Test Generation for Network Security Rules

Vianney Darmaillacq', Jean-Claude Fernandez?, Roland Groz!,
Laurent Mounier?, and Jean-Luc Richier! * **

! Laboratoire LSR-IMAG
BP 72, 38402 St Martin d’Heres, France
2 Laboratoire Vérimag
Centre Equation - 2, avenue de Vignate, 38610 Gieres, France

Abstract. Checking that a security policy has been correctly deployed
over a network is a key issue for system administrators. Although this is a
kind of conformance testing, there are a number of significant differences
with the framework of such standards as 1S9646. We propose a method
to derive tests from a policy expressed as a set of rules, with a single
modality. For each element of our language and each type of rule, we
propose a pattern of test, which we call a tile. We then combine those
tiles into a test for the whole rule.

1 Introduction

Network and system administrators are in charge of implementing and control-
ling the security policies of their organizations. Enforcing a policy typically relies
on the adequate configuration of Policy Enforcement Points (PEP) in dedicated
equipment (such as firewalls, ciphering chips) or specific software (e.g. account
managers, mail scanners). Since most networks and systems would undergo daily
changes, maintaining the consistency of the rules actually implemented by the
PEPs and their conformance to the specified security objectives and the rules
expressed in the policy is not an easy task.

One way to guarantee a correct policy enforcement is to derive configura-
tions from a description of the policy (top-down approach). In order to do that
systematically, the description must be formal enough to provide unambiguous
rules and translations of them into configurations of security devices. Since most
policies consist of combination of rules with various scopes and potentially con-
flicting modalities (e.g. restricting access for generic subjects but authorizing it
for specific categories), the descriptions usually include constructs or semantic
rules to solve conflicts between policy statements. Ponder [5] and OrBAC [1] are
typical such description languages with associated methods to allow deployment
on networks.

In this paper, we investigate another approach (bottom-up). We consider
that testing a given network configuration for compliance with a stated policy is
a kind of conformance testing. Therefore, we aim at deriving tests from a formal

* This work has been partly funded by the POTESTAT project of the national research
programme on security (ACI Sécurité) and by the IMAG project Modeste.
** Email: {Vianney.Darmaillacq,Jean-Claude.Fernandez,Roland.Groz,Laurent.Mounier,
Jean-Luc.Richier} @imag.fr

specification of the security policy to check whether the implementation is cor-
rect. These tests could be used either after some initial deployment of a policy
to check whether it can be and actually is well implemented, or typically on a
more regular basis to see whether any update on the configurations might have
breached security rules. Some sort of testing is actually performed by system ad-
ministrators to check for known vulnerabilities: portscans and password crackers
fall into that category. However, such tests are usually limited to just a single
security mechanism. With existing techniques, it is difficult to address the issue
of consistency of configurations on distributed devices. Although some work has
been published on the analysis of the consistency of firewall rules (typically to
minimize them or to detect conflicts), this is still limited to specific points of
security policies. [11] is an application of the idea of generating conformance
tests for a single firewall.

In our work, we address conformance with respect to a global specification
of a security policy for a network of interconnected systems. Although at first
view this might appear as just another instance of conformance testing of an
implementation w.r.t. a given formal specification, there are a number of signif-
icant differences with the framework of such standards as 1S9646 and its formal
counterpart FMCT [8]. We investigated a few of these differences in [6]. Here
are typical issues:

— Security policies are not just a specification of rules to be implemented in
machines. They also address human behaviours (for users, administrators
and managers), which are not necessarily reflected in electronic form. There-
fore we concentrate on security rules which would actually be translated into
testable machine implementations.

— Protocol conformance testing is done on a well defined protocol level (nor-
mally one at a time), with a given interface and associated PDU definitions.
Whereas security policies are often implemented with a mixture of mecha-
nisms at various levels of communication and O/S interfaces. We have to
bridge the gap between specification at policy level and the actual level of
PDUs and O/S events that are used by security control mechanisms and
which can be accessed through points of control and observation.

— Contrary to protocol testing where the observable behaviour consists of
PDUs that can be observed during the test, specific security actions might
not yield clearly observable behaviours. Typically, access might be trans-
parently granted, and the information on the control performed would be
silently logged. It might be relevant, in testing security implementations to
combine on-line observations by a tester with off-line analysis of system logs.

— Reliability of observations might also be an issue. We might have to consider
that the information collected in a test might have been tampered with.

— Security rules use deontic modalities, such as authorization, denial and obli-
gation. Testing such modalities is not straightforward. The fact that a cat-
egory of subjects in the system might be authorized to do certain actions
does not imply that any specific instance has been configured to act in this
way. The whole test process has to be organized to avoid tests that could
systematically be inconclusive.

In this paper, we do not address all issues, but we propose a method to
derive tests from a policy expressed as a set of rules. We identify a language
with a restricted form of rules that cover most of the rules that can be found
in texts describing security policies, keeping in mind that we are focusing on
rules that are translated into actual configurations and behaviours or network
security devices. This restricted set of rules allows us to design a “tile-based”
generation method. For each element of our language and each type of rule, we
propose a pattern of test, which we call a tile. The simple form of rules makes
it possible to compose a global test by simply combining the tiles associated to
the elements.

This paper is organized as follows. In section 2, we present our approach,
in particular the types of rules that we cover and their relation to proposed
formal methods for the description of security policies. Our notation for rules is
presented in section 3. In section 4, we define the test generation tiles and the
algorithm to derive tests. The whole approach is illustrated in section 5 on a
typical example taken from an e-mail security architecture. Finally, in section 6
we present our perspectives for development from this basis.

2 Approach

Our aim is to automatically generate test cases from network policy rules. We
intend to adapt the approach used in protocol conformance testing. We first
started by looking for a formal description of security policies that would make
it possible to generate tests. In order to identify typical requirements and the
corresponding tests, we worked from a case study.

2.1 A case study

We carried out during the summer of 2004 a case study to identify the security
policies used in the IMAG network, which connects our laboratories. This study
included the analysis of documents provided to the administrators and the users,
and interviews. We collected information at different levels of management, from
the laboratory to the access supplier. The analysis resulted in a rather broad and
detailed description of a typical network security policy in a university environ-
ment. In this paper, we shall present a small subset of rules, centred on electronic
mail. This set was selected to be rich enough to show the majority of the con-
cepts to be studied: several levels of policies and inter-connected organizations,
variety of the services and of the access methods.

In a network, security distinguishes inside and outside. The inside of the
network is the set of machines under the responsibility of the organization. The
outside consists of uncontrolled machines considered dangerous for security pur-
poses. This can be refined by considering other zones, differing by degrees of
administration, reliability and trust. The sub-zones of the internal zone corre-
spond in general to architectural criteria, for example separations between phys-
ical sub-networks, whereas the outside sub-zones correspond to different levels
of trust.

One distinguishes moreover among the internal hosts those which provide
services accessible from the outside. Due to their visibility, these hosts are more
often subject to attacks. Therefore state of the art in network administration
recommends to define for these hosts a strongly controlled buffer zone, often
called DMZ (demilitarized zone). Only the hosts in this zone can communicate
with the outside world, and all the traffic between the DMZ and the rest of the
internal network is controlled.

We give in figure 1 a sample set of rules for the electronic mail drawn from
our case study. This sample illustrates: flows of information, separation in zones,
possibility, obligation or prohibition of certain actions, at different levels of de-
tails. To simplify the problem, we suppose that certain global hypotheses are
true and do not have to be clarified: correct routing, systems up to date w.r.t
vulnerability patches ...

No Requirement

1 [Mail relays accepting messages from the exterior should be placed at the entry of
the network, in the DMZ if possible.

2 |There should be no user account on relays placed in the DMZ.

3 |Mailbox servers containing user accounts should be in the private zone. There
could be as many of these servers as necessary.

4 |Relays in the DMZ are the only machines allowed to communicate with the
exterior world using the SMTP protocol. Relay of inbound mails (to mailboxes)
and of outbound mails (to exterior) is done using these relays.

5 |At the entry of the site, a filtering default policy is applied, which forbid all
traffic not explicitly authorized.

6 |It is forbidden to hosts of the network to relay mails from an external host to an
external host.

7 |All messages coming from the exterior are redirected to mail relays placed in
entry of the site (MX field of the DNS), probably in the DMZ.

8 |It is forbidden to communicate with a host belonging to the blacklist updated
daily provided by the MAPS (Mail Abuse Prevention System) partner.

9 |Antivirus and spam filters shall be installed on hosts acting as relays or mailboxes.

10|A mail shall be checked by antivirus software before being opened.

11 |All mails entering the network infected by a virus shall be disinfected.

12 |All mail shall be modified if it contains a potentially dangerous attached file.
The file is stored somewhere in the network for 15 days. Sender and recipients
are notified and an address id provided to the recipient to get the file.

13|All mail analyzed as a possible spam shall be annotated.

Fig. 1. Security rules for e-mail

2.2 Description techniques for network security

Most of the rules in the case study (which actually covers much more than e-
mail) express some constraints about the possible behaviour of the system. More
specifically, they are of the form “Mod P”, where Mod is a modality among
obligation, permission or interdiction, and P is either a predicate on the system
or a behaviour.

The deontic logic of von Wright [13] is a modal logic whose modal operator
semantic is that of obligation. With only this operator authorization of a formula
is defined as the negation of the obligation of the negation of the formula, while
interdiction is defined as the negation of the obligation of the formula. However
deontic logic raises a number of paradoxes that have hindered its wider use [10].
Nevertheless modalities are a key issues in formal models of security policies, in
particular in formal description techniques such as PDL, Ponder and Or-BAC,
which have been proposed to address network security policies.

PDL is a language created to model network management policies, including
security requirements. It is based on the idea that a policy is a specification
of the behaviour the network should have according to what happened in the
network [9]. A rule states that an action is triggered by an event, provided a
condition holds. PDL was used to monitor switches in a network, to guarantee
quality of service [12].

Ponder is a language created to specify network security policies [5] and pro-
poses a full choice of different modalities: conditional obligation, authorization,
interdiction, delegation and refrain policies could be specified.

Or-BAC [1] is another access control model, loosely based on RBAC. While
RBAC abstracts subjects into roles, Or-BAC abstracts moreover objects into
views and actions into activities, and introduces the notion of organization. Or-
BAC has been used to model a network security policy, and to generate firewall
rules from it [4, 2].

All these FDT's include structuring and typing constructs, resolution of con-
flict mechanisms and various aspects which are important. In this paper, we go
for a simpler course, since we want to derive tests from the rules. These rules
could be extracted from description in the above formalisms. All we need is a
description with just enough expressive power to represent the modalities used
in PDL, Ponder or Or-BAC, at least as they can be tested through network
events.

2.3 Approach for test generation

Compared to classical conformance testing for communication protocols, test
generation in our case exhibits two major differences.

— The policy is not described by a comprehensive model such as a global LTS
or state machine, but by a collection of rules. This is similar to deriving tests
from requirements. Much work has been done in test generation from test
purposes which are confronted to a formal model of the protocol. Here, we
do not assume any formal model of the network, we derive tests from the
rules. Our approach is rule based: it generates separate tests for each rule.

— The policy is described at a much higher level than the actual events that
can be observed or controlled in the network; whereas the specification of a
communication protocol would refer to PDUs or SDUs even though some of
them might occur at non-observable interfaces. We need to establish a cor-
respondence between the basic predicates appearing in a rule and sequences
of events that can represent a test or instanciations of such predicates.

To each high-level predicate (such as externRelay(h) meaning that machine
h can relay mails sent from outside the domain considered) we associate a test
pattern which we call a tile. For instance, in the case of external relaying of mails,
a tester would have to establish an SMTP connection to the machine from an
external machine and try to send a mail. However, there are different types of
predicates. Some may have to be tested dynamically through interaction with
the system. Others might be checked without PDU exchanges, for instance if we
have access to the configuration files of the system when the test is set up. In
the case of externRelay(h), this could be checked in the configuration of the mail
system on h. The choice of one method or another may depend on accessibility to
the system, but on trust as well: typically, information on configurations might
not be reliable.

In [7], we investigated a refinement approach to derive control at PDU level
from security rules. In this paper, we will consider that the tiles are provided. A
policy would be described by combining elementary predicates which would be
well-known elements for security policies, so that the corresponding tiles would
be readily available.

In this paper, we concentrate on the combination of tiles, based on the struc-
ture of the formula in the rule. We address formulas of a restricted form with
just one modality, as this corresponds to the usual style of security policy rules;
Ponder, PDL and OrBAC also propose a single modality on each rule. We first
propose a formal description of the rules in the next section, then we describe
the combination of tiles in the following one.

3 Rules Formalisation

We first give the syntax and semantics of a more general formalism and then we
restrict it to a smaller subset used in this work to generate test cases.

Preliminaries. We recall some basic definitions that are used in this paper. A
labelled transition system (LTS, for short) is a quadruplet (Q, A, T, ¢") where Q
is a set of states, A a set of labels, T the transition relation (7' C @ x A x Q) and
q° the initial state (¢° € Q). We will use the following definitions and notations:
(p,a,q) € T is noted p ——7 q (or simply p —— q). An ezecution sequence p is
a composition of transitions: ¢° 5 ¢ — gg--- — ¢,. We denote by o”
(resp. a”) the sequence of states (resp. observables actions) associated with p.
The sequence of actions a” is called a trace. We note by X, the set of finite
execution sequences starting from the initial state ¢° of S. For any sequence \
of length n, A; or A(i) denotes the i-th element and Ali-..n] denotes the suffix
N A

We also consider in the sequel Boolean Labelled Transition Systems in order
to obtain a more compact representation of test cases. A Boolean Labelled
Transition System (BLTS for short) is a tuple (X;, Q, 4, T, ¢°) where X}, is a set
of Boolean variables, Q is a set of states, A is a set of actions, ¢° is the initial
state and T' C @ x (Bexp x A x Bemd) X @ is the set of transitions, where:

— Bexp is a guard, i.e. a Boolean expression constructed using the following
grammar b ::= True | x | False | b A b | — b (where x€ X3);

— Bcemd is either an assignment x := b (where x€ X3, b € Bexp) or the null
command skip.

As usual, we note p 29 q for (p, (b,a,c),q) € T. We can omit b (resp. ¢) when
b is True (resp. c is skip).

The semantics of a BLTS is given by a LTS. We define a notion of config-
uration (p, <), where p is a state of the BLTS and v : X; — Bool a valuation,
where Bool = {T'rue, False}, is the set of Boolean values. Valuation «y are
extended to Bexp in the usual way (i.e., v : Bexp — Bool). Given a BLTS
B = (Xp,Q,A,T,q") and the initial valuation 7y, where vo(z) = False for all
x € Xp, the underlying LTS Sp = (Q1, 4,71, ¢?) is defined as follows:

Q1 C Q x Bool*®,

(pa 7) i> (plavl) it (pa (ba a,c), Q) €T and ’Y(b) = TTUG,

[Alv/x] if cis x:=e,v(e) = v and y(b) = true

M=y if ¢ is skip

a? = (¢°,7)

3.1 Syntax of security rules

A security policy rule is expressed by a logical formula (), built upon literals.
Each literal can be either a condition literal (p. € P.), or an event literal (p. €
P,). A conjunction of condition literals is simply called a condition (C'), whereas
a conjunction of a single event literal and a condition is called a (guarded) event
(E). Finally, we also use a modal operator F, the dual one G, and the usual
Boolean connectors — and =-.

The abstract syntax of a formula is then given by the following grammar:

pu=C|E|~p|lo=¢|Fo|Gy
Cu=p-A---Apl where pl € P,
E ::=p.[C] where p. € P,

3.2 Semantics

Formulas are interpreted over LTS. Intuitively, an LTS S satisfies a formula ¢
iff all its execution sequences p do, where condition literals are interpreted over
states, event literals are interpreted over labels and the modal operator F¢ means
that there ewists a suffix pj; |, of p such that ¢ holds on py; |,|, where lp| is
the number of elements of p. We first introduce two interpretation functions for
condition and event literals:

fo: P, — 29 associates to p. the set of states on which p, holds;

fe: P, — 24, associates to p. the set of labels on which p. holds.

The satisfaction relation of a formula ¢ on an execution sequence p (p = ¢)
is then (inductively) defined as follows:

pl=Cfor C=plA---Aptiff Vi. oP(1) € f(pl)

p | Efor E=p[C]iff a’(1) € g(pe) No?(2) E C
pEpiff plE e

—pEe1= e iff (0 FE 1) = (pF¢2))

— pEFeiff Ji € [1,[pll. p.jo) E ¢

— plEGeift Vi e [L]pl]. py..ip @

Finally, S = ¢ iff Vp € Xs. p = .

3.3 Expression of security rules

The specification language defined above can be viewed, at first glance, as a
rather classical linear temporal logic, with a single modality F, and mixing
state-based and event-based atomic predicates. However, our purpose is to use
it here to express security Tules to be satisfied by a network. In this particular
context its semantics should be interpreted as follows:

— The network behaviour is expressed by the LTS S: each state of S represents
the global state of the network at a given time (network configuration and
topology, transiting PDUs, etc.), and each label of S represents an observ-
able action performed at the network level (modification of the configura-
tion/topology, PDU reception, PDU emission, etc.).

— A condition literal p. expresses a (static) predicate on a network state, at the
security policy level. For instance externRelay(hl) holds on a state iff ma-
chine h1 is configured as an external mail relay in this state, or infected(m1)
holds on a state iff message m1 contains a virus.

— An event literal p. expresses a (dynamic) predicate on a network transition,
from a given state, at the security policy level. For instance enterNetwork(m)
holds iff the current transition corresponds to reception of mail m by the
network, and chkVirus(m) holds iff the current transition corresponds to a
virus check on mail m.

— The F operator is used here to express an obligation, meaning that a given
formula should eventually hold later, in a bounded future. For instance
enterNetwork(m) = FchkVirus(m) means that whenever mail m enters
the network then it should be checked.

As a matter of fact, it happens that all the formulas found in the case study
could be expressed using only a restricted subset of this language. In particular
formulas can be classified on three types, according to the following grammar:

p =G C—Rule| G F—Rule | G G—Rule
C-—Rule:=C=C|E=C
F—Rule := F = FFE
G-Rule::=C=G-EF|FE=G-E
A C—Rule expresses a static conditional implication, an F—Rule expresses

a (triggered) obligation and a G—Rule expresses that, when a given condition
holds or when a given event happens, then a particular event is always prohibited.

4 Test Generation

In this section, we propose a “tile-based” approach to generate abstract test
cases from a formula expressing a security rule. The test generation principle
is the following: assuming that elementary test cases (i.e., tiles) ¢; are provided
for each (condition and event) literals appearing in a formula ¢, the test case
t associated to ¢ is obtained by combining test cases t; with “test operators”
(defined below), corresponding to the logical operators appearing in . This
allows defining a structural correspondence between formulas and test cases.

4.1 Test cases and test execution

We can define the notion of test case as a BLTS extended with two special
actions (to deal with timers), and three special states (called wverdicts): action
timerset means a timer initialization to a given value, and action timeout means
the timer expiration; verdict states are “sink states”, indicating the end of a
successful (pass), unsuccessful (fail) or inconclusive (inconc) test execution. We
denote by A’ the set AU{ timeout, timerset}, and by V the set {pass, fail, inconc}.
We denote by X5 (resp. Dl yinconc) the set of execution sequences, starting
from the initial state and ending in the state pass (resp. fail, inconc). A test
case t is then a BLTS t = (X, Q, A", T,¢°, V), with V C Q.

A test case is supposed to be executed by a tester against a network whose
behaviour can be modelled by an LTS I = (Qf, AT, T?) (we do not take care of
the initial state of the network). Usually, in “black-box” conformance testing,
this behaviour is observed/controlled by the tester only through a restricted
interface. For the sake of simplicity we assume here that any output action (resp.
input action) performed by the network can be observed (resp. controlled) by
the tester. Thus, execution of a test ¢t on an IUT I, noted Exec(t,I), is simply
expressed as a set of common execution sequences of S; and I, defined by a
composition operator ®: let p; = qé =, q{ 22, qé Ln, q£ € Xr and
ps, = ¢ == qf g = g, € s, then

ps, ® pr = (¢"", qf) = (¢t,qf) -+ = (qh. ¢}) € Exec(t,).

For p € Exec(t, I), we define the verdict function: VExec(p) = pass (resp.
Jail, inconc) iff there is pg, € L (resp L&, £12¢0n¢) and p; € X7 such that
ps, @ pr = p.

4.2 Test generation functions

Let ¢ be a formula, let p., p. its literals, and ¢,,, tpi their corresponding elemen-
tary test cases. Note that an elementary test case is reduced to a simple verdict
state when it corresponds to a literal that can be immediately checked on the
network behaviour (without requiring any interaction sequence with a tester).
The test generation function gentest(y) is inductively defined on the syntax of
the formula, where X; denotes either a condition C' or an event E:

gentest(X; = Co
gentest(FE = FEs
gentest(X; = G—F»
gentest 1X(pL A -+ A p”

entest_1X(X7) >i,.¢ gentest 1C(Cs)
entest 1X(F1) >, 7 gentest 1F(FEs)
nv(gentest 1X (X1) o1,r gentest_rF(Es))
(((tpr >ux tp2) Bux - -+) >ux tpn)

&
&
I

~— N ' ' ~— ~—
Il

gentest_1X(pe[C]) = te >ux gentest1X(C)

gentest tC(pt A -+ Aplt) = (((tpr >rrc tp2) Brrc - -+) Brrc tpn)
gentest_rC(pe[C]) = te >rrc gentest_rC(C)
gentest rF(p.[C]) = te >y gentest rC(C)

Test operators >.r, >1F, >wc, Durc, >ux and Inv are defined below.

4.3 Test operators

In the following we assume that t; = (Xp,, Q1, A1, T1,qY, {passy, fail, inconcy })
and to = (Xy,, Q2, Az, Tb, q9, { pass,, faily, inconcy }) are two test cases. For each
binary test operator > we define the test case t = (X3, Q, 4,T,¢", V) such that
t =11 >ty and V = {pass, fail, inconc}. For each operator, a graphical presen-
tation is proposed on figure 2 and we give hereafter the formal definition of only
three operators, the three others being given in annex.

Operator >yx (t = t1 ux t2). This operator is used to combine two test
cases appearing on the left-hand side of an implication. Therefore, ¢ pass iff t;
and ty does, and t is inconclusive otherwise (the entire formula cannot be tested).
More formally:

Xy = Xb1 U Xb2,

(@\ V1)U (@Q2\V2) UV,

= A UA,,

— 40

q17
= Ti\{(p,a,9) | g € Vi} UT2 \{(p,a,q) | g € V2}
U{(p.a,49) | (p,a,pass1) € T} U {(p, a,pass) | (p, a, passy) € To}
U {(p, a, inconce) | (p,a,q) € T1 A q € {inconcy, faili }}
U {(p, a, inconce) | (p,a,q) € Ta A q € {inconcs, faila}} ()

N O

Operator >1.c (t = t1 >irc t2). This operator is used to combine a left-hand
side (¢1) and a right-hand side (t2) of an implication for a C—Rule. Therefore
t can be expressed by a sequential execution of ¢; and 5, and it pass iff ¢; and
ty does, it fails when ¢; pass and ¢y fails (implication), and it is inconclusive
otherwise. Formal definition of test ¢ is then simply obtained by replacing the
line (@) of the previous definition (operator >yx) by the following one:

{(p, a, inconc) | (p, a,inconcs) € To} U{(p, a, fail) | (p, a, faily) € Ta}

10

ty Dux t2 1 Drc bz t1 Prc t2
F
tlpass:=False
tlpass:=True
P [
| P | F P 1

F |
[t1pass] [~ tlpass]
P

by D b2

i i :=Fal
timerset, tinconc:=False t1 D ta timerset, t2inconc:=False

[tinconc] tinconc]

[t2inconc]
timeout

[t2inconc]
timeout
|

inconc:=True .
t2inconc:=True

Fig. 2. Test operators

Operator >y.¢c (t = t1 >rrc t2). This operator is used to combine two test
cases appearing on the right-hand side of a an implication, for a C—Rule. There-
fore t pass when t1 and to does, t fails when t; or to fails, and it is inconclusive
otherwise. Thus, ¢ can be obtained by executing ¢; first, followed by to (when t;
does not fail). A Boolean variable t1pass is used to store the verdict of ¢;. The
formal definition is given in annex.

Operator >r (t = t1 Dir t2). This operator is used to combine a left-
hand side (¢1) and a right-hand side (t2) of an implication for an F—Rule. Tt
is therefore similar to the >, operator, excepted that, due to the F temporal
modality, ¢ pass iff t; pass and to pass at some point later in the future (remem-
ber that the right-hand side of an F—Rule is necessarily an event). t is then
obtained by executing ¢; first, and then repeatedly executing to until either it
passes or a given timeout is reached (to ensure that the test execution remains
finite). A Boolean variable t2inconc is used to keep track of an occurrence of
an inconclusive verdict of t5 (during its repeated execution), hence leading to an
inconclusive verdict of t. More formally:

Xy = Xp, U Xy, U{t2inconc},

Q@ =(@1\V1)U(@Q2\V2) UV U{q},

A =AU A,

11

T = Ti\{(p,a,q) | g€ Vi} UTx \ {(p,a,q) | g € V2}

qo, (timerset, tinconc := False), ¢?)}

a, inconc) | (p,a,q) € Ty A q € {inconcy, fail,}}

a, CI2) | (p,a,pass,) € Th}

a,qd) | (p,a, faily) € To}} U {(p,a, pass) | (p,a, passy) € T}

D, (a t2inconc := True),q3) | (p,a, inconcy) € To}

q9, (=t2inconc, timeout), fail)} U {(¢3, (t2inconc, timeout), inconc)}

cCccccc
<3

{(
{(p,
{(p,
{(p,
{(
{(

Operator >y (t = t1 >ir t2). This operator is used to combine two test
cases appearing on the right-hand side of an implication for an F—Rule, where
t1 tests the occurrence of an event literal p. and t a (static) condition C' (possibly
restricting p.). Therefore, ¢ pass iff both the expected event occurs at some point
(t1 pass) and condition C holds on the same time. ¢ is then obtained by repeating
t; followed by t until both pass. Here again, a timeout ensures that execution
of t always remains finite, and a Boolean variable tinconc is used to keep track
of an inconclusive verdict of ¢; or t5. The formal definition is given in annex.

Operator Inv (t = Inv(t1)). This operator simply “reverts” the pass and
fail verdicts produced by a test case. The formal definition is given in annex.

4.4 Soundness of the test generation function

It now remains to establish that an abstract test case produced by function
gentest(y) is always sound, i.e., it delivers a fail verdict when executed on a
network behaviour I only if formula ¢ does not hold on I.

Two hypotheses are required in order to prove this soundness property:

H1. First, for any formula ¢, we assume that each elementary test case t; pro-
vided for the (event or condition) literals p; appearing in ¢ is strongly sound
in the following sense:

Vp € Exec(t;, I) - VExec(p) = Pass = p = p; A (VExec(p) = Fail = p {~= p;).

H2. Second, we assume that the whole execution of a (provided or generated)
test case t associated to a condition C' is stable with respect to condition
literals: the valuation of these literal does not change during the test ex-
ecution. This simply means that the network configuration is supposed to
remain stable when a condition is tested. Formally:

Vp; € P..Vp € X1 ps, ® p € Exec(t,I) = (0 C fo(pi) Vo N fe(pi) = 0)
where o” denotes here tacitly a set of states instead of a sequence.

We now formulate the soundness property:
Proposition: Let ¢ a formula, I an LTS and ¢ = gentest(y). Then:
p € Exec(t, I) A VExec(p) = fail = I |~ ¢.

The proof of this proposition relies on the following lemma:

Lemma 1. Test cases generated by auxiliary function gentest 1X are strongly
sound, and test cases generated by auxiliary functions gentest_rC and gentest_rF
are sound.

12

Proof sketch of Lemma 1. Let t a test case generated by function gentest_1X.
The proof that ¢ is strongly sound is performed by recurrence on the number of
elementary tests cases t; appearing in ¢ (assuming that each ¢; itself is strongly
sound according to hypothesis H1). A similar proof can be done for functions
gentest_rC and gentest_rF.

Proof of Proposition. By structural induction on the formulas ¢ (we only detail
here some representative induction steps).

— ¢ = C1 = (5. By definition of function gentest there exists test cases t; and
to such that t; = gentest 1X(C1), to = gentest_rC(C2), and t = t1 > to. Let
p be an execution sequence of Exec(t, I') such that VExec(p) = fail. Then, by
definition of operator >.¢, there exist p; and po such that: p = p1.p2, p1 €
Exec(t1,I), p2 € Exec(te, I), VExec(p1) = pass; and VExec(p2) = fail,.
Therefore, by Lemma 1, p; = C1, hence ¢”(1) = C; and similarly ps = Co
and o”(|p1]) ¥ Cs2. By hypothesis H2 we obtain ¢”(1) & C2 and then
o (1) I .

— ¢ = E; = FEs. By definition of function gentest there exist test cases t; and
to such that ¢; = gentest 1X(FE7), to = gentest rF(FEs), and t = t1 >ypte. Let
p be an execution sequence of Exec(t, I) such that VExec(p) = fail. Then,
by definition of operator >,x, there exist p1, po such that: p = go ~% g3 25
pass, (22 faily)* 25 2 22 fail, with ag = (timerset, t2inconc := False),
ay = t2inconc := False, and ay = (timeout, ~t2inconc). Moreover, p; €
Exec(t1,I) and ps € Exec(ts,). Therefore, by Lemma 1, 0”(1) = E; and,
for all 4 in [|p1], |p|], 0”(i) & Ea. We can then conclude that o (1) & (E1 =
FE,).

5 Case study application

This section shows how the approach presented above can be applied to generate
concrete tests for some examples from the case study of section 2.1.

5.1 C—Rule

Consider the requirement “FEzxternal relays shall be in the DMZ” which can be
modelled by the C—Rule:

externRelay(h) = inDMZ(h)

The goal of the test is to verify that each external relay is in the DMZ.
As noted in section 4.2, an elementary test case is reduced to a simple verdict
state when it corresponds to a literal that can be checked without requiring an
interaction sequence. Such a case arises when the value can be checked by an
analysis of the configuration of devices in the network and/or administrators’
databases. For example, if the value of externRelay(h) is true, that means that

13

h is defined as an external relay in the administrators’ database and/or by the
configuration of the network. This is known and trusted, not to be tested.

On the other side, the value is unsure if one has no knowledge about the
fact that h is an external relay from the analysis of configurations, or if these
data are untrusted. In this case the behaviour of the network should be tested
to decide whether h acts as an external relay.

The following table shows the different formulas that may be built depending
on which literals can be immediately asserted:

externRelay(h)=true|... = false .. unsure
inDMZ(h)=true tpass tincone teaternRelay(h) P>1rC tpass
1nDMZ(h):false tfail Lincone texternRelay(h) >1rC tfail
inDMZ(h) unsure| tpass >1rC tinpmz(n) | tinconc |testernRelay(h) >1rC tinDMz(h)

If both values of externRelay(h) and inDMZ(h) are known and trusted, there
is nothing to test. Also, no test is needed if externRelay(h) is false, as we cannot
put the system in the desired state, and the verdict is inconc. If the value of
inDMZ(h) (resp. externRelay(h)) is unsure, then it should be tested whether h
behave like a host in the DMZ (resp. an external relay). These tests are then
composed as described in section 4 into the formula ¢ czternretay (h) >1eC tinDyz (1)
as illustrated in figure 3.

l

Iconnegt(he,h)
[exterior(he)
and intgrior(h)]

Iconnegt(he,h)

[exterfor(he) N 5

and interior(h)] 7Pk ook

% ONK

Fail

!transfer&he h,m)

% 7&€k

Fail
”transfe}(h hi,m)

Pass

Tile for literal
externRelay(h)

Do

Rass

?slnd

Ingonc

!traceri\(hd.h)

[not inDMZ(hx)]
o .
[\n%'))]%

Fail

Tile for literal
inDMZ(h)

Ingonc

Hransfer{(he‘h m)

% 7n\o\0\k

Ingonc

?transfe}(h‘hi,m)

Vlraceit(hd,h)

[not inDMZ(hx)]
Pass
?)rij) xq{\
[inDMZ(hx')] °
Fail
"%nd

Ingonc

Fig. 3. Composition for example of C—Rule

14

5.2 F—Rule

Consider the requirement “If an electronic mail is infected by a virus, the virus
shall be deleted from the mail”. It can be modelled by the F—Rule rule:

enterNetwork(m)[infected(m)] =
F transfer(hi, ha, m)[interior(ha) A —infected(m)]

The goal of this test is to verify that if a mail infected by a virus is sent to a
user in the network, eventually one of the hosts the mail is passing through will
suppress the virus, before a certain time elapses.

As always in our approach, a choice is made concerning which predicates are
sure or unsure. The formula ¢ = (tenterNetwork(m) >ux tpass) Pk (ttransfer(hl,hg,m)
DuF (tpass i toinfected(m))) corresponds to the case when we build a test tile
with a parameter m made of an infected message. This is the case because we
choose to actively test the conformity of this particular rule against infected
messages. One could also use a “passive” mode, checking the infected(m) literal
in the left part of the formula on incoming messages.

i l [antiviius(h)] Itransfer({he,hi,m)
[exterior(he) and interior(hi)]
ey P | reenn By o | = 2
interipr(hi)] rF linterior(hi)] r‘rF ' mmmm InCONC
'(im%rsel
°;y/0k X\: ?TW:/OK% ?%k X{; ;W
Fali i

i
i Fail ?transfer(he1,he2,
Fail Rass Rass Fail Pass finteriof(he2)]

?a)

Tile for literal Tile for literal m«j}/
transfer(he,hi,m) not infected(m) [ankérifus(he2)]

'scan¢ez.m)

Tile for literal
enterNetwork(m)

o

Pass

Fig. 4. Composition for example of F—Rule

On the other hand the literal —infected(m) in the right part shall be tested.
The event predicate enterNetwork(m) and the static predicate —infected(m) are
tested by the tiles shown in figure 4. Using these tiles, the formula ¢ cp¢ernetwork (m)
D>uF (Lransfer(m) >rrF tﬁmfected(m)) gives the test on figure 4. The tinconc and
t2inconc variables have been suppressed since they cannot be true, and also the
corresponding transitions.

15

6 Perspectives

In this paper we have proposed a “tile-based” approach to derive test cases
from network security rules expressed using a restricted set of logical operators.
Complete test cases (dedicated to a whole formula) are obtained by combinations
of more elementary ones (the tiles), following a syntax driven approach (a test
combinator is associated to each logical operator of the formula). Elementary test
cases, allowing to test basic events or predicates appearing in the security policy,
have to be provided by the user (the way of testing such predicate depends on
the network architecture and protocols involved). Our test generation method is
based on the fact that security policies are most of the time expressed by rules
which can be captured by a restricted logic as the one we described in section 3.
At this point this work should be viewed essentially as a first step towards a
formal approach to (automatically) test the compliance of a network with a
given security policy. Therefore it should be extended into several directions.

First of all, the test cases produced are still very abstract. Turning them into
executable test cases needs to take into consideration a concrete test architecture.
Assuming that each elementary test case complies with this architecture, it would
remain to ensure that it is also the case for the complete test case (or alternatively
to take this architecture into account during the combination process). Moreover,
these abstract test cases also need to be instantiated with concrete data (e.g.
by selecting particular machines of the network). Suitable selection strategies
should therefore be investigated (for instance a test could focus on the more
recent changes in a network configuration, as in regression testing).

Furthermore, the proposed generation technique itself could be improved. In
particular, the test case currently produced to test a condition (i.e., a disjunc-
tion of static predicates) consists in executing each corresponding elementary
test case in sequence (according to the definition of our test combinators). An
alternative way would have been to consider the parallel execution of such test
cases (when it is compatible with the test architecture).

Another improvement could be to extend the formalism we considered to
specify the security rules. This initial choice was motivated by our case study,
and it was sufficient to demonstrate the effectiveness of the approach. However, it
is clear that this formalism may be not sufficient to deal with arbitrary security
rules, and that more specific operator/modalities need to be considered. One
can think for instance of a triggered obligation bounded by an event (and not
by an arbitrary timeout), or of some of the general operators proposed in the
NowMmAD logic [3]. Further work remains to be done in order to check which of
these operators could be supported by our tile-based approach.

Finally, we also intend to evaluate this work on other case studies, and to
prototype it on a real network.

References

1. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin. Organization Based Access

16

10.

11.

12.

13.

7

Control. In IEEFE 4th International Workshop on Policies for Distributed Systems
and Networks, 2003.

S. Benferhat, R. E. Baida, and F. Cuppens. A Stratification-Based Approach for
Handling Conflicts in Access Control. In 8th ACM Symposium on Access Control
Models and Technologies, 2003.

F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A security model with
non atomic actions and deadlines. In 18th IEEE Computer Security Foundations
Workshop, (CSFW-18 2005), pages 186-196, Aix-en-Provence, France, 2005.

F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege. A formal approach
to specify and deploy a network security policy. In Second Workshop on Formal
Aspects in Security and Trust (FAST), 2004.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In International Workshop on Policies for Distributed Systems and
Networks, 2001.

V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier. Eléments
de modélisation pour le test de politiques de sécurité. In Colloque sur les RIsques
et la Sécurité d’Internet et des Systemes, CRiSIS, Bourges, France, 2005.

V. Darmaillacq and N. Stouls. Développement formel d’un moniteur détectant
les violations de politiques de sécurité de réseaux. In AFADL2006 - Approches
Formelles dans I’Assistance au Développement de Logiciels, March 2006. To appear.
ITU. Framework on formal methods in conformance testing. ITU-T Recommen-
dation Z.500, ITU, 1997.

J. Lobo, R. Bhatia, and S. Naqvi. A Policy Description Language. In AAAI’99,
1999.

J.-C. Meyer, F. Dignum, and R. Wieringa. The Paradoxes of Deontic Logic Revis-
ited: A Computer Science Perspective. Technical Report UU-CS-1994-38, Utrecht
University, 1994.

D. Senn, D. Basin, and G. Caronni. Firewall Conformance Testing. In TestCom
2005, 17th IFIP TC6/WG6.1 International Conference on Testing of Communi-
cating Systems, Montréal, LNCS 3502, June 2005.

A. Virmani, J. Lobo, and M. Kohli. Netmon: Network Management for the SARAS
Softswitch. In IEEE/IFIP Network Operations and Management Symposium, 2000.
G. H. von Wright. Deontic Logic. Mind, 60:1-15, 1951.

Annex

Formal definition of >..c

b

N O X

= X3, UXp, U{tlpass},

@1\ V1)U (Q2\ Vo) UV,
= A1 UA,,
0

Q17
= Ti\{(p,a,q) | € Vi} UT2 \ {(p,a,q) | g € V2}
U {(pvaafail) ‘ (pva7faill) € Tl} U {(paavfail) | (p7a7fai12) € TQ}
U {(p, (a, t1pass := False),q)) | (p,a, inconcy) € Ty}
U {(p, (a, t1pass := True),q)) | (p,a, pass,) € T1}
U {(p, a, inconc) | (p, a, inconcs) € To}
U {(p, (t1pass,a), pass) | (p,a, pass,) € To}
(p, (

U {(p, (—tlpass,a), inconc) | (p, a, passs) € To}

17

Formal definition of >,p

SO

= Xb1 UXb2,

(Q1\ V1) U(Q2\ V2) UV U{qo},

= Al UA27

Ti\{(p,a,q) | ¢ € Vi} UT2 \{(p,a,q) | ¢ € Va}
U {(qo, (timerset, tinconc := False), q})}
U{(p,a,43) | (p.a,pass,) € Ti} U {(p.a,q)) | (p, a, fail,) € T1}
(p, (a, tinconc := True)), ¢?) | (p, a, inconcy) € Ty}
U {(p, (a, tinconc := True)),q?) | (p, a, inconcs) € To}}
(p,a,qY) | (p,a, faily) € To}} U {(p,a, pass) | (p,a, passy) € T}
U {(q?, (—tinconc, timeout), fail)} U {(¢?, (tinconc, timeout), inconc)}

Formal definition of Inv

T

= {(p, a, inconc) | (p, a, inconcy) € T1 }

U {(paavpass) | (pvawfail) € Tl} U {(paavfad) | (pvavpass) € Tl}

18

