
kids[len] := at1a ∪ · · · ∪ at i−1

a ; // Determine argument terms

After refinement

kids[len] := at1a ∪ · · · ∪ at
min(i−1,dc,len )
a ; // Determine argument terms

We note that some argument position of a given sort may exercise a given depth,
whereas others do not. This is the reason that the above refinement needs to be
precise about indexing sets of terms.

6.2 Recursion control

Depth control allows us to assign low priority to sorts in a way that full com-
binatorial coverage is consistently relaxed for subtrees of these sorts. Recursion
control allows us to assign low property to intermediary sorts only until combi-
natorial exploration hits sorts of interests. To this end, the recursive depth of
terms of intermediary sorts can be limited. (For simplicity, we ignore the issues
of recursive cliques in the following definition.) The recursive depth of a term t
for a given sort σ is denoted as rdepthΣ,σ(t) and defined as follows:

rdepthΣ,σ(c) = if c ∈ Σσ then 1 else 0
rdepthΣ,σ(c(t1, . . . , tn)) = if c ∈ Σσ then 1 + ts else ts

where ts = max ({rdepthΣ,σ(t1), . . . , rdepthΣ,σ(tn)})

Recursion control is enabled by further parameterization of the algorithm. The
limits for recursive depth amount to parameters rc,j , where c is a constructor
and j = 1, . . . , arity(c). An unspecified limit is seen as ∞. The algorithm evolves
as follows:

Before refinement

kids[len] := at1a ∪ · · · ∪ at
min(i−1,dc,len )
a ; // Determine argument terms

After refinement

kids[len] :=
{

t ∈ at1a ∪ · · · ∪ at
min(i−1,dc,len )
a

∣∣ rdepthΣ,a(t) ≤ rc,len

}
;

The actual term traversals for the calculation of (recursive) depth can be avoided
in an efficient implementation by readily maintaining recursive depth and normal
depth as term properties along with term construction.

6.3 Balance control

Depth and recursion control cannot be used in cases where terms of ever-
increasing depth are needed (without causing explosion). This scenario is enabled
by balance control, which allows us to limit the variation on the depth of argu-
ment terms. Normally, when we build terms of depth i, we consider argument
terms of depth 1, . . . , i − 1. An extreme limitation would be to only consider



terms of depth i−1. In this case, the constructed terms were balanced — hence,
the name: balance control. In this case, it is also easy to see that the number
of terms would only grow by a constant factor. Balance control covers the full
spectrum of options — with i− 1 being one extreme and 1, . . . , i− 1 the other.
We further parameterize the algorithm by limits, bc,j > 1, where c is a con-
structor and j = 1, . . . , arity(c). Again, this parameter is trivially put to work
in the algorithm by adapting the step for argument terms (details omitted). An
unspecified limit is seen as ∞.

6.4 Dependence control

We will now explore options for controlling combinations of arguments for form-
ing new terms; recall the discussion of all-way vs. one-way coverage in Sec. 2.
The main idea is to specify whether arguments should be varied dependently or
independently.

One-way coverage The completely independent exhaustion of argument domains
is facilitated by a dedicated coverage criterion, which requires that each argument
term appears at least once in a datum for the constructor in question; we say
that T ⊆ TΣ(σ) achieves one-way coverage of c : σ1 × · · · × σn → σ ∈ Σ relative
to T1 ⊆ TΣ(σ1), . . . , Tn ⊆ TΣ(σn) if:

∀i = 1, . . . , n. ∀ t ∈ Ti. ∃c(t1, . . . , tn) ∈ T. ti = t

We recall that one-way coverage is justified if dependencies between argument
positions are not present in the system under test, or they are negligible in the
specific scenario. If necessary, we can even further relax one-way coverage such
that exhaustion of candidate sets is not required for specific argument positions.

Multi-way coverage In between all-way and one-way coverage, there is multi-
way coverage reminiscent of multi-way testing (see, e.g., [9]). Classic multi-way
testing is intended for testing functionality that involves several arguments. For
example, two-way testing (or pair-wise testing) assumes that only pair-wise com-
binations of arguments are to be explored as opposed to all combinations. The
justification for limiting combinations in this manner is that functionality tends
to branch on the basis of binary conditions that refer to two arguments. In
grammar-based testing, we can adopt this justification by relating to the func-
tionality that handles a given constructor by pattern matching or otherwise.
For example, some functionality on terms of the form f(t1, t2, t3) might perform
parallel traversal on t1 and t2 without depending on t3. Then, it is mandatory
to exhaust combinations for t1 and t2, while it is acceptable to exhaust t3 inde-
pendently. Hence, we face two-way coverage for t1, t2 and one-way coverage for
t3.

We further parameterize the algorithm by oc for each constructor c. The pa-
rameters affect the workings of combine(c, kids, len). In turns out that there is
a fundamental way of specifying combinations. Suppose, c is of arity n. A valid



specification oc must be a subset of P({1, . . . , n}). (Here, P(·) is the power-set
constructor.) Each element in oc enumerates indexes of arguments for which
combinations need to be considered. For instance, the aforementioned example
of f(t1, t2, t3) with two-way coverage for t1 and t2 vs. one-way coverage for t3
would be specified as {{1, 2}, {3}}. Here are representative specifications for the
general case with n arguments, complete with their intended meanings:

1. {{1, . . . , n}}: all-way coverage.
2. {{1}, . . . , {n}}: one-way coverage with exhaustion of all components.
3. ∅: no exhaustion of any argument required.
4. {{1, 2}, . . . , {1, n}, {2, 3}, . . . , {2, n}, . . . , {n− 1, n}}: two-way coverage.

This scheme makes sure that all forms of multi-way coverage can be specified.
Also, by leaving out certain components in oc, they will be ignored for the
combinatorial exploration. The default for an unspecified parameter oc is the
full Cartesian product. We require minimality of the specifications oc such that
∀x, y ∈ oc. x 6⊂ y. (We can remove x because y provides a stronger require-
ment for combination.) Options (1.)–(3.) are readily implemented. Computing
minimum sets for pair-wise coverage (i.e., option (4.)), or more generally —
multi-way coverage — is expensive, but one can employ efficient strategies for
near-to-minimum test sets (see, e.g., [26]).

6.5 Construction control

A general control mechanism is obtained by allowing the test engineer to cus-
tomize term construction through conditions and computations. This mechanism
provides expressiveness that is reminiscent of attribute grammars [15]. Thereby,
we are able to semantically constrain test-data generation and to complete test
data into test cases such that additional data is computed by a test oracle and
attached to the constructed terms.

We require that conditions and computations are evaluated during bottom-
up data generation as opposed to an extra phase. Hence, ‘invalid’ terms are
eliminated early on — before they engage in new combinations and thereby
cause explosion. The early evaluation of computations allows conditions to take
advantage of the extra attributes. As an aside, we mention that some of the
previously described control mechanisms can be encoded through construction
control. For instance, we could use computations to actually compute depths as
attributes to be attached to terms, while term construction would be guarded by
a condition that enforced the depth limit for all sorts and constructor arguments.
A native implementation of depth control is simply more efficient.

We associate conditions and computations to constructors. Given a condition
(say, a predicate) pc for a constructor c, both of arity n, term construction
c(x1, . . . , xn) is guarded by pc(x1, . . . , xn). Given a computation (say, a function)
fc for a constructor c : σ1 × · · · × σn → σ0 is of the following type:

fc : (σ1 ×Aσ1)× · · · × (σn ×Aσn
) → Aσ0



Here, Aσ is a domain that describes the attribute type for terms of sort σ. The
function observes argument terms and attributes, and computes an attribute
value for the newly constructed term. This means that we assume purely syn-
thesized attribute grammars because immediate completion of computations and
conditions is thereby enabled. Hence, no expensive closures are constructed, and
both conditions and computation may effectively narrow down the combinato-
rial search space. For brevity, we do not illustrate attributes, but here are some
typical examples:

– Expression types in the sense of static typing.
– The evaluation results with regard to some dynamic semantics.
– Complexity measures that are taken into account for combination.

There is one more refinement that increases generality without causing overhead.
That is, we may want to customize term construction such that the proposed
candidate is replaced by a different term, or by several terms, or it is rejected
altogether. This provides us with the following generalized type of a conditional
computation which returns a set of attributed terms:

fc : (σ1 ×Aσ1)× · · · × (σn ×Aσn) → P(σ0 ×Aσ0)

Geno — our implementation of controllable combinatorial coverage — also pro-
vides another form of computations: one may code extra passes over the gener-
ated object structures to be part of the serialization process of the in-memory
test data to actual test data. Both kinds of computations (attribute grammar-
like and serialization-time) are expressed as functions in a .NET language.

7 Testing an object serialization framework

The described grammar-based testing approach has been applied in the mean
time to a number of problems, in particular, to differential testing, stress test-
ing and conformance testing of language implementations and virtual processors
(virtual machines). Geno has been used to generate test-data from problem-
specific grammars for Tosca [25], XPath [28], XML Schema [29], the Microsoft
Windows Card runtime environment [11], the Web Service Policy Framework [22],
and others. Measurements for some applications of Geno are shown in Fig. 5.

We will now discuss one grammar-based testing project in more detail. The
project is concerned with testing a framework for object serialization, i.e., a
framework that supports conversion of in-memory object instances into a form
that can be readily transported over the network or stored persistently so that
these instances can be de-serialized at some different location in a distributed
system, or at some later point in time. The specific technology under test is
‘data contracts’ as part of Microsoft’s WCF. This framework allows one to map
classes (CLR types) to XML schemas and to serialize object instances as XML.
Data contracts also support some sort of loose coupling.



Status Grammar Depth Time Terms Memory

Uncontrolled WindowsCard 5.. 0.05 7.657 1.489.572
WS Policy 5 1.57 313.041 41.121.608
Tosca 4 0.08 27.909 2.737.204
XPath 2 0.09 22.986 2.218.004

Controlled Tosca 8 0.14 42.210 5.669.616
Data Contract 6 22.33 2.576.177 365.881.216

Fig. 5. Measuring some applications of Geno. Runtime is in seconds, generation
time on a Compaq OPTIPLEX GX280, Pentium 4, 3.2 Ghz, 2 Gigabyte of memory.
Memory consumption is in bytes. Column ‘Terms’ lists the number of different terms
for the root sort. The ‘uncontrolled’ measurements combinatorially exhaust the gram-
mar, except that the length of lists must be in the range 0,1,2. The maximum depth
before proper explosion (‘out of memory’) is shown. In the WindowsCard case, the
test set is actual finite; so we write “5..” to mean that test-data generation has con-
verged for depth 5. The depth for Tosca is insufficient to explore expression forms in all
possible contexts. The depth for XPath indicates that control is indispensable for gen-
erating non-trivial selector expressions. The ‘controlled’ measurements take advantage
of problem-specific grammar annotations. In the case of Tosca, the corresponding test-
data set achieves branch-coverage of a reference implementation. In the case of Data
Contract, all essential variation points of the serialization framework are exercised for
up to three classes with up to three fields each, complete with the necessary attributes
and interface implementations.

The overall testing problem is to validate the proper declaration of data con-
tracts by CLR types, the proper mapping of CLR types (with valid data con-
tracts) to XML schemas, the proper serialization and de-serialization of object
instances including round-tripping scenarios. (There are also numerous require-
ments regarding the expected behavior in case of invalid schemas or CLR types.)
Essentially, Geno is used in this project to generate classes like the following:

[DataContract]

public class Car : IUnknownSerializationData {

[DataMember]

public string Model;

[DataMember]

public string Maker;

[DataMember(Name="HP", VersionAdded=2, IsOptional=true)]

public int Horsepower;

public virtual UnknownSerializationData UnknownData {

get { ... } set { ... } // omitted

}

}

In these classes, specific custom attributes are used to inform the serialization
framework. The DataContract attribute expresses that the class can be se-



rialized. Likewise, fields and properties are tagged for serialization using the
DataMember attribute. There is a default mapping from CLR names to XML
names, but the name mapping can be customized; see the attribute Name="HP".
There are several other attributes and features related to versioning and loose
coupling; cf. the implementation of IUnknownSerializationData which sup-
ports round-tripping of XML data that is not understood by a given CLR type.

The project delivered 7 Geno grammars for different validation aspects and
different feature sets. The baseline grammar, from which all other grammars are
derived by slight extensions, factoring and annotation has 21 nonterminals and
34 productions (“alternatives”). Eventually, these grammars generated about
200.000 well justified test cases. As shown in Fig. 5, Geno scales well for gram-
mars of this size. We have also tried to use state-of-the-art test-data generation
techniques such as Korat [5], AsmL-Test tool [10] or Unit Meister [27]. However
these techniques were not able to cope with the complexity of the serialization
problem. (We continue this discussion in the related work section.) The com-
binatorial search space is due to class hierarchies with multiple classes, classes
with multiple fields, various options for custom attributes, different primitive
types, potentially relevant interface implementations, etc. The Geno-generated
test cases uncovered around 25% of all filed bugs for the technology.

8 Related work

Coverage criteria for grammars Controlled combinatorial coverage is a coverage
criterion for grammars, which generalizes on other such criteria. Purdom devised
a by-now folklore algorithm to generate a small set of short words from a context-
free grammar where each production of the grammar is used in the derivation of
at least one word [21], giving rise to rule coverage as a coverage criterion. The
first author (Lämmel) generalized rule coverage such that all the different occur-
rences of a nonterminal are distinguished [16] — denoted as context-dependent
rule coverage (and context-dependent branch coverage for EBNF-like expressive-
ness). Harm and Lämmel defined a simple, formal framework based on regular
path expressions on derivation trees that can express various grammar-based cov-
erage criteria including rule coverage and context-dependent rule coverage [17].
The same authors also designed a coverage notion for attribute-grammar-like
specifications, two-dimensional approximation coverage, using recursive depth
in the definition of coverage [12]. Controlled combinatorial coverage properly
generalizes the aforementioned coverage criteria by integrating depth of deriva-
tion, recursive depth of derivation, the dichotomy one-way, two-way, multi-way,
all-way as well as the point-wise specification of these controls per sort, per
constructor or even per constructor argument.

Grammar-based testing Maurer designed a general grammar-based test-data gen-
erator: DGL [19]. The grammar notation is presumably the most advanced in
the literature. Productions are associated with weights, but there also features
for actions, systematic enumeration, ordered selection of alternatives, and oth-
ers. McKeeman described differential testing for compilers and potentially other



grammar-driven functionality [20], while test-data generation is accomplished
by a ‘stochastic grammar’. (Differential testing presumes the availability of mul-
tiple implementations whose behavior on a test datum can be compared such
that a discrepancy reveals a problem with at least one of the implementations.)
Slutz used a similar stochastic approach for differential testing of SQL imple-
mentations and databases, even though the grammar knowledge is concealed in
the actual generator component [24]. Sirer and Bershad tested Java Virtual ma-
chines [23] using ‘production grammars’ that involve weights as well as guards
and actions in order to control the generation process. The weights are actu-
ally separated from the grammar so that the grammar may be used in differ-
ent configurations. This project did not use differential testing but more of a
model-based approach. That is, an executable specification of the meaning of
the generated JVM byte-code sequences served as an oracle for testing JVM im-
plementations. Claessen and Hughes have delivered a somewhat grammar-based
testing approach for Haskell [8], where programmers are encouraged to annotate
their functions with properties which are then checked by randomized test data.
The approach comprises techniques for the provision of test-data generators for
Haskell types including algebraic data types (‘signatures’). Again, constructors
are associated with probabilistic weights.

Testing hypotheses The seminal work on testing hypotheses by Gaudel et al. [4, 2]
enables rigorous reasoning about the completeness of test-data sets. Our control
mechanisms are well in line with this work. Most importantly, depth control
corresponds to a form of a regularity hypothesis, which concerns the complexity
of data sets. That is, suppose we have a model m and an implementation i,
both given as functions of the same type over the same signature, be it m, i :
TΣ(root) → r, where the result type r admits intensional equality. We say that i
correctly implements m under the regularity hypothesis for sort root and depth
d if we assume that the following implication holds:

(∀t ∈ T 1
Σ(root) ∪ · · · T d

Σ(root). m(t) = i(t)) =⇒ (∀t ∈ TΣ(root). m(t) = i(t))

Hence, any use of a control mechanism for depth or recursive depth for either
sorts or constructors or constructors arguments can be viewed as an expression
of a regularity hypothesis. However, our approach does not presume that the
complexity measure for regularity is a property of the grammar of even the
sort; thereby we are able to express very fine-grained regularity hypotheses, as
necessary for practical problems. Dependence control does not map to regularity
hypotheses; instead it maps to independence hypotheses as common in classic
multi-way testing. So our approach integrates common kinds of hypotheses for
use in automated grammar-based testing.

Symbolic and monitored execution Our approach does not leverage any sort of
existing model or reference implementation for test-data generation. By con-
trast, approaches based on symbolic execution or execution monitoring support
the derivation of test data from models or implementations. For instance, the



Korat framework for Java [5] is capable of generating systematically all non-
isomorphic test cases for the arguments of the method under test — given a
bound on the size of the input. To this end, Korat uses an advanced backtrack-
ing algorithm that monitors the execution of predicates for class invariants, and
makes various efforts to prune large portions of the search space. This technique
is also embodied in the AsmL-Test tool [10]. Even more advanced approaches
use symbolic execution and constraint solving for the purpose of test-data gen-
eration [14, 27]. Approaches for execution monitoring and symbolic execution
can be very efficient when small intricate data structures need to be generated.
An archetypal example of a system under test is a library for AVL trees. These
approaches commit to a ‘small scope hypothesis’ [1, 13], assuming that a high
portion of bugs can be found by testing the program for all test inputs within a
small scope. (In an OO language, a small scope corresponds to a small number
of conglomerating objects.) Hence, these techniques do not scale for the ‘large
or huge scopes’ needed for testing grammar-driven functionality, as discussed in
Sec. 7.

9 Concluding remarks

Summary and results Testing language implementations, virtual machines, and
other grammar-driven functionality is a complexity challenge. For instance, highly
optimized implementations of XPath (the selector language for XML) execute
different branches of code depending on selector patterns, the degree of recursion,
the use of the reverse axis and the state of the cache. In this context, it is impor-
tant to automate testing and to enable the exploration of test data along non-
trivial complexity metrics such as deep grammar patterns and locally exhaus-
tive combinations. We have described an approach to test-data generation for
grammar-based testing of grammar-driven functionality. This approach has been
implemented in a tool, Geno, and validated in software development projects.
The distinguished characteristics of the approach is that test data is generated in
a combinatorially exhaustive manner modulo approximations defined by the test
engineer. It is indispensable that approximations can be expressed: test engineers
can generate test cases that focus on particular problematic areas in language
implementations like capacity tests, or the interplay between loading, security
permissions and accessibility. We contend that the approach is very powerful,
and we have found that test-data generation is unprecedentedly efficient because
of the possibility of a backtracking-free bottom-up algorithm that cheaply allows
for maximum sharing and semantic constraint checking. Of course, test-data gen-
eration is only one ingredient of a reasonable test strategy (others are: grammar
development, test oracle, test-run automation), but doing test-data generation
systematically and efficiently is beneficial.

Whether or not to randomize Randomized test data generation is well estab-
lished [3, 7] in testing, in general, and in grammar-based testing, in particular.
The underlying assumption is that the resulting test sets — if large enough —
will include all ‘interesting cases’. In grammar-based testing, randomized test



data generation is indeed prevalent, but we fail to see that this approach would
be as clear as ours when it comes to reasoning about testing hypotheses [4, 2],
which are crucial in determining appropriateness of test sets. We contend that the
weights, which are typically associated with grammar productions, end up fulfill-
ing two blurred roles: (i) they specify the relative frequency of an alternative and
(ii) they control termination of recursive deepening. Instead, controlled combi-
natorial coverage appeals to hypotheses for regularity and subtree independence
by providing designated control mechanisms. Users of Geno have expressed that
they would like to leverage weights as an additional control mechanism, very
much in the sense of (i), and we plan to provide this mechanism in the next
version. In fact, it is a trivial extension as opposed to the dual marriage: adding
systematic test-data generation to a randomized setup is complicated [19, p.54]
implementation-wise, and its meaning is not clear either. In our case, weights
essentially define filters on subtree combinations.

Future work Geno and other tools for grammar-based testing are batch-oriented:
the test engineer devises a grammar and test-data generation is initiated in the
hope that it terminates (normally). The actual generation may provide little
feedback to the test engineer; refinement of generator grammars requires skills
and is tedious. We envisage that the expression of testing hypotheses could
be done more interactively. To help in this process, a generator should provide
feedback such that it reports (say, visualizes) thresholds, distances and explosive
cliques in the grammar. (Some ideas have been explored in an experimental
extension of Geno [30].) A testing framework could also help in taking apart
initial test scenarios and then managing the identified smaller scenarios.

Another important area for improvement is the handling of problem-specific
identifiers in test-data generation. (Think of variable names in an imperative
language.) In fact, this issue very much challenges the generation of statically
correct test data. There exist pragmatic techniques in the literature on compiler
testing and grammar-based testing; see, e.g., [6, 19, 12]. Geno users are currently
advised to handle identifiers during test-data serialization in ad-hoc manner.
That is, a generator grammar only uses placeholders. Actual identifier generation
and the establishment of use-def relationships must be coded in extra strategies
that are part of the serialization process. We contend that the overall topic of
general, declarative and efficient identifier handling deserves further research.
For some time in the past, we were hoping that symbolic execution of attribute
grammars, as in [12], potentially involving constraint solving, would be a solution
to that problem, but its scalability is not acceptable as far as we know of.

Acknowledgments We are grateful for contributions by Vadim Zaytsev and Joe
Zhou.
We also acknowledge discussions with Ed Brinksma at an earlier stage of this research.
The TestCom 2006 referees have made several helpful proposals.

References

1. A. Andoni, D. Daniliuc, S. Khurshid, , and D. Marinov. Evaluating the
“Small Scope Hypothesis”. Unpublished; Available at http://sdg.lcs.mit.edu/



publications.html, Sept. 2002.
2. G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal specifi-

cations: a theory and a tool. Software Engineering Journal, 6(6):387–405, 1991.
3. D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test

cases. IBM Systems Journal, 22(3):229–245, 1983.
4. L. Bouge, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test sets generation from

algebraic specifications using logic programming. Journal of Systems and Software,
6(4):343–360, 1986.

5. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on
java predicates. In Proc. International Symposium on Software testing and analysis,
pages 123–133. ACM Press, 2002.

6. C. Burgess. The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability, 4(2):81–99, June 1994.

7. C. J. Burgess and M. Saidi. The automatic generation of test cases for optimizing
Fortran compilers. Information and Software Technology, 38(2):111–119, Feb. 1996.

8. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pages 268–279, New York, NY,
USA, 2000. ACM Press.

9. D. Cohen, S. Dalal, M. Fredman, and G. Patton. The AETG system: An ap-
proach to testing based on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–443, July 1997.

10. Foundations of Software Engineering, Microsoft Research. AsmL — Abstract State
Machine Language, 2005. http://research.microsoft.com/fse/AsmL/.

11. Y. Gurevich and C. Wallace. Specification and Verification of the Windows Card
Runtime Environment Using Abstract State Machines. Technical report, Microsoft
Research, Feb. 1999. MSR-TR-99-07.

12. J. Harm and R. Lämmel. Two-dimensional Approximation Coverage. Informatica,
24(3):355–369, 2000.

13. D. Jackson and C. A. Damon. Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector. IEEE Transactions on Software Engi-
neering, 22(7):484–495, 1996.

14. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, July 1976.

15. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127–145, 1968. Corrections in 5:95-96, 1971.

16. R. Lämmel. Grammar Testing. In H. Hussmann, editor, Proc. of Fundamental
Approaches to Software Engineering (FASE) 2001, volume 2029 of LNCS, pages
201–216. Springer-Verlag, 2001.

17. R. Lämmel and J. Harm. Test case characterisation by regular path expressions.
In E. Brinksma and J. Tretmans, editors, Proc. Formal Approaches to Testing of
Software (FATES’01), Notes Series NS-01-4, pages 109–124. BRICS, Aug. 2001.

18. Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for pairwise
testing. In HASE, pages 254–261. IEEE Computer Society, 1998.

19. P. Maurer. Generating test data with enhanced context-free grammars. IEEE
Software, 7(4):50–56, 1990.

20. W. McKeeman. Differential testing for software. Digital Technical Journal of
Digital Equipment Corporation, 10(1):100–107, 1998.

21. P. Purdom. A sentence generator for testing parsers. BIT, 12(3):366–375, 1972.
22. J. Schlimmer et al. Web Services Policy Framework, Sept. 2004. Available at

http://www-128.ibm.com/developerworks/library/specification%/ws-polfram/.



23. E. G. Sirer and B. N. Bershad. Using production grammars in software testing. In
USENIX, editor, Proceedings of the 2nd Conference on Domain-Specific Languages
(DSL ’99), October 3–5, 1999, Austin, Texas, USA, pages 1–13, Berkeley, CA,
USA, 1999. USENIX.

24. D. Slutz. Massive Stochastic Testing for SQL. Technical Report MSR-TR-98-21,
Microsoft Research, Redmond, 1998. A shorter form of the paper appeared in the
Proc. of the 24th VLDB Conference, New York, USA, 1998.

25. S. Stepney. High Integrity Compilation: A Case Study. Prentice Hall, 1993.
26. K. Tai and Y. Lei. A Test Generation Strategy for Pairwise Testing. IEEE Trans-

actions on Software Engineering, 28(1):109–111, 2002.
27. N. Tillmann, W. Schulte, and W. Grieskamp. Parameterized Unit Tests. Technical

report, Microsoft Research, 2005. MSR-TR-2005-64; also appeared in FSE/ESEC
2005.

28. W3C. XML Path Language (XPath) Version 1.0, Nov. 1999. http://www.w3.org/
TR/xpath.

29. W3C. XML Schema, 2000–2003. http://www.w3.org/XML/Schema.
30. V. V. Zaytsev. Combinatorial test set generation: Concepts, implementation, case

study. Master’s thesis, Universiteit Twente, Enschede, The Netherlands, June 2004.


