
M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 246 – 259, 2006.
© IFIP International Federation for Information Processing 2006

FSM Test Translation Through Context

Khaled El-Fakih1, Alexandre Petrenko2, and Nina Yevtushenko3

1 American University of Sharjah, UAE
2 Centre de recherche informatique de Montreal (CRIM), Montreal, Canada

3 Tomsk State University, Russia
kelfakih@aus.edu, petrenko@crim.ca, yevtushenko@elefot.tsu.ru

Abstract. In this paper, we define a formal approach for translating internal
tests derived for a component embedded within a modular system into external
tests defined over the external observable alphabets of the system. The system
is represented as two communicating complete deterministic finite state
machines, an embedded component machine to be tested and a context machine
that represents the remaining part of the system. The context is assumed to be
fault free and the interactions between the component machines are observable.
When an internal test can not be translated in the given context, we demonstrate
how another test with the guaranteed fault detection power could be determined
(if such a test exists) that can be translated in the given context.

1 Introduction

The problem of testing in context is about testing a component embedded within a
modular system that is usually represented as two communicating machines, an
embedded component machine and a context machine that models the remaining part
of the system and is assumed to be correctly implemented.

A number of test derivation methods have been proposed for testing in context
[5,6,7,9,10] when the system components are modeled as Finite State Machines
(FSMs). Some of these methods derive test suites with the guaranteed fault coverage
directly from the embedded component [7,9,10]. However, such tests are generated in
the form of input/output sequences defined over the input/output alphabets of the
embedded machine. These tests have then to be translated into external tests defined
over the external observable alphabets of the overall system. The problem of
translating internal tests into external ones is known as the fault propagation or test
translation problem. Different approaches for solving the translation problem for the
case when the internal interactions between the component machines are
unobservable are given in [2,7].

In this paper, we formally define and solve the test translation problem for the case
when the interactions between the component FSMs are observable. Given an internal
test for the embedded component, we present necessary and sufficient conditions for
this test to be translated in the given context and show how to translate internal tests
into external tests with the same fault detection power (if it is possible). When internal
interactions are observable an external test that is a translation of an internal test has
the same fault detection power as an internal test, i.e., it detects every faulty
implementation of the embedded component that is detectable by the internal test in

 FSM Test Translation Through Context 247

isolation. If an internal test cannot be translated within the given context, we derive
(when possible) another internal test with the same fault detection power that can be
translated within the given context. For this purpose, a so-called observable
equivalent of the embedded component is derived. The notion of the observable
equivalent is close to the notion of the embedded equivalent in [10]. However, in that
work, the observable equivalent is derived under the assumption that the internal
channels are not observable; in fact, in this paper, the observable equivalent refines a
so-called conforming part of the embedded component [10] by restricting it to internal
alphabets. Any internal test case derived from the observable equivalent can be
translated in the given context.

The paper is organized as follows. Section 2 contains definitions of IOTS, FSM,
and other preliminaries. Section 3 includes a formal definition and a method for test
translation with simple application examples. Section 4 presents a method for
deriving, when possible, internal test suites with the guaranteed fault coverage that
can be translated in the given context. Section 5 concludes the paper.

2 Preliminaries

2.1 Input Output Transition Systems and Finite State Machines

We assume in this paper that components of a modular system are FSMs, however,
we find it more convenient to compose state machines by encoding them into IOTSs.

An Input/Output Transition System is a quintuple A = ¢S, I, O, λA, s0², where S is a
finite nonempty set of states with the initial state s0, I ∪ O is an alphabet of input and
output actions such that I ∩ O = ∅, and λA ⊆ S × (I ∪ O ∪ {τ}) × S is a transition
relation, where τ ∉ I ∪ O is the internal action. We say that there is a transition from
a state s to a state s' labeled with an action v ∈ (I ∪ O ∪ {τ}) if and only if the triple
(s, v, s') is in the transition relation λA.

For IOTS A = <S, I, O, λA, s0>, we use init(s) to denote the set of actions enabled in
state s ∈ S, i.e., init(s) = {a ∈ (I ∪ O ∪ {τ}) | ∃s'∈ S ((s, a, s') ∈ λA)}. We use in(s) ⊆
init(s) (out(s) ⊆ init(s)) to denote input (output) actions in state s. State s ∈ S is called
stable or quiescent if no output or internal actions are enabled in s: init(s) ∩ (O ∪
{τ}) = ∅. Otherwise, s is called unstable.

State s ∈ S with no action enabled, i.e., init(s) = ∅, is called a deadlock state. IOTS
A deadlocks if there is a deadlock state reachable from the initial state. An IOTS is
deterministic if it contains no internal action and the transition relation is a function,
i.e., (s, a, s1), (s, a, s2) ∈ λA for a ∈ I ∪ O implies s1 = s2.

As usual, the transition relation λA of the IOTS A is extended to sequences over the
alphabet V. These sequences are usually called traces of the IOTS A. Given a state s
of the IOTS A, the set of traces Tr(s) = {α ∈ V * | ∃ si ∈ S ((s, α, si) ∈ λA)} is called the
language generated at the state s. The language generated by the IOTS A at the initial
state is called the behavior of or language generated by the IOTS A, denoted by Tr(A).
As usual, given a language L over the alphabet V, the prefix closure ¢L² contains each
prefix of each sequence of L. The language is prefix closed if the language and its
prefix closure coincide. By definition, the language of an IOTS is prefix closed.

248 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Given a trace α over alphabet V, the U-restriction of α, written α↓U, is obtained by
deleting from α all symbols that belong to the set V \U. Correspondingly, the U-
restriction of a set T of traces over alphabet V, written T↓U, is the set of all sequences
α↓U, α ∈ T. Given an IOTS A = ¢S, I, O, λA, s0² and U ⊆ I ∪ O, the U-restriction A↓U
of A is obtained by replacing actions in (I ∪ O)\U with the internal action τ and by
determinizing [3] the resulting IOTS.

Let A = ¢S, I, O, λA, s0² and B = ¢Q, I, O, λB, q0² be two IOTSs, state s of IOTS A
and state q of IOTS B are (trace) equivalent, if Tr(s) = Tr(q). IOTSs A and B are
(trace) equivalent if Tr(A) = Tr(B).

A finite state machine (FSM) is a 7-tuple M = ¢S, I, O, DM, ∆M, ΛM, s0², where S is a
finite nonempty set of states with the initial state s0, I and O are input and output
alphabets, DM ⊆ S × I is the specification domain and ∆M: DM → S and ΛM: DM → O are
the next state and the output functions. FSM M is called complete if DM = S × I; in this
case, DM can be omitted, i.e., a complete FSM is a 6-tuple M = ¢S, I, O, ∆M, ΛM, s0². If M
is not complete then it is partial. In usual way, the next state and output functions are
extended to input sequences. Given state s and input sequence i1…ik, ∆M(s, i1…ik) = s′
while ΛM(s, i1…ik) = o1…ok if and only if there exist states s1′,…, sk+1′ such that s1′ = s,
sk+1′ = s′, and ∆M(sj′, ij) = sj+1′ while ΛM(sj′, ij) = oj for each j = 1, …, k. In this case, the
sequence i1o1 … ikok is called an I/O sequence at state s. The set of all I/O sequences at
the initial state of M is the language of FSM M. Each FSM can be represented as a
deterministic IOTS with the same language by unfolding each transition [10].

We say that an IOTS has an FSM behavior if the IOTS is deterministic, has non-
empty input and output sets, inputs are enabled only at stable states, and stable and
unstable states alternate, i.e., for every stable state s and input a ∈ in(s), (s, a, s′) ∈ λA
implies that s′ is an unstable state and for every unstable state s and output a ∈ out(s),
(s, a, s′) ∈ λA implies that s′ is a stable state while the initial state is stable. If all input
actions are enabled at every stable state, we say that the IOTS has a behavior of a
complete FSM. If each input is followed by a single output, i.e., |out(s)| = 1 for each
unstable state s, we say that the IOTS has a behavior of a deterministic FSM.

2.2 Parallel Composition of IOTSs

To compose complete FSMs we consider their IOTS counterparts. The joint behavior
of k deterministic IOTSs Aj = <Sj, Ij, Oj, λj, sj0>, j = 1, ..., k, is described by the parallel
composition of IOTSs. The parallel composition ||Aj (written also as A1 || A2 … || Ak)
is the IOTS <R, * Ij* Oj, * Oj, λ, s10...sk0>, where the set of states R ⊆ ×Sj and the
transition relation λ are the smallest sets obtained by applying the following inference
rules:

• s10...sk0 ∈ R;
• given (s1...sk) ∈ R, (s1'...sk') ∈ ×Sj and a ∈ * Ij ∪ * Oj, (s1...sk, a, s1'...sk') ∈ λ,

if for each j ∈ {1, ..., k} it holds that

if a ∈ Ij ∪ Oj then (sj, a, sj') ∈ λj and if a ∉ Ij ∪ Oj then sj' = sj.
Sometimes we need to hide some actions that are not observable in the resulting

composition. This is achieved using the U-restriction defined above. In particular,

 FSM Test Translation Through Context 249

C o n tex t

E m b

U V

I
O

Fig. 1. Parallel Composition of the IOTSs Context and Emb

given a subset I ⊆ * Ij* Oj and a subset O of the set * Oj, I ∪ O ≠ ∅, (||Aj)↓I∪O is
obtained by restricting the IOTS ||Aj to the alphabet I ∪ O.

In this paper, we consider a system of two complete deterministic FSMs, each of
which is represented as an IOTS. The system consists of the context IOTS Context =
¢S, I ∪ V, O ∪ U, λCon, s0² and the embedded IOTS Emb = ¢Q, U, V, λEmb, q0², as
shown in Figure 1. The alphabets I and O represent the external inputs and outputs of
the system, while the alphabets V and U represent the internal interactions between
the two IOTSs. As usual, for the sake of simplicity, we assume that the sets I, O, V, U
are pair-wise disjoint. We also assume that the composition works in a slow
environment, i.e., an external input can be applied to the composition after the latter
has produced an external output to a previous external input. A behavior of such an
environment can be represented by the IOTS MAX = ¢{p0, p1}, I, O, λMax, p0², ∀ i ∈ I
(p0, i, p1) ∈ λMax and ∀ o ∈ O (p1, o, p0) ∈ λMax.

Therefore, the behavior of Context and Emb in the slow environment can be
described by the parallel composition MAX || Context || Emb. We note that the IOTS
MAX || Context || Emb does not have an FSM behavior. The reason is that the input set
is empty. The following proposition states how the language of the IOTS Context ||
Emb is constrained by a slow environment.

Proposition 1. The language of the IOTS MAX || Context || Emb is a subset of the
prefix closure of the language (I(UV)*O)*.

Proposition 1 states that when an environment is slow, the component machines
can execute a sequence of the set (UV)* before an external output is produced by the
context in response to external input i ∈ I received from the environment. Only after
the context has produced an external output to a previous input, a next external input
can be applied to the context.

3. Fault Propagation

3.1 Test Definitions

Definition 1. Given a specification IOTS A = ¢S, I, O, λA, s0², a test case (test) is a
non-empty sequence over alphabet I ∪ O. A test αb is said to be reduced (w.r.t. the
given specification A) if α is the longest prefix of αb that is a trace of the
specification.

250 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Given an IOTS specification A, the set of all possible implementations of A that are
IOTSs over the alphabet I ∪ O, is called the fault domain of A, denoted by ℑ(A).
When A is clear from the context, we use the notation ℑ instead of ℑ(A). The fault
domain includes both, conforming and nonconforming implementations, where the
trace equivalence of IOTSs is the conformance relation. Thus, a fault to be detected
by a test occurs when an implementation IOTS has a trace that is not a valid trace of
the specification IOTS. To be more specific, such invalid trace has always an output
as its last symbol. This is true for any IOTS that encodes a complete FSM, as well as
for an IOTS that describes the composition of such IOTSs. It is not difficult to
demonstrate that for this class of IOTSs either only all input actions are enabled or
only output actions are enabled in each state, i.e., either init(s) = I or init(s) ⊆ O for all
s ∈ S. Thus, traces of specification and implementation (deterministic) IOTSs may
only differ on outputs and not on inputs.

Definition 2. Given the specification IOTS A, an implementation IOTS B ∈ ℑ that is
not trace equivalent to A, and a test α, we say that α detects B if there exists a prefix
of α that is a trace of the implementation IOTS B and not of A.

Given the specification IOTS A, the set ℑ of implementation IOTSs over the
alphabet I ∪ O, and a test α, ℑα ⊆ℑ denotes the subset of implementations that are
detected by α. The set ℑα can be empty, it is the case when, for example, α is a trace
of the specification.

Definition 3. A test suite is a finite set of tests. An implementation IOTS B ∈ ℑ that
is not trace equivalent to A is said to be detected by a test suite if the test suite has a
test that detects B.

If a test suite TS = {α1, ..., αk} and ℑTS ⊆ ℑ denotes the subset of implementations
that are detected by TS then ℑTS =

1αℑ ∪ ... ∪
kαℑ .

Given a test α over the alphabet I ∪ O, we derive a tree IOTS IOTSα = <T, I, O, λ, İ>,
where T is the prefix closure of α with the empty sequence İ as the initial state. Given
a proper prefix β of α and symbol a ∈ I ∪ O, (β, a, βa) ∈ λ if βa is a prefix of α. By
definition, state α is a deadlock state.

Given a test suite TS consisting of test cases α1, ..., αk over the alphabet I ∪ O, a
tree IOTS IOTSTS is determined by first deriving the union of the IOTSs

1αIOTS ,

2αIOTS , ...,
k

IOTSα [HoUI79] and then determinizing the obtained IOTS.

Definition 4. Given the specification IOTS A and a set ℑ ′ ⊆ ℑ of implementation
IOTSs over alphabets I ∪ O, let TS be a test suite. The test suite TS is exhaustive in
ℑ ′, if the test suite detects each B ∈ ℑ ′ that is not trace equivalent to A.

Given a test case αγ that is not reduced and B ∈ ℑαγ, in order to detect B we can
use the shortest prefix α of αγ that is not a trace of the specification A. In other words,
in order to detect all possible faulty implementations of the fault domain ℑαγ it is
sufficient to use the reduced test α, i.e., the following statement holds.

Proposition 2. Given the specification IOTS A, let α and αγ be test cases such that α is
not a trace of the specification A. The set of implementation IOTSs that are detected by
αγ coincides with the set of those implementations that are detected by α, i.e., ℑα =ℑαγ.

 FSM Test Translation Through Context 251

Given a test suite exhaustive in ℑ ′, we can reduce the length of this test suite by
deleting every test that is a trace of the specification and replacing each remaining
non-reduced test with its shortest prefix that is not a trace of the specification.
According to Proposition 2, the resulting test suite is also exhaustive in ℑ ′.

I
C o n te x t

I m p

T E S T E R
O

V
U

Fig. 2. Test architecture

3.2 Test Architecture

We consider the composition of IOTSs Context and Emb with the IOTS TESTER, and
assume that during testing all actions can be observed (Figure 2). In this case, the
closed system is the parallel composition TESTER || Context || Emb with the output set
I ∪ O ∪ U ∪ V.

As usual, we assume that the Context component is fault free and only an
implementation of the embedded component may be faulty. Moreover, we assume
that each possibly faulty implementation is a complete deterministic FSM with a
restricted number of states represented as an IOTS and denote ℑ(Emb) the fault
domain of Emb, i.e., ℑ(Emb) is the set of IOTSs that represent all possible Emb
implementations. Thus, a fault domain of the system MAX || Context || Emb is ℑ(Con-
Emb) = {MAX || Context || Imp : Imp ∈ ℑ(Emb)}. Given Imp ∈ ℑ(Emb), Imp is said to
be a conforming (in the given context) implementation of Emb if IOTSs MAX ||
Context || Imp and MAX || Context || Emb are trace equivalent. Otherwise, Imp is a
nonconforming implementation. Not every implementation of the embedded
component that is not trace equivalent to Emb and thus, can be detected in isolation, is
a nonconforming implementation in context [10]. As an example, consider the
specification Emb and the faulty implementation Imp1 shown in Figures 3a and 3b,
respectively. The context IOTS is shown in Figure 4. The composition MAX || Context
|| Imp1 is trace equivalent to the MAX || Context || Emb. Therefore, the fact that the
implementation Imp1 is not trace equivalent to Emb cannot be established within the
given context.

According to the above test architecture, during the testing process a tester applies
actions of the set I to the external input of Context and draws a conclusion whether an
implementation Imp of the embedded component conforms to its specification by
observing the outputs over the set O ∪ U ∪ V. Thus, traces of a tester are defined over
the alphabet I ∪ O ∪ U ∪ V. Since we are interested in the system of communicating
IOTSs Context and Imp that work in a slow environment, the tester has also to be
slow, i.e., the tester can apply the next symbol i ∈ I only after it has obtained, from
Context, an external output o ∈ O to the previously applied input of the set I. We call
such tester a slow tester and according to Proposition 1, a slow tester executes traces

252 K. El-Fakih, A. Petrenko, and N. Yevtushenko

in the set (I(UV)*O)*. Each trace of a tester is called an external test (case). In fact, a
tester is a tree IOTS derived from an external test suite. As usual, an external test
suite is a finite set of external tests. Following Definitions 2 and 3, an external test
detects each implementation system MAX || Context || Imp of the set ℑ(Con-Emb) if
some prefix of the external test is a trace of MAX || Context || Imp, but not a trace of
the composition MAX || Context || Emb. In this case, the tester detects a fault that
makes Imp nonconforming. Otherwise, i.e., when the external test is a trace of MAX ||
Context || Emb, the implementation Imp has no faults that can be detected by this test.

1

3 6

4

2 5

u1
u1

v2
v2

v1 u2
u2

v1

a. Emb

1

3 5

4

2

u1

v2v1
u2

v1

u 1
, u 2

b. Imp1

Fig. 3. Specification Emb and a faulty implementation Imp1

a

d

m

p

s

r

t

b

m h

f g

c

n

x 2,
x 3

x3

u2

x2
, x

3

x
1 , x

3

x1

x1

x2
u1 v1

v2

o2

o2

x2

v
1 , v

2

o1

o2o1
v1

v2

u2

x1

o1

v1,v2

o3

Fig. 4. Context IOTS

3.3 Problem Definition

Given the embedded component Emb over input alphabet U and output alphabet V, an
internal test (case) is a trace over the alphabet U ∪ V. Since the IOTS Emb has an

 FSM Test Translation Through Context 253

FSM behavior, an internal test is a non-empty sequence of the language (UV)*.
Correspondingly, an internal test suite is a finite set of internal tests.

When the implementation is tested through the context, the internal inputs of the
embedded component are not directly controllable; except for the context of FIFO queues
[4,11]. For other types of contexts, internal tests have to be translated to external tests.

Given an internal test InTest, let ℑInTest(Emb) ⊆ ℑ(Emb) denote the set of possible
faulty implementations of the embedded component Emb that can be detected by
InTest when testing the IOTS Emb in isolation. Naturally, it makes sense to consider
internal tests which detect at least one nonconforming implementation, i.e., tests
which belong to the set (UV)*\Tr(Emb). We first introduce the notion that relates fault
detection capability of internal and external tests.

Definition 5. Given InTest ∈ (UV)*\Tr(Emb), an external test ExtTest has the same
fault detection power as InTest if ExtTest detects each implementation system MAX ||
Context || Imp, where Imp ∈ ℑInTest(Emb). Similarly, given an internal test suite InTS
⊆ (UV)*\Tr(Emb), an external test suite ExtTS has the same fault detection power as
InTS, if ExtTS detects each implementation system MAX || Context || Imp, where Imp
∈ ℑInTS(Emb).

The problem of translating InTest is to determine an external test (if it exists) with
the same fault detection power, i.e., to determine an external test case that detects
each IOTS MAX || Context || Imp, where Imp ∈ ℑInTest(Emb). The problem is called the
test translation or the fault propagation problem [2,7].

In the rest of the paper, given an internal test suite, we propose a method of
translating (when possible) it into an external one with the same fault detection
power. Moreover, in Section 4, we propose methods for deriving internal test suites
with the guaranteed fault coverage that can be translated within the given context.

3.4 Translation of an Internal Test Case

Given an internal test case InTest ∈ (UV)*\Tr(Emb), let Imp ∈ ℑInTest(Emb) be an
implementation that is detected by InTest, i.e., Imp has a trace that is not a trace of the
embedded component Emb. Therefore, a tester, that induces InTest at the channels U
and V in the composition TESTER || Context || Imp, will detect that Imp is a
nonconforming implementation. In other words, if the IOTS (TESTER || Context ||
Imp)↓U∪V has a trace InTest, then a tester detects the nonconforming implementation
Imp, and, thus, we have the following definition that relates internal and external tests.

Definition 6. Given InTest ∈ (UV)*\Tr(Emb), an external test ∈ ¢(I(UV)*O)*² is a
translation of InTest, denoted Transl(InTest), if the IOTS (IOTSTransl(InTest) || Context ||
IOTSInTest)↓U∪V is trace equivalent to the IOTS IOTSInTest. Correspondingly, given an
internal test suite InTS ⊆ (UV)*\Tr(Emb), an external test suite ⊆ ¢(I(UV)*O)*² is a
translation of InTS, denoted Transl(InTS), if the (IOTSTransl(InTS) || Context ||
IOTSInTS)↓U∪V is trace equivalent to the IOTS IOTSInTS.

The following statement is implied immediately.

Proposition 3. Given InTS ⊆ (UV)*\Tr(Emb), an external test suite Transl(InTS)
detects each implementation system MAX || Context || Imp, Imp ∈ ℑInTS(Emb), i.e.,
Transl(InTS) has the same fault detection power as InTS.

254 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Due to Definition 6, in order to determine a translation of a given internal test
InTest we have to establish conditions under which the composition (TESTER ||
Context || Imp)↓U∪V has the trace InTest. According to the definition of the parallel
composition, the following statement holds for traces of the composition (TESTER ||
Context || Imp)↓U∪V.

Proposition 4. Given an internal test case InTest, the composition (TESTER || Context
|| Imp)↓U∪V has a trace InTest if and only if the IOTS Imp and the composition
(TESTER || Context)↓U∪V have the trace InTest. Correspondingly, given an internal test
suite InTS, the set of traces of the composition (TESTER || Context || Imp)↓U∪V
contains InTS if and only if the set of traces of the IOTS Imp and of the composition
(TESTER || Context)↓U∪V contains the set InTS.

Here we note that not each internal case can be translated, as the context may render
it impossible. According to Proposition 4, the following sufficient and necessary
conditions can be established for the translation of an internal test in the given context.

Let Aug
InTestIOTS denote the IOTS obtained from IOTSInTest by adding self-loops

labeled with all i ∈ I (input) and o ∈ O (output) at every non-deadlock state.

Theorem 1. Given a context Context and internal test InTest, the test InTest can be
translated in the context if and only if the IOTS (MAX || Context || IOTSInTest)↓U∪V is
trace equivalent to IOTSInTest. Moreover, if the test InTest is reduced and can be
translated in the context then the set of traces with the (U∪V)-restriction InTest that

take the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state coincides with the

set of all reduced translations of the test InTest.
In fact, the first statement of the theorem is a direct corollary to Proposition 4. In

the second statement of the theorem, we use Aug
InTestIOTS instead of IOTSInTest in the

composition, to force a tester to stop after the first unexpected output v of InTest is
produced by an implementation. Thus, each trace with the (U∪V)-restriction InTest

that takes the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state is a reduced

external test if InTest is reduced. As the set of traces the IOTS MAX || Context has
each trace that can occur in the composition of the system Context || Imp, Imp ∈
ℑ(Emb), with a slow tester, the set of all traces with the (U∪V)-restriction InTest that

take the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state coincides with the

set of all reduced translations of the test InTest.

According to Theorem 1, each trace with the (U∪V)-restriction InTest that takes the

IOTS MAX || Context || Aug
InTestIOTS into a deadlock state has the same fault detection

power as the internal test InTest and is a translation of InTest.

In general, the IOTS MAX || Context || Aug
InTestIOTS has many traces that lead to a

deadlock state and have the (U∪V)-restriction InTest. Each such trace can be selected
as a translation of InTest. However, we are interested in a shortest translation, i.e., in
the translation that is a reduced external test. According to Theorem 1, in order to
determine a shortest translation of InTest it is sufficient to find a shortest trace that

 FSM Test Translation Through Context 255

takes MAX || Context || Aug
InTestIOTS to a deadlock state and has the (U∪V)-restriction

InTest. Therefore, the problem of finding a shortest translation Transl(InTest) of
InTest can be solved by determining a shortest trace that takes the IOTS MAX ||

Context || Aug
InTestIOTS to a deadlock state and has InTest as its (U∪V)-restriction.

In our working example, consider the internal test u2v2. By direct inspection
(Figure 5), one can assure that the trace x1o1x1u2v2 is a translation of u2v2. For the
internal test u2v2, we have two shortest translations x1o1x1u2v2 and x3o1x1u2v2 (Figure 5).

p0a1
p1m 1

p0b1

p1f1

p1t1
p1d1

p1p1

p0s1

p1r1

x1

x2
o1

p1b2 p1h3

o3

x1

u2
v2

x2

x3

o1
x2
x3

x1

u2

Fig. 5. IOTS MAX || Context || Aug
vuIOTS
22

3.5 Translation of an Internal Test Suite

Since an internal test suite is a finite set, it can be translated by translating each of its
test cases separately, as described in the previous subsection. To reduce the length of
a resulting external test suite we have to select for each internal test InTest a shortest
translation of InTest.

However, all the tests of an internal test suite InTS can be translated altogether.

Given IOTSInTS, we denote Aug
InTSIOTS the IOTS obtained from IOTSInTS by adding

self-loops labeled with all i ∈ I and o ∈ O at every non-deadlock state. According to
Theorem 1, the following statement holds.

Theorem 2. Given a context Context and an internal test suite InTS, the test suite InTS
can be translated in the context, if and only if the IOTS (MAX || Context ||
IOTSInTS)↓U∪V is trace equivalent to IOTSInTS. Moreover, if the test suite InTS has only
reduced tests and can be translated in the context then the set of traces with the

(U∪V)-restriction InTS that take the IOTS MAX || Context || Aug
InTSIOTS into a

deadlock state contains each set of reduced translations of the test suite InTS.

256 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Due to Theorem 2, each subset of traces with the (U∪V)-restriction InTS that take

the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state has the same fault

detection power as the internal test suite InTS and is a translation of InTS.
Here we note the resulting translation of InTS (i.e. an external test suite)

Transl(InTS) can have tests whose I-restrictions are prefixes of the same sequence
over the alphabet I. According to our test architecture, for a tester it is sufficient to
apply to the context longest I-restrictions of sequences of Transl(InTS). As an
example, consider the internal test suite {u2v2, u2v1u2v1}. One of its translations is an
external test suite {x2u2v2, x2u2v1u2v1}. When executing the external test suite {x2u2v2,
x2u2v1u2v1} that is a translation of the internal test suite {u2v2, u2v1u2v1} the tester has
to apply only the external input x2 to the context and observe the obtained outputs.

4 Exhaustive External Test Suites

When an internal test suite cannot be translated throughout the given context, there
may still exist another internal test suite that detects the same set of faulty
implementations of Emb and can be translated in the given context. Therefore, given a
fault domain ℑ(Emb), we would like to derive an internal test suite for Emb that can
be translated in the given context to obtain a translation exhaustive in the fault domain
ℑ(Con-Emb).

As an example, consider a fault domain ℑ(Emb) of Emb (Figure 3a) that contains
each IOTS with a behavior of a complete deterministic FSM with at most two states
and an exhaustive test suite for Emb w.r.t. the fault domain ℑ(Emb). Such a test suite
can be derived using the W-method [1,12] or its derivatives. The W-method provides
an exhaustive test suite E = {u2u1, u1u1u1, u1u2u1} as a set of input sequences over
alphabet U. In order to transform this set into an internal test suite InTS for the IOTS
Emb we proceed as follows. For each sequence u1...uk of the set E we determine a
corresponding trace u1v1...ukvk of the embedded component Emb. Then, we append
each prefix u1v1...uj, j ≤ k, of the trace u1v1...ukvk with all possible wrong internal
outputs v′ ∈ V\{vj} and include the resulting sequences into the internal test suite
InTS. In our example, we obtain InTS = {u2v2, u2v1u1v2, u1v2, u1v1u1v1, u1v1u1v2u1v2,
u1v1u2v1, u1v1u2v2u1v2}, the I-restriction of this set is exactly the set E.

By direct inspection, one can assure that this test suite cannot be translated through
the given context. The reason is that, for example, an internal test case u1v1u1v1 is not
in the set of traces of the IOTS (MAX || Context)↓U∪V and thus, cannot be executed in
the given context.

Therefore, to derive an exhaustive internal test suite w.r.t. the above fault domain
ℑ(Emb) that can be translated into an exhaustive external test suite w.r.t. the fault
domain ℑ(Con-Emb), we have to consider only the behavior of the embedded
component Emb for the sequences that can be executed in the given context. To this
end, we define an IOTS a so called observable equivalent of Emb, by removing from
it the sequences that cannot be executed with the given context.

Definition 7. Given IOTSs MAX, Context and Emb, the IOTS EqEmb is an observable
equivalent of Emb if Tr(EqEmb) = Tr(Emb) ∩ Tr((MAX || Context)↓U∪V).

 FSM Test Translation Through Context 257

Due to Definition 7 and Proposition 4, the observable equivalent EqEmb of an
embedded component Emb can be derived as follows: EqEmb = (MAX || Context ||
Emb)↓U∪V. For our working example, the observable equivalent is shown in Figure 6.

1

3 5

4

2

u 1

v2v1
u 2

v1

u2

Fig. 6. Observable equivalent IOTS EqEmb

As a corollary to Theorem 2, the following statement holds.

Theorem 3. A reduced internal test u1v1...ukvk ∈ (UV)*\Tr(Emb) can be translated in
the given context if and only if the input sequence u1...uk is a trace of the U-restriction
of the IOTS EqEmb, i.e., u1...uk ∈ (MAX || Context || Emb)↓U.

If a reduced internal test InTest can be translated in the given context then every
external translation of InTest has the same fault detection power as InTest
(Proposition 3). According to Theorem 3, a reduced internal test u1v1...ukvk can be
translated if the internal input sequence u1...uk is a trace of the U-restriction of the
IOTS EqEmb. Therefore, the following two statements hold as corollaries to Theorem 3.

Corollary 2. Given a reduced internal test InTest such that the U-restriction of InTest
is a trace of the IOTS (EqEmb)↓U, the composition of the context and a faulty
implementation Imp ∈ ℑ(Emb) is detected by the external test Transl(InTest) if and
only if Imp is detected by InTest.

Corollary 3. Given an internal test suite InTS with reduced tests such that the U-
restriction of each test of InTS is a trace of the IOTS (EqEmb)↓U, the composition of the
context and a faulty implementation Imp ∈ ℑ(Emb) is detected by the external test
suite Transl-InTS if and only if Imp is detected by InTS.

There is a special case when Tr(EqEmb)↓U = U*. This means that the context has a
behavior of a complete FSM and any internal test case can be translated.

Corollary 4. Given the observable equivalent EqEmb of the embedded component, if
Tr(EqEmb)↓U = U* then each reduced internal test can be translated through the given
context.

Here we note that the notion of the observable equivalent is close to the notion of
the embedded equivalent in [10]. However, in that work, the observable equivalent is
derived under the assumption that the internal channels are not observable; in fact, the
construction refines a so-called conforming part of the embedded component Emb
restricting it to alphabets of Emb.

According to Corollary 3, internal test suites are derived from the specification of
the embedded component that has a behavior of a partial deterministic FSM. Then an
internal test suite for the embedded component can be derived, using the State

258 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Counting (SC) method in [8], exhaustive w.r.t. the fault model <Spec, ≤, FD>, where
Spec is a partial FSM, ≤ is the quasi-equivalence relation, called weak conformance in
[13], and FD is the set of all possible implementation FSMs with a restricted number
of states.

Applied to the partial FSM that is encoded as the IOTS EqEmb, the SC-method
returns a set E of internal (over the alphabet U) input sequences. In order to transform
this set into an internal test suite InTS we again for each sequence u1...uk of the set E,
determine a corresponding trace u1v1...ukvk of the embedded component Emb, append
each prefix u1v1...uj, j ≤ k, of the trace u1v1...ukvk with all possible wrong internal
outputs v′ ∈ V\{vj} and include the resulting sequences into the internal test suite
InTS.

Consider the observable equivalent IOTS EqEmb of Emb in Figure 6. The IOTS
EqEmb has a behavior of a partial FSM with two states. If we consider the fault domain
ℑ(Emb) of all IOTSs that have a behavior of a complete deterministic FSM with at
most two states, then we can derive, using the SC-method or the method in [13], the
test suite {u1v2, u1v1u2v1, u1v1u2v2u2v2, u2v2, u2v1u2v2} exhaustive w.r.t. the fault
domain ℑ(Emb) and quasi-equivalence relation. The corresponding external tests are
{x2u1v2, x2u1v1u2v1, x1o1x1u2v2, x1o1x1u2v1o1x1u2v2} and according to Theorem 3, this
external test suite is exhaustive w.r.t. the fault domain ℑ(Con-Emb).

Another approach for test derivation from the embedded equivalent is mutant-
based testing. A mutant may model certain suspected faults, which have to be tested
for their presence. The approach is based on the enumeration of mutants of the
embedded component Emb and finding external tests that kill these mutants. To this
end, given a mutant Imp ∈ ℑ(Emb), we consider the IOTS Imp || EqEmb. We first note
that the observable equivalent EqEmb does not deadlock, since each IOTS Context and
Emb has a behavior of a complete FSM. Secondly, given Imp ∈ ℑ(Emb), Imp is not
trace equivalent to Emb if and only if the IOTS Imp || Emb deadlocks. If the IOTS Imp
|| EqEmb does not deadlock then the mutant IOTS Imp is a conforming implementation
of Emb. Otherwise, each trace of Imp such that its U-restriction takes the IOTS (Imp ||
EqEmb)↓U to a deadlock state is an internal test that detects a faulty implementation
Imp and this internal test can be translated through the given context.

As an example, consider the faulty implementation Imp1 (Figure 3b) of the
embedded component Emb (Figure 3a). The composition Imp1 || EqEmb is similar to
the EqEmb in Figure 6; only state labels are renamed 11, 22, 33, 44, and 55. Since the
composition Imp1 || Emb does not deadlock, the faulty implementation Imp1 cannot be
detected through the given context, and thus Imp1 is a conforming implementation (in
the given context). As another example, consider the faulty implementation Imp2
which is similar to Imp1 of Fig. 3b except that the transition connecting states 5 and 1
has the label v1 instead of v2. The composition Imp2 || Emb deadlocks after the trace
u1v1u2 and thus Imp2 can be detected through the given context.

5 Conclusions

In this paper, we proposed an approach for translating internal tests derived for a
component embedded within a modular system into external tests of the system. The
system is represented as two complete deterministic communicating finite state

 FSM Test Translation Through Context 259

machines, an embedded component machine to be tested and a context machine that
represents the remaining part of the system. The context is assumed to be fault free
and the interactions between the component machines are observable. Also, in this
paper, we established necessary and sufficient conditions for an internal test (suite) to
be translated in the given context. If a test cannot be translated, we demonstrated
another test with the guaranteed fault detection power could be determined (if such a
test exists) that can be translated in the given context. In our future work, we intend to
generalize the fault translation approach elaborated in this paper for communicating
finite state machines to input output transition systems.

References

1. T. S. Chow, "Test design modeled by finite-state machines", IEEE Trans. SE, vol. 4, no.3,
pp. 178-187, 1978.

2. K. El-Fakih and N. Yevtushenko, "Fault propagation by equation solving", Proc. of the
IFIP 24th International Conference on Formal Techniques for Networked and Distributed
Systems, Madrid, Spain, LNCS 3235, pp. 185-198, 2004.

3. J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and
computation, Addison-Wesley, N.Y., 1979.

4. C. Jard, T. Jéron, L. Tanguy, and C. Viho, "Remote testing can be as powerful as local
testing", Proc. of the IFIP Joint Intl. Conf. Formal Description Techniques for Distributed
Systems and Communication Protocols and Protocol Specification, Testing and
Verification (FORTE XII / PSTV XIX), volume 156 of IFIP Conference Proceedings,
Beijing, China, Oct. 5-8, Kluwer, pp. 25–40, 1999.

5. L. P. Lima, "A pragmatic method to generate test sequences for embedded systems",
Ph.D. Thesis, Institute National des Telecommunications, Evry, France, 1998.

6. L. P Lima and A. R. Cavalli, "A pragmatic approach to generating test sequences for
embedded systems", Proc. of the 10th International Workshop on Testing of
Communicating Systems, pp: 125-140, 1997.

7. A. Petrenko and N. Yevtushenko, "Testing faults in embedded components", Proc. of the
10th International Workshop on Testing of Communicating Systems, pp. 272-287, 1997.

8. A. Petrenko and N. Yevtushenko, "Testing from partial deterministic FSM specifications",
IEEE Transactions on Computers, vol. 54, no. 9, pp. 1154-1165, 2005.

9. A. Petrenko, N. Yevtushenko, and G. v. Bochmann, "Fault models for testing in context",
Proc. International Conference on Formal Techniques for Networked and Distributed
Systems, pp. 125-140, 1996.

10. A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, "Testing in context:
framework and test derivation", Computer communications, Vol. 19, pp. 1236-1249, 1996.

11. J. Tretmans and L. Verhaard, "A queue model relating synchronous and asynchronous
communication", In R. J. Linn, Jr. and M. Ü. Uyar, eds., Proc. of the IFIP TC6/WG6.1
12th Intl. Symp. Protocol Specification, Testing and Verification, volume C-8 of IFIP
Transactions, Lake Buena Vista, Florida, USA, pp. 131–145, 1992.

12. M. P. Vasilevskii, "Failure diagnosis of automata", translated from Kibernetika, no.4, pp.
98-108, 1973.

13. M. Yannakakis and D. Lee, "Testing finite state machines", Proc. of the 23rd Annual
ACM Symposium on Theory of Computing, New Orleans, Louisiana, pp. 476-485, 1995.

