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Abstract. This paper deals with a study and a mathematical model of concurrent
Points of Control and Observation (PCOs) realized in Testing and Test Control
Notation version 3 (TTCN-3). We study test scenarios that are gaining impor-
tance as TTCN-3 is emerging as a notation suitable for conducting load tests too.
We investigate communication between parallel test components (PTCs) and ana-
lyze race conditions between the queues underlying the implemented PCOs. This
way, we build an analytic model to investigate behavior of PCOs under stress
conditions and to assess possible latencies messages in a TTCN-3 based load test
system might suffer. We present a discrete-time Quasi Birth-Death process to pre-
dict performance indices of test components and we propose to use the results to
avoid indefinite postponement in the communication of PTCs. Also, we aim to
use the model for calculating traffic intensity limits under which it is feasible to
use TTCN-3 for load testing. Furthermore, we present the output of the model
together with an example load test scenario that is vulnerable to that types of
latencies.

1 Introduction

The subject of our investigation is the standardized test specification language the Test-
ing and Test control Notation version 3 (TTCN-3) [1]. TTCN-3 is widely used in dif-
ferent areas of testing including different fields of telecom and datacom and is gaining
acceptance even in automotive systems testing. The language itself has a variety of
applications including testing various systems for interoperability, robustness and con-
formance.

Recently, there has been a sore need to assess the capabilities of TTCN-3 as a test-
ing solution not only for conformance and interoperability testing but for performance
evaluation of telecommunication systems as well. Since TTCN-3 is a rather high level
specification language, concerns have arisen regarding its applicability in load tests that
require a significant amount of processing power, e.g. a high number of packets per
second generated. On the other hand, tests and numerous pioneer projects show us that



the language is capable of working at the edges of what the underlying hardware is ca-
pable of. Besides, emerging real-time extensions to the original notation also exist [2],
[3], [4]- So, usage of TTCN-3 in load tests should not imply a bottleneck if tests are
designed carefully.

Our work examines the event processing capabilities of test components that ex-
change messages via communication ports competing with each other for system re-
sources. By analyzing race conditions between the queues underlying the implemented
PCOs, we build an analytic model to investigate behavior of PCOs under stress con-
ditions and to assess possible latencies messages in a TTCN-3 based load test system
might suffer. A discrete-time Quasi Birth-Death process is presented to predict per-
formance indices of test components. We aim to use the model for predicting traffic
intensity limits under which it is feasible to use TTCN-3 for load testing purposes. The
remainder of this paper is organized as follows.

In Section 2, we introduce briefly a few basic issues in TTCN-3, the operation of
Points of Control and Observation (PCOs), and in Section 3, we present the mathe-
matical formalism used in this paper. Section 4 presents a parametrical model of test
components using multiple PCOs. In Section 5, analytic results of the model for an ex-
ample test component are detailed, together with an ns-2 [5] simulation that was used
mainly for validating and fine tuning of the model. Finally, in Section 6, concluding
remarks are given and future work is detailed.

2 Concurrent PCOsand Alternative Behavior in TTCN-3

This section outlines the basic structures in TTCN-3 we aim to model, together with
examples of load test scenarios that might be vulnerable to certain types of latencies
during execution. Moreover, we point out the performance indices we evaluate to pre-
dict the behavior of TTCN-3 test components.

In TTCN-3, configuration of the test system can be set dynamically. This means that
a configuration may consist of several components participating in the test [6], either
as a component that communicates directly with the System Under Test (SUT), or as a
component having only registration or internal purposes, meaning that it communicates
only with parts of the test system itself. Within every configuration there is only one
designated component, the Main Test Component (MTC) that is created automatically.
Other components can be created dynamically and are called Parallel Test Components
(PTCs). PTCs do not have any hierarchical order among them. PTCs communicate with
each other, and with the MTC also, via test ports. Similarly, communication towards the
SUT is established via test ports too, as in Figure 1.

Each test port that connects either two test components (internal port) or a test
component and the interface towards the SUT is modeled as a FIFO queue for the in-
coming/outgoing messages. Each component can access messages in its correspondent
gueue one by one. Properties of the FIFO queues assigned to a test port are dependent
on the actual implementation of the TTCN-3 compiler. The queues can be infinite in
principle, as long as the system memory lasts, but might overflow indeed. More im-
portantly, in a load test system response time must be considerably short. This means
that it is inexpedient to implement a virtually infinite buffer for a PCO and forget about
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Fig. 1. Test Components and Test Ports

message loss at all. Although a sufficiently long buffer might eliminate message loss,
response time increases significantly at the same time. Accordingly, we investigate mes-
sage loss in relatively short queues.

The actual behavior of a test case is defined by dynamic behavioral statements in a
test component that communicates over certain test ports. Usually, sequences of state-
ments can be expressed as a tree of execution paths, that is alternatives. In TTCN-3, the
alt statement is used to handle events possible in a particular state of the test compo-
nent. These events include reception of messages, timer events and termination of other
PTCs.

The alt statement uses a so-called snapshot logic [7]. This means, that before eval-
uating the actual alternatives in the alt a snapshot of the test component containing
any information that is relevant (e.g. status of the test ports involved in the alt, running
timers) is taken. Branches of the alt might have a Boolean guard expression assigned
to them that is evaluated before the branch is examined. The guard expression might be
based on the snapshot as well.

Different types of branches exist in an alt statement (e.g. timeout, receive). Each
time a receiving branch is found during execution a matching operation is done first.
In case the incoming message, that is first in the corresponding PCO’s FIFO, matches
the criteria the alt branch will be executed and the message will be removed from the
top of the queue. Otherwise, the execution continues and the next branch will be exam-
ined. However, execution does not stop after a snapshot was taken, so the state of the
test component and the queues assigned to it might change in between. However, these
events do not change the actual snapshot, until the alt statement is not executed again.

So, generally the two most significant factors we consider, while evaluating the
performance of a test component are the matching mechanism and the queuing at the
test ports. See for example the following scenario (Figure 2).
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Fig. 2. Load Testing Example Scenario

In this simple example we have two load test components that connect to the SUT
via two different PCOs and handle the actual protocol behavior. One test component is
receiving commands from the user via a user interface (Ul). Besides, this component
can supply the user with additional data regarding the test case execution by querying
the load test components periodically. Let us say that in this setup LoadTest Comp.1
stimulates the SUT, which is for example an ATM switching center, and due to this
stimulation the SUT forwards a high number of calls towards LoadTest Comp.2. In this
case, LoadTest Comp.2 should be able to handle and examine a very high amount of
calls per second coming from the switch. The actual race condition results from the dif-
ferent functionalities of LoadTest Comp.2. Firstly, it receives a high amount of incom-
ing calls from the SUT and secondly it must answer status request messages, coming
from Ul. Comp. on an internal port periodically. Although, status messages might be
relatively infrequent compared to the messages participating in the load test, they also
need to be handled by LoadTest Comp.2. most probably in the same alt structure. This
setup leads to a race condition between the two separate FIFO queues assigned to the
two test ports of the component. Namely, in the test component branches of the alt re-
ferring to the PCO towards the SUT receive significantly more hits in a unit of time than
branches referring to the internal port do, this way increasing the risk of an indefinite
postponement of the status messages.

In our modeling approach, we build an analytic model of test components that use
alternatives to handle internal messages and messages coming from the SUT. We de-
scribe concurrent queues underlying the test ports of a component with a stochastic
process and calculate the steady-state solution. After solving the analytical model, we
predict the probability that one of the queues contain a message that is postponed indefi-
nitely, because of the fact that race conditions arise between the queues. The probability
of an indefinite postponement is calculated as a function of arrival intensities at the cor-



responding queues and of other parameters relevant to the implementation of the actual
test component.

3 Discrete-time Quas Birth-Death Processes

Our method uses a mathematical model that can be evaluated and performance indices
of the described components can be derived by existing solver techniques. The math-
ematical formalism behind our evaluation method can be identified as discrete-time
Quasi Birth-Death processes (QBDs) [8]. A simpler M/G/n type solution would not al-
low us to use finite queues and to calculate state distributions [9].

The mathematical analysis in turn, is based on matrix-geometric solution techniques
and matrix analytic methods [10]. In order to become acquainted with QBD processes
let us consider processes N (t) and J(t), where { N(t), J(t) } is a DTMC (Discrete-
Time Markov Chain). The two processes have the following meaning: N () is the level
process and J(¢) is the phase process. { N(t), J(¢) } is a QBD if the transitions between
levels are restricted to one level up or down, or inside the actual level. The structure of
the transition probability matrix P of a simple QBD is the following:

A A 0 0
Ay A A O
P—| 0 AA A0 ()
0 Ay Ay Ay

Matrix Aq describes the arrivals (transitions one level up), matrix A; describes
transitions inside each level and matrix A, describes departures (transitions one level
down). Matrix A3 is an irregular transition matrix at level 0. The row sum of P is equal
to 1 (discrete-time model). The tangible meaning of levels and phases can be seen in
Figure 3.

Fig. 3. Logical representation of a QBD process

The two-dimensional property of a QBD is utilized by our method significantly. On
one hand, we map the sequential branch examination and matching mechanisms of the
alt structures in a given test case we model, into the internal phases inside each level of



the QBD. On the other hand, we use the levels to describe queuing at the test port.

After the system’s behavior is described by the QBD model, with the aid of matrix
analytic methods the following properties of the model can be calculated: steady state
solution, queue length in steady state, phase distribution, mean value of time to tran-
sition back to level zero (meaning that the buffer is empty). As a result, a variety of
performance indices can be derived from the QBD model, such as packet loss ratios,
delays, and available throughput under stress conditions.

4 A QBD Mode for PCOs

For the performance evaluation of PTCs that use alternatives to handle messages we
build the following novel QBD model. For the sake of simplicity consider a test com-
ponent using two test ports, each of them with a separate FIFO queue (e.g. in Section
2). The model will macroscopically look like a simple QBD that is infinite in one di-
mension similar to the example in Figure 3. So, in the first dimension the model is an
infinite QBD. This dimension represents the PCO that drives the system into a race con-
dition, call it PCOL. This might be the PCO serving a significant load coming inwards
from the SUT. But at a lower level another embedded QBD is to be found, representing
the PCO (call it PCO2) that is suppressed by the heavily loaded PCO1. Levels of the
QBD describe queue sizes in this case, accordingly the second dimension of the model
is in direct connection with the size of the queue assigned to PCO2. This dimension will
be finite with a parametrical size, in order to assure matrix-analytic solutions to work
[11], [12] and to allow the model to predict infinite postponement in the PCO, which is
underprivileged because of the race conditions between the concurrent PCOs (Figure 4).

Example 1 (Examplealt structure).

alt {

/*Group 1*/

[1 PCOL.receive(tenplatel) { Statenents... }

[1 PCOL.receive(tenplate2) { Statements... }

[1 PCOL.receive { // Trash unmatched nessages
repeat }

/*End of Group 1%/

/*Group 2%/

[1 PCX2.receive(tenplate3) { Statenments... }

[1] PCX2.receive(tenplate4) { Statenments... }

[1 PCX2.receive { /1 Trash unnatched nessages
repeat }

/*End of Group 2*/

}

The vertical dimension, that is the number of distinct groups of states in Figure 4 is
restricted by the size of the FIFO queue of PCO2, which can be set as a model param-
eter. Also, relatively short buffers are considered for the investigated PCO in order to
keep response time, that is crucial in a load test system, under a considerably low level.
If we look at this model as a simple QBD, transitions upwards and downwards are de-
scribed by matrices C and A respectively. Whereas, matrix B describes internal phase
transitions. Irregularities, denoted by *, occur at the first level, where there is no pos-
sibility of a transition downwards. Each group of phases (within ellipses) corresponds
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Fig. 4. Two dimensional model for two concurrent PCOs

to a group of alt branches that use the same PCO. Group to group (vertical) transitions
describe queuing and service of messages at PCO2. For example, see the excerpt in
Example 1.

In this example branches that refer to the same PCO are grouped together. Two
groups are formed that correspond to the separate groups of phases in Figure 4. In
effect, only branches of PCO2 are active in the first horizontal level of the model as
horizontal levels represent the queue of PCOL. Being at the first level means the buffer
of PCOL1 is empty, so in this case queueing at the FIFO queue of PCO2 is considered
only, in addition to the matching mechanism. Similarly, when the queue of PCO2 is
empty but PCO1 is active the model moves on the horizontal axis across the first groups
of phases representing queueing at the FIFO of PCO1 and the matching mechanism on
the correspondent group of branches. Of course, the other phases describe mixed states,
when both queues contain messages.

Description of the transitions are realized by matrices A, B, C, A*, B* and C* that
consist of several submatrices, for example matrix A and its irregular counterpart is
shown here (2).

AA 00 - Ao o
4; A1 Ao 0 A3 AT A 0
A=|0 A4 A0 A =] 0 A5A745 0 2




Submatrices Ay and Af describe a step forward (that is downwards vertically) in the
embedded QBD. This means, a new message has arrived into the queue of PCO2 (step
downwards) while a message has been served from the queue of PCO1 (one step left). In
a similar manner, matrices A;, A7, Al, Al, Al, and A* contain transition probabilities
confine to the case that there has been no new arrival on PCO2 (no vertical movement),
but exactly one message has undergone service from PCO1’s message queue (one step
left). Furthermore, matrices A, A3, A, and A* are all equal to the zero matrix, because
only one message can be under service by the TTCN 3 executor at a time, naturally the
meaning of a transition left and upwards at the same time would mean that. In Figure
5, transitions between group of states and the assigned matrices are depicted, restricted
to the case that a message is under service (A matrices only). Probabilities of the actual
phase (states of the embedded QBD) transitions are described by the specific elements
of the matrices.

[PCO1]
+

[PCO2]

Fig. 5. Possible transitions of the model while a message is under service in PCO1

Important cornerstones of the matrices that build up the generator matrix of the
model are the matching probabilities of branches the alt contains. Consider these val-
ues as predicted hit rate counters for each branch stored in vectors (p), one for each
PCO, e.g. in case of two PCOs we apply p’ for PCO1 and p” for PCO2. Naturally,
length of the alt structures (groups of different PCOs) is equal to the length of the hit
rate vectors and determines the size of the submatrices among others in Equation 2.
Elements of the vectors (e.g. p;) contain the probability that a message under service
does not match the template at branch number i. In this case, it is checked against the
template at the next branch.

A further important input parameter of the model is the time slot (T) needed for one
elementary action in the TTCN-3 executor, e.g. the average time needed for the exam-
ination of one alt branch, the average time in which a template matching operation is



finished. Samples of messages traversing the PCOs the test component needs to deal
with are taken in discrete T time intervals (DTMC).

Furthermore, we describe the arrival intensities of the PCOs involved with a \ as-
signed to each of them. X values are relative to the selected elementary T, e.g. A1 =
1000 and 7' = 10=% (1 psec) means that one message arrives approximately every
millisecond (\; - T = 10~3) on PCOL1. Accordingly, we use four different variables
to include arrival intensities into the model. Do denotes no arrival at a time slot. D1
and Dy, indicate that one message has arrived on PCO1 or on PCO2 respectively. The
meaning of Dy is that a message has arrived on both PCOs at the same time concur-
rently, but this is disallowed by the model, since the TTCN-3 executor handles only one
message at a time. This leads to the following scheme (3).

Doo=1— (A1 +X2)-T;Do1 = Ag-T; D19 = A1 - T; D11 = 0 3)

The transition submatrices are constructed using the D matrices and the matching
probability vectors until every state transition of the state space is covered. For the sake
of clarity we present only one submatrix as it is defined (4). Matrix;l\l has elements
only in the first column and only until the s th row, where s; is the number of branches
referring to PCOL1 (that is the size of p'). (Doo + Doy ) represents the probability that
either no message has arrived or exactly one arrival happened on PCO2.

_(1—]_),1)- (D00+D01) -+ 0

Ar= | (1 —']_?/51)' (Doo + Do1) -+ 0 4)

0 0
When the matrices are built up we then calculate the ratio of time spent at the nth
and n+1th level before returning to level n, in matrix R. R is calculated using a loga-
rithmic reduction algorithm described in [8]. The complete distribution of states in the

QBD model is then calculated using R (5).

Bl:£0'§§£2:£1'R§-~£n:£0'§n ®)

Where vector P; contains distribution of the phases at level i and it is not to be
confused with p’ or with p” that contain match probabilities, which are architectural
constants of the system. After the state distribution is available we can derive perfor-
mance indices of the system. In this case, we calculate the probability that a message
suffers indefinite postponement while in the buffer of PCO2, because PCO1 is under
a significantly heavier load. This means that we sum state probabilities at every (hori-
zontal) level, but only those at the vertically last group of states (subsets | and m). This
gives us the following equation, where matrix I is the identity matrix. Practically, we
need state distributions only at the first two levels and matrix R for the evaluation.

Pr(PCO2loss) = ZPoi + Z(Z Pjp) = Py, + Z(&m) -
i Jj=1 'k =1



=Py, + Z(le R =Py, + Py Z(Rk)
j=1 k=0
=P, +P, -L-R (6)

This way, after obtaining steady state distributions of the QBD process, we can
predict the probability that messages are postponed in the queue of the PCO that is in
lack of system resources because another PCO of the same test component used them
up. In the stochastic model this means that we have a new demand incoming in the
queue of that PCO that is already at the last level possible, so further messages cannot
be received or they will be lost. This analysis allows us to evaluate load test components
implemented differentially by setting the parameters of the model accordingly. Also,
analysis can be set up to examine a test component with different load requirements as
the arrival intensities are parametrical.

5 Mode Results

After the transition matrices are defined according to the architectural constants, the
matching probability vectors and the arrival intensities for each PCO, the model has
been built up. Together with the arrival intensities the elementary time slot T has to be
set also. Besides, one more important input parameter exists, the size of the queue at
the PCO we investigate for possible latencies.

Accordingly, considering the simple example in Section 4 we can get the following
results on the probability that a message suffers indefinite postponement in the queue
of a PCO. In this example the test component uses two separate PCOs. Say PCO1
is a load generator with considerably high amount of packets generated, while PCO2
handles lower priority operations, such as communicating with the user, or receiving
maintenance messages from the main test component. In the analytical model (Figure
6), message loss is calculated according to (6). Different sizes of queues underlying the
analyzed PCO are represented by each curve. In Figure 6 and in Table 1, the arrival in-
tensity in PCOL is considered to be constant, while the arrival rate in PCO2, that is the
port we investigate, is variable from 0 to 0.5. An arrival rate (- 7") of 0.5 means, in case
we have a T = 1 usecond, that approximately 500 messages arrive each millisecond to
PCO2.

Simulations in ns-2, that has been used for validating the model, show similar be-
havior. The simulated scenario consists of two PCOs implemented as FIFOs with vari-
able buffer length. Among others, each simulated PCO has a variable length delay loop
sequence to simulate the matching mechanism too. Table 1 shows simulated results
together with the model results for the same parameters. On one hand we use this sim-
ulation to develop the analytic model for more precise results, on the other hand an
analytic model is necessary to analyze more complex test scenarios with more than two
PCOs involved.
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Fig. 6. Model results for different PCO queue sizes

6 Conclusions

Generally, load testing is not an easy task, neither with TTCN-3, nor with any other test
environment [13], [14]. Tests that work somehow are not sufficient, but load tests must
also work well. Careful test design and test optimization is a must in these kinds of
tests, meaning that tests have to be designed to work efficiently on the execution plat-
form that accommodates them. Efficiently, that is e.g. with low CPU load, even using
stock hardware elements. To evaluate a load test component and to verify it meets the
identified requirements, the complete path traversed by the corresponding messages has

to be taken into consideration.
Our analytical model is designed to evaluate load testing TTCN-3 parallel test com-

Table 1. Message loss probability, model and simulation results

Arrival intensity (\)|Messages per second |Buffer size| Model result|Simulated value
0.08 80000 5 0.00831 0.01252
0.10 100000 4 0.04333 0.04333
0.11 110000 3 0.12333 0.59024
0.12 120000 4 0.06971 0.07333
0.14 140000 4 0.10102 0.14333
0.19 190000 5 0.12718 0.13333




ponents to satisfy user requirements using discrete-time QBDs. In order to be able to
design test components that simulate behavior of real nodes in a telecom test network
and that are even interchangeable with a real node in terms of performance, modeling
of the components performance is nearly inevitable.

This modeling approach makes it possible to evaluate existing test components and
also to give a feedback to designers of load test scenarios. Also, the model can aid dis-
tribution of load test traffic among the test components participating in test. The aim
of successful traffic mix composition is to simulate behavior of real nodes, or even to
produce an equivalent counterpart of the real node in TTCN-3.

Our future work on this topic includes extending the model to be capable of de-
scribing PTCs containing more than two concurrent PCOs at a time. Besides, further
simulations and measurements of real components are ongoing and observations are
gathered to improve our model beyond the current level.
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