
Bounded Sequence Testing from

Non-deterministic Finite State Machines

Florentin Ipate

Department of Computer Science and Mathematics
University of Pitesti, Romania

fipate@ifsoft.ro

Abstract. The widespread use of finite state machines (FSMs) in mod-
eling of communication protocols has lead to much interest in testing
from (deterministic and non-deterministic) FSMs. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state
counting. Generally, the existing methods of testing from FSMs check
that the implementation under test behaves as specified for all input se-
quences. On the other hand, in many applications, only input sequences
of limited length are used. In such cases, the test suite needs only to
establish that the IUT produces the specified results in response to in-
put sequences whose length does not exceed an upper bound l. A recent
paper devises methods for bounded sequence testing from deterministic
FSM specifications. This paper considers the, more general, situation
where the specification may be a non-deterministic FSM and extends
state counting to the case of bounded sequences. The extension is not
trivial and has practical value since the test suite produced may contain
only a small fraction of all sequences of length less than or equal to the
upper bound.

1 Introduction

Finite state machines (FSMs) are widely used in modeling of communication
protocols. As testing is a vital part of system development, this has lead to
much interest in testing from FSMs [13], [9]. Given a FSM specification, for
which we have its transition diagram, and an implementation, which is a “black
box” for which we can only observe its input/output behavior, we want to test
whether the implementation under test (IUT) conforms to the specification. This
is called conformance testing or fault detection and a set of sequences that solves
this problem is called a test suite.

Many test selection methods have been developed for the case where the
specification is a deterministic FSM. The best known methods are: Transition
Tour [13], Unique Input Output (UIO) [13], Distinguishing Sequence [13], the
W method [2], [13] and its variant, the “partial W” (Wp) method [3]. The W
and Wp methods will find all the faults in the IUT provided that the number of
states of the IUT remain below a known upper bound.

When the specification is deterministic, equivalence is the natural notion
of correctness. On the other hand, when the specification is non-deterministic,

equivalence may often be too restrictive. Usually, a non-deterministic FSM spec-
ification provides a set of alternative output sequences that are valid responses
to some input sequence and the IUT may choose from these (when the IUT is de-
terministic only one choice is allowed, otherwise multiple choices can be made).
Consequently, the IUT is correct if and only if every input/output sequence that
is possible in the IUT is also present in the specification; we say that the IUT
is a reduction of the specification. Obviously, equivalence is a particular case
of reduction, where all specified choices are implemented. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state counting

[11], [12], [14].

Generally, the existing methods of testing from FSMs check that the IUT
behaves as specified for all input sequences. On the other hand, in many ap-
plications, only input sequences of limited length are used. In such cases, the
test suite needs only to establish that the IUT produces the specified results in
response to input sequences whose length does not exceed an upper bound l. A
recent paper extends the W and Wp methods to the case of bounded sequences

[8].

This paper considers the, more general, situation where the specification may
be a non-deterministic FSMs and extends the state counting based test selection
method to the case of bounded sequences. The extension is not straightforward
since it is not sufficient to extract the prefixes of length at most l from the test
suite produced in the unbounded case. Furthermore, the test suite produced may
contain only a small fraction of all sequences of length less than or equal to the
upper bound.

The paper is structured as follows. Section 2 introduces FSM related con-
cepts and results that are used later in the paper, while section 3 reviews the
use of state counting in testing from non-deterministic FSMs. Section 4 presents
the testing method for bounded sequences, while the following two sections pro-
vide its theoretical basis: the l-bounded product FSM is defined in section 5,
while in section 6, state counting is used to validate the test suite given earlier.
Conclusions are drawn in section 7.

2 Finite state machines

This section introduces the finite state machine and related concepts and results
that will be used later in the paper.

First, the notation used is introduced. For a finite set A, we use A∗ to denote
the set of finite sequences with members in A; ε denotes the empty sequence. For
a, b ∈ A∗, ab denotes the concatenation of sequences a and b. an is defined by
a0 = ε and an = an−1a for n ≥ 1. For U, V ⊆ A∗, UV = {ab | a ∈ U, b ∈ V }; Un

is defined by U0 = {ε} and Un = Un−1U for n ≥ 1. Also, U [n] =
⋃

0≤k≤n Uk.
For a sequence a ∈ A∗, ‖a‖ denotes the length (number of elements) of a; in
particular ‖ε‖ = 0. For a sequence a ∈ A∗, b ∈ A∗ is said to be a prefix of a if
there exists a sequence c ∈ A∗ such that a = bc. The set of all prefixes of a is

denoted by pref(a). For U ⊆ A∗, pref(U) denotes the set of all prefixes of the
elements in U. For a finite set A, |A| denotes the number of elements of A.

A finite state machine (FSM) M is a tuple (Σ, Γ, Q, h, q0), where Σ is the
finite input alphabet, Γ is the finite output alphabet, Q is the finite set of states,
h : Q × Σ −→ 2Q×Γ is the transition function and q0 ∈ Q is the initial state. A
FSM is usually described by a state-transition diagram. Given q, q′ ∈ Q, σ ∈ Σ
and γ ∈ Γ, the application of input σ when M is in state q may result in M
moving to state q′ and outputting γ if and only if (q′, γ) ∈ h(q, σ).

M is said to be completely specified if for all q ∈ Q and σ ∈ Σ, |(h(q, σ)| ≥ 1.
If M is not completely specified, it may be transformed to form a completely
specified FSM by assuming that the “refused” inputs produce a designated error
output, which is not in the output alphabet of M ; this behavior can be repre-
sented as self-looping transitions or transitions to an extra (error) state. M is
said to be deterministic if for all q ∈ Q and σ ∈ Σ, |(h(q, σ)| ≤ 1.

The function h may be extended to take input sequences and produce output
sequences, i.e. h : Q × Σ∗ −→ 2Q×Γ∗

. The projections h1 : Q × Σ∗ −→ 2Q and
h2 : Q×Σ∗ −→ 2Γ∗

of h give the states reached (h1) and the output sequences
produced (h2) from a state, given an input.

A FSM M is said to be initially connected if every state q is reachable from
the initial state of M, i.e. there exists s ∈ Σ∗ such that q ∈ h1(q0, s). If M is
not initially connected it may be transformed into an initially connected FSM
by removing the unreachable states.

Given a state q, the associated language of q, LM (q), contains the in-
put/output sequences allowed by M from q. More formally, LM (q) = {(s, g) |
s ∈ Σ∗, g ∈ h2(q, s)}. The input/output sequences allowed by M from q0 make
up the associated language of M, denoted by L(M).

States q of M and q′ of M ′ are said to be equivalent if LM (q) = LM ′(q′).
FSMs M and M ′ are said to be equivalent if their initial states are equivalent,
i.e. L(M) = L(M ′). The equivalence relation can be restricted to a set of input
sequences Y ⊆ Σ∗; this is called Y -equivalence.

M is said to be observable if for every state q, input σ and output γ, M has
at most one transition leaving q with input σ and output γ, i.e. |{q′ | (q′, γ) ∈
h(q, σ)}| ≤ 1. In such a FSM, given q ∈ Q, s ∈ Σ∗ and g ∈ Γ ∗, hg(q, s) is used
to denote the state (if exists) where input sequence s takes M from state q while
outputting sequence g. Every FSM is equivalent to an observable FSM [10]. It
will thus be assumed that any FSM considered is observable.

Suppose M and M ′ are two completely specified FSMs. Given states q of M
and q′ of M ′, q is said to be a reduction of q′, written q ≤ q′, if LM (q) ⊆ LM ′(q′).
Obviously, q and q′ are equivalent if and only if q ≤ q′ and q′ ≤ q. On the class
of deterministic FSMs, the two relations coincide. The FSM M is said to be a
reduction of the FSM M ′, written M ≤ M ′, if q0 ≤ q′0. Given a set of input
sequences Y ⊆ Σ∗, weaker reduction relations, denoted by ≤Y , can be obtained
by restricting the above definitions to Y.

3 Testing from non-deterministic FSMs

This section briefly reviews the use of state counting in testing from (possibly)
non-deterministic FSMs [5]. One important case is where the IUT is known to
be deterministic [12]. However, the general case where the IUT may also be non-
deterministic, is considered. All FSMs referred to are assumed to be initially
connected, completely specified and observable.

3.1 Prerequisites

When testing from a formal specification, it is usual to assume that the IUT
behaves like some unknown element from a fault domain. In the case of a FSM
specification M = (Σ, Γ, Q, h, q0), the fault domain consists of all initially con-
nected, completely specified and observable FSMs M ′ = (Σ, Γ, Q′, h′, q′0) with
the same input and output alphabets as M and at most m′ states, where m′ is
a predetermined integer greater than or equal to the number m of states of M .
Furthermore, it will be assumed that the IUT has a reliable reset. A FSM has a
reset operation if there is some input r that takes every state to the initial state.
A reliable reset is a reset that is known to have been implemented correctly and
might be implemented through the system being switched off and then on again.
The reset will not be included in the input alphabet.

A test suite is a finite set of input sequences that, for every M ′ in the fault
model that is not a reduction of M, shows that M ′ is erroneous. More formally,
Y ⊆ Σ∗ is a test suite if and only if for every M ′ in the fault model, M ′ ≤ M
if and only if M ′ ≤Y M. Naturally, when the specification M is deterministic,
testing for M ′ ≤ M reduces to testing for the equivalence of the two FSMs

When testing a non-deterministic implementation, it is normal to make a
fairness assumption, called the complete testing assumption [10], that there is
some known N such that if an input sequence is applied N times then every
possible response is observed at least once. Naturally, this assumption automat-
ically holds when the implementation is deterministic. This paper will assume
that the complete testing assumption can be made.

When testing from a FSM M , sequences that reach and distinguish the states
of M are normally selected. These issues are now discussed.

3.2 Reaching states

Input sequence s ∈ Σ∗ is said to deterministically-reach (d-reach) state q if
h1(q0, s) = {q}. That is, q is the only state reached by s. q is said to be d-

reachable [12]. The initial state is always d-reachable since it is d-reached by the
empty sequence ε. Naturally, all reachable states of a deterministic FSM are also
d-reachable.

A set S ⊆ Σ∗ of input sequences is called a state cover of M if ε ∈ S and
S is a minimal set such that every d-reachable state of M is d-reached by some
sequence from S.

Consider, for example, M as represented in Fig. 1. States 0, 1 and 2 are d-
reached by ε, a and aa, respectively. On the other hand, state 3 is not d-reachable.
Thus S = {ε, a, aa} is a state cover of M.

a/0

a/1 a/1

a/0

a/0

a/0

b/1 b/1

b/0 b/0

0 1

2 3

Fig. 1. The state-transition diagram of M

3.3 Distinguishing states

In order for an input sequence s to distinguish two states q and q′ of M, it is
sufficient that the corresponding sets of output sequences do not intersect, i.e.
h2(q, s)∩h′

2(q
′, s) = ∅. Two states for which there exists an input sequence with

this property are said to be separable.
In the case of a non-deterministic FSM, however, it may be possible that there

is no single input sequence that distinguishes between two states, rather these
can be distinguished by a set of sequences. This idea leads to the, more general,
concept of r-distinguishable states, formally defined in an inductive manner as
follows [12]. States q and q′ are said to be r(1)-distinguishable if there exists
σ ∈ Σ such that h2(q, σ) ∩ h2(q

′, σ) = ∅. States q and q′ are said to be r(k)-
distinguishable, k > 1, if either q and q′ are r(j)-distinguishable for some j,
1 ≤ j < k, or there is some input σ ∈ Σ such that for all γ ∈ h2(q, σ)∩h2(q

′, σ),
the states hγ(q, σ) and hγ(q′, σ) are r(j)-distinguishable for some j, 1 ≤ j < k.
States q and q′ are said to be r-distinguishable if there exists some k ≥ 1 such
that q and q′ are r(k)-distinguishable. Clearly, any two separable states are r-
distinguishable, but not vice versa. Naturally, the two notions coincide when the
FSM is deterministic.

The definition of r-distinguishable (r(k)-distinguishable) states naturally
leads to the concept of r-distinguishing set (r(k)-distinguishing set) of two states
q and q′; this can also be defined inductively [12]. A set of input sequences
that contains an r-distinguishing (r(k)-distinguishing) set of q and q′ is said to
r-distinguish (r(k)-distinguish) q and q′.

A set W ⊆ Σ∗ of input sequences is a called a characterization set of M if it
r-distinguishes each pair of r-distinguishable states of M .

Consider again M in Fig. 1. The pairs of states (0, 2), (0, 3), (1, 2), (1, 3)
and (0, 1) are separable; the first four are r-distinguished by {b}, the last is r-
distinguished by {ab}. On the other hand, states 2 and 3 are not separable, but
they are r-distinguished by {ab, aab}. Thus W = {b, ab, aab} is a characterization
set of M.

3.4 Test suite generation

This section describes the generation of a test suite from a FSM using state
counting. The method is from [5] and is essentially based on the results given in
[12] for the case in which the IUT is known to be deterministic.

Suppose a state cover S and a characterization set W have been constructed.
QS is used to denote the set of all d-reachable states of M . Let Q1, . . . , Qj denote
the maximal sets of pairwise r-distinguishable states of M. Let also Qi

S = Qi∩QS ,
1 ≤ i ≤ j.

Recall that the scope of testing is to check language inclusion between the
(unknown) implementation and the specification. Thus, the task is to find a
state q′ in the implementation such that the input/output exhibited from q′ is
not allowed from the corresponding state q of the specification. A test suite will
be then constructed using a breadth-first search through input/output sequences
from each d-reachable state of M, in which the termination criterion is based on
the observation that if a pair of states (q, q′) ∈ Q×Q′, from which a failure may
be exhibited, is reachable then it is reachable by some minimal input/output
sequence. Such a minimal sequence will not have visited the same pair of states
twice and, furthermore cannot contain pairs of states that have already been
reached by the sequences in S. More specifically, the following two ideas are
used:

– If an input/output sequence (s, g) visits states of some Qi, a tester can use
W after each prefix of (s, g) to distinguish between the corresponding states
visited along (s, g) in the implementation. If states from Qi are visited ni

times along a minimal sequence (s, g) in the specification, then ni distinct
states will be visited in the implementation. Thus, ni cannot exceed m′, the
upper bound on the number of states of the implementation, by more than
1.

– There could be some d-reachable states among those in Qi and the corre-
sponding states in the implementation will also be reached by sequences from
S; this leaves |Qi

S| less pairs of states to explore.

By combining these two ideas, the breadth-first search can be ended once it has
been established that states from some Qi have been visited m′−|Qi

S |+1 times.

More formally, given a state q ∈ QS , the set Tr(q), called a traversal set in
[11], is constructed in the following way:

– A set TrIO(q) is defined to consist of all input/output sequences (s, g) for
which there exists i, 1 ≤ i ≤ j, such that (s, g) visits states from Qi exactly
m′−|Qi

S|+1 times when followed from q (the initial state of the path is not
included in the counting) and this condition does not hold for any proper
prefix of (s, g).

– Tr(q) is the set of input sequences such that there is some corresponding
input/output sequence in TrIO(q), i.e. Tr(q) = {s ∈ Σ∗ | ∃g ∈ Γ ∗ · (s, g) ∈
TrIO(q)}.

Then the test suite produced is [5]:

Y =
⋃

s∈S

{s}pref(Tr(qs))W

where for s ∈ S, qs denotes the state reached by s.
When all the states of M are d-reachable and pairwise r-distinguishable, the

test suite reduces to the set SΣ[m′ − m + 1]W. This is equivalent to the test
suite produced by the W -method when testing from a deterministic FSM. Where
the specification does not satisfy these conditions, a larger test suite is required.
Clearly, every sequence in Tr(q) has length at most m′ + 1. Based on the above
definition, an algorithm for constructing Tr(q) is provided in [5].

Consider the specification M as represented in Fig. 1 and the upper bound
on the number of states of the implementation m′ = 4. There is a single maximal
set of pairwise r-distinguishable states, Q1 = {0, 1, 2, 3}. Since QS = {0, 1, 2},
Q1

S = {0, 1, 2}. Thus the termination criterion for TrIO(q) gives m′−|Q1
S|+1 =

4 − 3 + 1 = 2. Hence Y = SΣ[2]W.

4 Bounded sequence testing from non-deterministic

FSMs

This section shows how the above test generation method can be extended to the
case of bounded sequences. In this case, the test suite will contain only sequences
of length less than or equal to an upper bound l ≥ 1 and will have to establish if
the IUT behaves as specified for all sequences in Σ[l]. More formally, Y ⊆ Σ[l]
is a test suite if and only if for every M ′ in the fault model, M ′ ≤Σ[l] M if and
only if M ′ ≤Y M.

The extension is not straightforward, as it is not sufficient to extract the
prefixes of length at most l from the test suite produced in the unbounded case.
Consider, for example, Mn, n ≥ 2, as represented in Fig. 2 (a), m′ = n + 2
and l = n + 1. All states of Mn are d-reachable and pairwise r-distinguishable,
S = {ε, a, . . . , an, b} is a state cover of Mn and W = {anb} is a characterization
set of Mn. Thus Y = SΣ[1]W = {ε, a, . . . , an, b}{ε, a, b}{anb} and pref(Y) ∩
Σ[n + 1] = pref(an+1) ∪ pref({aiban−i | 0 ≤ i ≤ n}) ∪ pref(bban−1). Consider
M ′

n as represented in Fig. 2 (b). Let D = {axbybz | x, y, z ∈ Σ∗, ‖x‖ + ‖y‖ +
‖z‖ ≤ n − 2} ⊆ Σ[n + 1]. It can be observed that M ′

n ≤Σ[n+1]\D Mn, but

a/0

a/0,1; b/1

b/0

b/0

… a/1

(a)

b/0

a/1
0 1

a/1
n

n+1

a/0

b/0

b/0

b/0

a/1; b/1

… a/1

(b)

a/1
0 1

a/1
n

n+1

(c)

a/0

a/0,1; b/1

b/0
 0 1

(d)

a/0

a/2; b/1

b/0
 0 1

Fig. 2. The state-transition diagrams of Mn (a) and M
′

n
(b), M0 (c) and M

′

0 (d)

M ′
n ≤{s} Mn does not hold for any sequence s ∈ D. Since pref(Y) ∩ D = ∅,

M ′
n ≤pref(Y)∩Σ[n+1] Mn.

In what follows, it will be shown that state counting can be used to generate
tests for bounded sequences, provided that the sets S and W will contain se-
quences of minimum length that reach or distinguish states of M ; these sets will
be called a proper state cover and a strong l-characterization set, respectively.

A few preliminary concepts are defined first. Without loss of generality, all
FSMs considered are assumed to be initially connected, completely specified and
observable and, furthermore, it will be assumed that every state can be reached
by some sequence of length less than or equal to l.

For each state q ∈ Q, we define levelM(q) as the length of the shortest
path(s) from q0 to q, i.e. levelM(q) = min{‖s‖ | s ∈ Σ∗, q ∈ h1(q0, s)}. For M
as represented in Fig. 1, levelM(i) = i, 0 ≤ i ≤ 3.

States p and q of M are said to be l-dissimilar if p and q are r(k)-
distinguishable for some k ≤ l − max{levelM(p), levelM (q)}. The notion of l-
dissimilar (l-similar) states is originally introduced in [1] and is used in [1] and
[7] for constructing a minimal deterministic automaton and a minimal determin-
istic stream X-machine for a finite language. For M as represented in Fig. 1 and
l = 4, states 2 and 3 are not l-dissimilar since they are not r(1)-distinguishable.
On the other hand, every two other states of M are l-dissimilar.

Definition 1. A set S ⊆ Σ∗ of input sequences is called a proper state cover
of M if S is a minimal set such that every state q of M that is d-reachable by

some sequence of length levelM(q) is d-reached by some sequence sq from S and

‖sq‖ = levelM (q).

For M as represented in Fig. 1, S = {ε, a, aa} is a proper state cover of M.
The definition of a strong l-characterization set and the construction of the

test suite are first given for a particular class of FSM specifications (quasi-
deterministic FSMs) and then extended to the general type of FSM.

4.1 Quasi-deterministic FSMs

A quasi-deterministic FSM is a FSM in which for every k > 0, every pair of
states that are not Σ[k]-equivalent are r(k)-distinguishable. In particular, this
condition is satisfied by any deterministic FSM.

Definition 2. Suppose M is a quasi-deterministic FSM. A set W ⊆ Σ∗ of input

sequences is a called a strong l-characterization set of M, l ≥ 1, if for every states

p and q of M and every k, 0 < k ≤ l − max{levelM (p), levelM(q)}, for which p
and q are r(k)-distinguishable, W r(k)-distinguishes p and q.

Obviously, it is sufficient to check that W r(k)-distinguishes p and q for the
minimum integer k ≤ l − max{levelM(p), levelM(q)} for which p and q are
r(k)-distinguishable. That is, the shortest possible sequences are included in W.
Naturally, W will r-distinguish any two l-dissimilar states of M.

Consider again Mn as represented in Fig. 2 (a), n ≥ 2. For every pair
(i, j), 0 ≤ i < j ≤ n, i and j are Σ[n − j]-equivalent and r(n − j + 1)-
distinguishable. Furthermore, n + 1 is r(1)-distinguishable from any other state.
Thus Mn is quasi-deterministic, but not deterministic. W = {a, . . . , an, b} is
a strong l-characterization set of Mn. On the other hand, M in Fig. 1 is not
quasi-deterministic since states 2 and 3 are neither Σ[2]-equivalent nor r(2)-
distinguishable.

4.2 Test suite generation

Suppose that the specification M is a quasi-deterministic FSM, S is a proper
state cover of M and W is a strong l-characterization set of M. QS is used to
denote the set of all states of M reached by sequences in S.

Let Q1, . . . , Qj denote the maximal sets of pairwise l-dissimilar states of M
and let Qi

S = Qi ∩ QS , 1 ≤ i ≤ j. Under these conditions, the set Tr(qs) is
defined analogously to section 3.4.

Then the test suite for bounded sequences is:

Z = (
⋃

s∈S

{s}pref(Tr(qs))Wε) ∩ Σ[l] \ {ε}

where Wε = W ∪ {ε}.

When QS = Q and all states of M are pairwise l-dissimilar, the test suite
reduces to the set SΣ[m′ −m + 1]Wε ∩ Σ[l] \ {ε}. This is equivalent to the test
suite produced in [8] for deterministic FSMs.

Consider again Mn, n ≥ 2, as represented in Fig. 2 (a), m′ = n+2, l = n+1
and the IUT M ′

n as represented in Fig. 2 (b). S = {ε, a, . . . , an, b} is a proper
state cover of Mn and W = {a, . . . , an, b} is a strong l-characterization set of Mn.
There is a single maximal set of pairwise l-dissimilar states, Q1 = {0, . . . , n+1}.
Since QS = {0, . . . , n+1}, Q1

S = {0, . . . , n+1}. Thus Z = SΣ[1]Wε∩Σ[n+1]\{ε}
= {ε, a, . . . , an, b}{ε, a, b}{ε, a, . . . , an, b}∩Σ[n+1] \ {ε} = {ai | 1 ≤ i ≤ n+1}∪
{aibaj | 0 ≤ i ≤ n, 0 ≤ j ≤ n − i} ∪ {aibb | 0 ≤ i ≤ n − 1} ∪ {bbai | 1 ≤ i ≤
n − 1} ∪ {bab, bbb}. As abb ∈ Z, M ′

n ≤Z Mn does not hold.
Note that Wε, rather than only W, is needed in the definition of Z. Consider

the specification M0 as represented in Fig. 2 (c), l = 2, m′ = 2 and the faulty
implementation M ′

0 as represented in Fig. 2 (d). The only sequence that detects
the fault in the IUT is ba. S = {ε, b} is a proper state cover of M0 and W = {b}
is a strong l-characterization set of M0. Thus Z = SΣ[1]Wε ∩ Σ[2] \ {ε} =
{a, b, ab, ba, bb}. As ba ∈ Z, M ′

0 ≤Z M0 does not hold. On the other hand, if W
was used instead of Wε in the definition of the test suite, then ba would not be
contained in Z, so no fault would be detected.

4.3 General type of FSMs

We now consider the general type of FSM specifications. First, note that the
test suite given above may not be valid when the specification is not quasi-
deterministic. Consider, for example, M1 as represented in Fig. 3 (a), m′ = 3
and l = 4. M1 is not quasi-deterministic since states 0 and 1 are neither r(1)-
distinguishable nor Σ-equivalent. All states of M1 are d-reachable and pairwise l-
dissimilar. Then, according to the above definitions, S = {ε, a, aa}, W = {a, aa}
and Z = SΣ[1]Wε ∩ Σ[4] \ {ε}. Consider M ′

1 as defined in Fig. 3 (b). It can
be observed that M ′

1 ≤Σ[4]\Σ2{bb} M1, but M ′
1 ≤{s} M1 does not hold for any

sequence s ∈ Σ2{bb}. Since Z ∩ Σ2{bb} = ∅, Z will detect no fault in M ′
1.

Intuitively, this happens because, when M is not quasi-deterministic, there
may be states p′ and q′ in the implementation M ′ that are r-distinguished by
shorter sequences than those that r-distinguish the corresponding states p and q
of the specification M. In our example, states 0 and 1 of M ′

1 are r-distinguished
by {b}, whereas states 0 and 1 of M1 are not r(1)-distinguishable and a longer
sequence, aa, is used to r-distinguish between them. Consequently, the incorrect
transition h′(2, b) = (0, 1) cannot be detected by the above Z, since b was not
included in W. On the other hand, the sequence aabaa ∈ SΣ[1]W, which results
from the inclusion in W of the distinguishing sequence aa, has length 5 and,
consequently, will not be contained in the test suite.

Now, observe that a sequence s can r-distinguish states p′ and q′ of the
implementation only if the corresponding states p and q of the specification are
not {s}-equivalent, i.e. there exists g ∈ Γ ∗ such that (s, g) ∈ (LM (p) \LM (q)) ∪
(LM (q)\LM (p)). Thus, the problem can be addressed by extending W to include
any sequence s for which there exist states of M that are neither {s}-equivalent,

b/1

a/1; b/1,2

a/0

(a)

a/1; b/0,1
 0 1 2

b/1

a/1; b/2

a/0

(b)

a/1; b/0
 0 1 2

Fig. 3. The state-transition diagrams of M1 (a) and M
′

1 (b)

nor r(‖s‖)-distinguishable. Then the definition of a strong l-characterization set
can be extended to the general type of FSM as follows:

Definition 3. A set W ⊆ Σ∗ of input sequences is a called a strong l-
characterization set of M, l ≥ 1, if the following two conditions hold:

– For every states p and q of M and every k, 0 < k ≤ l −
max{levelM(p), levelM (q)}, for which p and q are r(k)-distinguishable, W
r(k)-distinguishes p and q.

– s ∈ W for every s ∈ Σ∗ for which there exist states p and q of M with

‖s‖ ≤ l − max{levelM(p), levelM (q)} such that p and q are neither {s}-
equivalent nor r(‖s‖)-distinguishable.

With this revised definition of W , the construction of the suite remains the same
as for quasi-deterministic FSM specifications. The following two sections of the
paper provide the formal proofs to validate this construction.

For M1 in the above example, states 0 and 1 are neither {b}-equivalent, nor
r(1)-distinguishable. Thus W = {a, b, aa}. Then aabb ∈ Z = SΣ[1]Wε∩Σ[4]\{ε},
so M ′ ≤Z M does not hold.

Consider again M as represented in Fig. 1, m′ = 4 and l = 4. S = {ε, a, aa}
is a proper state cover of M and QS = {0, 1, 2}. The pairs of states (0, 2), (0, 3),
(1, 2) and (1, 3) are r-distinguished by {b}; 0 and 1 are r-distinguished by {ab}
and are Σ-equivalent. Since states 2 and 3 are Σ-equivalent, no other sequence
needs to be included in W. Thus W = {b, ab} is a strong l-characterization set of
M. The maximal sets of pairwise l-dissimilar states of M are Q1 = {0, 1, 2} and
Q2 = {0, 1, 3}. Thus Q1

S = {0, 1, 2} and Q2
S = {0, 1} and the two termination

criteria for TrIO(q) give m′ − |Q1
S | + 1 = 4 − 3 + 1 = 2 and m′ − |Q2

S| + 1 =
4 − 2 + 1 = 3, respectively. The tree generated in the construction of TrIO(1)
is represented in Fig. 4. A node is a leaf if the path from the root to it has
visited (after the root) n1 = 2 states from Q1 or n2 = 3 states from Q2. On the
other hand, only paths of length at most l − levelM(1) = 4 − 1 = 3 need to be
constructed; in Fig. 4, the remaining branches are drawn with dashed line.

a/0

b/0

a/1
a/0

b/0 a/1 a/0

b/0

a/1
a/0

b/1 a/0

b/1

n1 = 1
n2 = 1

n1 = 2
n2 = 1

n1 = 2
n2 = 0

n1 = 2
n2 = 1

n1 = 2
n2 = 2

n1 = 1
n2 = 0 n1 = 1

n2 = 1

n1 = 0
n2 = 0 1

2 1

2 1 2 0 3

n1 = 2
n2 = 2

n1 = 2
n2 = 2

n1 = 1
n2 = 2

3 1 0

n1 = 2
n2 = 3

n1 = 2
n2 = 3

n1 = 1
n2 = 3

3 1 0

Fig. 4. The tree associated with TrIO(2)

5 The l-bounded product FSM

In order to compare the languages associated with two observable FSMs M and
M ′, one can build a cross-product of their states, such that states (q, q′) of the
cross-product FSM correspond to pairs of states q, q′ in the two FSMs. A transi-
tion on input σ and output γ between states (q, q′) and (p, p′) exists in the cross-
product FSM if and only if the transitions (p, γ) ∈ h(q, σ) and (p′, γ) ∈ h′(q′, σ)
exist in M and M ′, respectively. The result of such a construction corresponds
to the intersection of the languages L(M) and L(M ′). When checking that M ′

is a reduction of M, a transition in M ′ that is not allowed by M will lead in
the cross-product FSM to a Fail state. When only the results produced by the
two FSMs in response to input sequences of length at most l are compared, an
integer i, 1 ≤ i ≤ l, can be added to the state space and incremented by each
transition. No transition needs to be defined for i = l. The resulting construction
will be called an l-bounded product FSM of M and M ′.

Definition 4. Given l ≥ 1, the l-bounded product FSM formed from

M = (Σ, Γ, Q, h, q0) and M ′ = (Σ, Γ, Q′, h′, q′0) is the FSM Pl(M, M ′) =
(Σ, Γ, QP , H, (q0, q

′
0, 0)) in which QP = Q × Q′ × {0, . . . , l} ∪ {Fail} with

Fail /∈ Q × Q′ × {0, . . . , l} and H is defined by the following rules for all

(q, q′), (p, p′) ∈ Q × Q′, i ∈ {0, . . . , l − 1}, σ ∈ Σ and γ ∈ Γ :

– if (p, γ) ∈ h(q, σ) and (p′, γ) ∈ h′(q′, σ) then ((p, p′, i+1), γ) ∈ H((q, q′, i), σ).

– if (p′, γ) ∈ h′(q′, σ) and γ /∈ h2(q, σ) then (Fail, γ) ∈ H((q, q′, i), σ)

and is undefined elsewhere.

As M and M ′ are observable, Pl(M, M ′) is also observable (when M and M ′

are both deterministic, Pl(M, M ′) is also deterministic [8]). On the other hand,
Pl(M, M ′) is not completely specified even though M and M ′ are completely
specified. More importantly, checking M ′ ≤Σ[l] M corresponds to establishing if
the Fail state of Pl(M, M ′) is reachable.

Lemma 1. The Fail state of Pl(M, M ′) is not reachable if and only if M ′ ≤Σ[l]

M.

Proof: ¿From Definition 4, it follows that, for every s ∈ Σ∗ and g ∈ Γ ∗,
Hg((q0, q

′
0, 0), s) = Fail if and only if s = s1σ with s1 ∈ Σ[l− 1] and σ ∈ Σ and

g = g1γ with g1 ∈ Γ [l − 1] and γ ∈ Γ such that g1 ∈ h2(q0, s1) ∩ h′
2(q

′
0, s1) and

g1γ ∈ h′
2(q

′
0, s1σ) \ h2(q0, s1σ).

6 State counting for bounded sequences

State counting can now be used to prove that, whenever the Fail state is reach-
able, it will be reached by some sequence in the test suite. As in the unbounded
case, it will be shown that the test suite contains all “minimal” input sequences
that could reach Fail. Among the shortest sequences, the minimal sequences
are those for which also the “distance” (defined in what follows) to the set S is
the shortest. The basic idea is similar to that used in bounded sequence test-
ing from deterministic FSM specifications [8]; however, when considering non-
deterministic FSMs, we have to take into account that non-equivalent states may
not necessarily be r-distinguishable (see Lemma 3).

Given x ∈ Σ∗ and A ⊆ Σ∗ with ε ∈ A, the length of the shortest sequences(s)
t ∈ Σ∗ for which there exists a sequence s ∈ A such that st = x is denoted by
d(x, A), i.e. d(x, A) = min({‖t‖ | t ∈ Σ∗, ∃s ∈ A · st = x}. Since ε ∈ A, the set
{t ∈ Σ∗ | ∃s ∈ A · st = x} is not empty, so d(x, A) is well defined.

Lemma 2. Let p, q ∈ Q, p′, q′ ∈ Q′, U ⊆ Σ∗ and k > 0. If p′ ≤U∩Σ[k] p,
q′ ≤U∩Σ[k] q and U r(k)-distinguishes p and q then U r(k)-distinguishes p′ and

q′.

Proof: Follows by induction on k.

Lemma 3. Let s ∈ S and t ∈ Tr(qs) such that ‖st‖ ≤ l and s is the longest

prefix of st that is in S. If M ′ ≤(S∪{s}pref(t)Wε)∩Σ[l] M then there exist y1 ∈
{s}pref(t)\{s}, y2 ∈ S∪pref(y1)\{y1} and w1, w2 ∈ Γ ∗ such that the following

two conditions hold:

– ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S)
– Hw1

((q0, q
′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2
((q0, q

′
0, 0), y2) = (q2, q

′, ‖y2‖) for

some states q1, q2 ∈ Q and q′ ∈ Q′ such that LM (q1)∩LM ′(q′)∩ (Σ ×Γ)[l−
‖y1‖] = LM (q2) ∩ LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖].

Proof: Let i, 1 ≤ i ≤ j. Suppose s1 and s2 are two distinct elements of S such
that qs1

, qs2
∈ Qi and let q′s1

∈ h1(q0, s1) and q′s2
∈ h1(q0, s2). Since qs1

and qs2

are l-dissimilar there exists k, 0 < k ≤ l − max{levelM(qs1
), levelM(qs2

)}, such
that qs1

and qs2
are r(k)-distinguishable. As W is a strong l-characterization set

of M, W r(k)-distinguishes qs1
and qs2

. Since M ′ ≤SW∩Σ[l] M, q′s1
≤W∩Σ[k] qs1

and q′s2
≤W∩Σ[k] qs2

. Thus, by Lemma 2, q′s1
and q′s2

are r(k)-distinguishable.
Consequently, the sequences in S will reach at least |Qi

S | distinct states of M ′.
On the other hand, since t ∈ Tr(qs), there is some g ∈ Γ ∗ and i, 1 ≤ i ≤ j,

such that (t, g) visits states from Qi exactly m′ − card(Qi
S) + 1 times when

followed from qs. Since S has already reached at least |Qi
S | states, there will

be a state q′ of M ′ that either has been visited twice by (t, g) or has been
reached by some sequence in S. Thus, there exist y1 ∈ {s}pref(t)\{s}, y2 ∈ S ∪
{s}pref(y1) \ {y1} and w1, w2 ∈ Γ ∗ such that hw1

(q0, y1) = q1, hw2
(q0, y2) = q2,

h′
w1

(q′0, y1) = q′ and h′
w2

(q′0, y2) = q′. for some states q1, q2 ∈ Qi and q′ ∈ Q′.
Then Hw1

((q0, q
′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2
((q0, q

′
0, 0), y2) = (q2, q

′, ‖y2‖).
Let µ = max{‖y1‖, ‖y2‖}. We prove by contradiction that q1 and q2 are not

r(l − µ)-distinguishable. Assume q1 and q2 are r(l − µ)-distinguishable, µ < l.
Since W is a strong l-characterization set of M, W r(l − µ)-distinguishes q1

and q2. On the other hand, since M ′ ≤{y1,y2}W∩Σ[l] M, q′ ≤W∩Σ[l−µ] q1 and
q′ ≤W∩Σ[l−µ] q2. Thus, by Lemma 2, W would r(l−µ)-distinguish q′ from itself.
This is obviously a contradiction.

We now show that ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S).
If y2 ∈ pref(y1) \ {y1} then ‖y2‖ < ‖y1‖. Otherwise y2 ∈ S \ {s}, so ‖y2‖ =
levelM(q2). Then there are two cases:

– q1 = q2. Then levelM(q2) ≤ ‖y1‖ so ‖y2‖ ≤ ‖y1‖. Since y1 /∈ S and y2 ∈ S,
d(y2, S) < d(y1, S).

– q1 6= q2. We prove by contradiction that ‖y2‖ < ‖y1‖. Assume ‖y1‖ ≤ ‖y2‖.
Then levelM(q1) ≤ ‖y1‖ ≤ ‖y2‖ = levelM (q2). Hence levelM (q1) ≤
levelM (q2) = ‖y2‖. As q1, q2 ∈ Qi, q1 and q2 are r(l − ‖y2‖)-distinguishable.
On the other hand, we have shown that q1 and q2 are not r(l − µ)-
distinguishable. Since µ = ‖y2‖, this is a contradiction.

Thus ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S). Since ‖y2‖ ≤ ‖y1‖,
µ = ‖y1‖, so q1 and q2 are not r(l − ‖y1‖)-distinguishable.

Finally, we prove by contradiction that LM (q1) ∩ LM ′(q′) ∩ (Σ × Γ)[l −
‖y1‖] = LM (q2)∩LM ′(q′)∩(Σ×Γ)[l−‖y1‖]. Assume otherwise and let (s0, g0) ∈
LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖] ∩ ((LM (q2) \ LM (q1)) ∪ (LM (q1) \ LM (q2))). Since
W is a strong l-characterization set of M and q1 and q2 are not r(l − ‖y1‖)-
distinguishable, s0 ∈ W. As M ′ ≤{y1,y2}W∩Σ[l] M and ‖y2s0‖ ≤ ‖y1s0‖ ≤ l, it
follows that M ′ ≤{y1s0,y2s0} M. Thus, since (s0, g0) ∈ LM ′(q′), (s0, g0) ∈ LM (q1)
and (s0, g0) ∈ LM (q2). This provides a contradiction, as required.

Lemma 4. Let (q1, q
′, j1), (q2, q

′, j2) ∈ Q× Q′ × {0, . . . , l}, 0 ≤ j2 ≤ j1 ≤ l − 1,
and (x, w) ∈ (Σ×Γ)[l−j1]. Suppose LM (q1)∩LM ′(q′)∩(Σ×Γ)[l−j1] = LM (q2)∩
LM ′(q′) ∩ (Σ × Γ)[l − j1]. If Hw((q1, q

′, j1), x) = Fail then Hw((q2, q
′, j2), x) =

Fail.

Proof: If Hw((q1, q
′, j1), x) = Fail then x = sσ with s ∈ Σ[l− j1 − 1], σ ∈ Σ

and w = gγ with g ∈ Γ [l − j1 − 1], γ ∈ Γ such that g ∈ h2(q1, s) ∩ h′
2(q

′, s) and
gγ ∈ h′

2(q
′, sσ)\h2(q1, sσ). Since LM (q1)∩LM ′(q′)∩ (Σ×Γ)[l− j1] = LM (q2)∩

LM ′(q′)∩ (Σ ×Γ)[l− j1], g ∈ h2(q2, s)∩h′
2(q

′, s) and gγ ∈ h′
2(q

′, sσ)\h2(q2, sσ).
As j2 ≤ j1, it follows that Hw((q2, q

′, j2), x) = Fail.

Lemma 5. If M ′ ≤Z M then the Fail state of Pl(M, M ′) is not reachable.

Proof: We provide a proof by contradiction. Assume Fail is reachable and
let X be the set of all sequences of minimum length that reach Fail. Let µ =
min{d(x, S) | x ∈ X} and Xµ = {x ∈ X | d(x, S) = µ}.

We prove by contradiction that Xµ ∩ (
⋃

s∈S{s}pref(Tr(qs))) 6= ∅. As-
sume Xµ ∩ (

⋃
s∈S{s}pref(Tr(qs))) = ∅ and let x ∈ Xµ. Then x /∈⋃

s∈S{s}pref(Tr(qs)). Since ε ∈ S, x ∈ SΣ∗. Let s ∈ S be the longest pre-
fix of x that is in S. Then x = stu, for some t ∈ Tr(qs) and u ∈ Σ∗ \ {ε}
with ‖stu‖ ≤ l and there exist g, v ∈ Γ ∗ such that g ∈ h2(q0, st)∩ h′

2(q
′
0, st) and

gv ∈ h′
2(q

′
0, stu)\h2(q0, stu). Since M ′ ≤Z M and (S∪{s}pref(t)Wε)∩Σ[l] ⊆ Z,

by Lemma 3, there exist y1 ∈ {s}pref(t) \ {s}, y2 ∈ S ∪ pref(y1) \ {y1} and
w1, w2 ∈ Γ ∗ such that the following two conditions hold:

– ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S)
– Hw1

((q0, q
′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2
((q0, q

′
0, 0), y2) = (q2, q

′, ‖y2‖) for
some states q1, q2 ∈ Q and q′ ∈ Q′ such that LM (q1)∩LM ′(q′)∩ (Σ ×Γ)[l−
‖y1‖] = LM (q2) ∩ LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖].

Let z ∈ Σ∗ such that st = y1z and wz ∈ Γ ∗ such that g = w1wz . As
Hgv((q0, q

′
0, 0), x) = Fail, Hwzv((q1, q

′, ‖y1‖), zu) = Fail. Then, by Lemma
4, Hwzv((q2, q

′, ‖y2‖), zu) = Fail. Thus Hw2wzv((q0, q
′
0, 0), y2zu) = Fail. If

‖y2‖ < ‖y1‖ then y2zu is a sequence shorter than x that reaches Fail. Thus
x /∈ X, which is a contradiction. Otherwise, ‖y2‖ = ‖y1‖ and d(y2, S) < d(y1, S).
Since no sequence in {y1}pref(zu) is contained in S, d(y2zu, S) < d(y1zu, S).
Consequently ‖y2zu‖ = ‖x‖ and d(y2zu, S) < d(x, S). Thus x /∈ Xµ, which
provides a contradiction, as required. Hence Xµ ∩ (

⋃
s∈S{s}pref(Tr(qs))) 6= ∅.

On the other hand, since M ′ ≤Z M, no sequence in Z will reach Fail. Thus
Xµ ∩ Z = ∅. As

⋃
s∈S{s}pref(Tr(qs)) ⊆ Z, this provides a contradiction, as

required. Hence Fail is not reachable.

Theorem 1. M ′ ≤Σ[l] M if and only if M ′ ≤Z M .

Proof: “⇒”: Obvious, since Z ⊆ Σ[l]. “⇐”: Follows from Lemmas 5 and 1.

7 Conclusions

This paper extends the state counting based method of deriving tests from a non-
deterministic FSM to the case of bounded sequences. The method for bounded
sequences has practical value, as many applications of finite state machines ac-
tually use only input sequences of limited length. In such applications, the test

suite produced may contain only a small fraction of all sequences of length less
than or equal to the upper bound. The test suite for Mn in our example (Fig. 2
(a)), m′ = n + 2 and l = n + 1 will contain only (n2 + 9n + 6)/2 sequences out
of a total of 2n+2 − 2 sequences.

Improvements in the size of the test suite may be obtained by using only
subsets of W to identify the states reached by the sequences in Tr(qs), in a
way similar to the Wp method for unbounded [3] and bounded [8] sequences.
This will be the subject of a future paper. Possible future work also involves the
generalization of these bounded sequence testing methods to classes of extended
finite state machines, such as stream X-machines [6].

References

1. Campeanu, C., Santean, N., Yu, S. Minimal cover automata for finite languages.
Theoretical Computer Science, 267, 3-16 (1999)

2. Chow, T. S. Testing software design modeled by finite state machines, IEEE Trans-
actions on Software Engineering, 4(3), 178-187 (1978)

3. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M. and Ghedamsi A. Test
Selection Based on Finite State Models. IEEE Transactions on Software Engineer-
ing, 17(6), 591-603 (1991)

4. Hierons, R. M. Adaptive testing of a deterministic implementation against a non-
deterministic finite state machine. The Computer Journal, 41(5), 349-355 (1998)

5. Hierons, R. M. Testing from a Non-Deterministic Finite State Machine Using
Adaptive State Counting. IEEE Transactions on Computers 53(10), 1330-1342
(2004)

6. Holcombe, M., Ipate, F. Correct Systems: Building a Business Process Solution.
Springer Verlag, Berlin (1998)

7. Ipate, F. On the Minimality of Finite Automata and Stream X-machines for Finite
Languages, The Computer Journal, 48(2), 157-167 (2005)

8. Ipate, F. Bounded Sequence Test Selection from Finite State Machines, submitted.
9. Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State Ma-

chines - A Survey. Proceedings of the IEEE, 84(8), 1090-1123 (1996)
10. Luo, G. L., Bochmann, G. v. and Petrenko, A. Test selection based on commu-

nicating nondeterministic finite-state machines using a generalized Wp-method.
IEEE Transactions on Software Engineering, 20(2), 149-161 (1994)

11. Petrenko, A., Yevtushenko, N., Lebedev, A. and Das, A. Nondeterministic state
machines in protocol conformance testing. In Proc. of Protocol Test Systems, VI
(C-19), Pau, France, 28-30 September, Elsevier Science, 363-378 (1994)

12. Petrenko, A., Yevtushenko, N., Bochmann G.v. Testing deterministic implemen-
tations from nondeterministic FSM specifications. In Proc. of 9th International
Workshop on Testing of Communicating Systems (IWTCS’96), Darmstadt, Ger-
many, 9-11 September 1996, Chapman and Hall, 125-140 (1996)

13. Sidhu, D. and Leung, T. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering, 15(4), 413-426, 1989.

14. Yevtushenko, N. V., Lebedev, A. V. and Petrenko, A. F. On checking experiments
with nondeterministic automata. Automatic Control and Computer Sciences, 6,
81-85 (1991)

