Application of Two Test Generation Tools
to an Industrial Case Study

Ana Cavalli!, Stéphane Maag!, Wissam Mallouli', Mikael Marche?, and
Yves-Marie Quemener?

! Institut National des Télécommunications GET-INT
Evry, France
{wissam.mallouli,ana.cavalli,stephane.maag}@int-evry.fr
2 France Télécom R&D Division
Lannion, France
{mikael .marche, yvesmarie. quemener}@francetelecom. com

Abstract. Many tools for test generation already exist and are used in
industry; others are under development or improvement to allow faster
generation and more effective tests. Comparing testing tools permits to
acquire in-depth knowledge of the characteristics of each tool and to
discover its strong points and limitations. Thus, the analysis of different
automatic test generation tools provides a precise idea on the appropriate
tool to be used to attain the expected results. This paper describes the
application of two test generation tools to an industrial case study: a
reverse directory telephone service similar to deployed services of this
category developed by France Telecom. The tools used, for the automatic
test generation, are a commercial tool TestComposer and SIRIUS, a tool
developed by INT team. France Telecom R&D division provided the test
campaign designed manually by a France Telecom service expert used
to define the test objectives. The goal of this paper is to present the
experimental results of tools application, to compare their performances
and analyze some issues related to test execution.

Keywords: Case study, telephonic service, extended finite state ma-
chine, conformance testing, service testing, automatic test generation,
formal specification, test generation tools.

1 Introduction

In the telecommunication field, the complexity and the variety of the imple-
mented systems, as well as the high degree of reliability required for their global
functioning, justify the care provided to the design of the best possible tests.
Moreover, it is significant to automate these steps with an aim of reducing the
time and the development cost and especially of increasing the reliability of the
offered products. Manual tests are expensive in terms of time, and are less re-
liable. Thus methods of automatic test generation are proposed. The tools for
test generation are varied and closely related to the language (formal or not)
in which the system, protocol or service specification is written. Nevertheless,

even if automatic test generation [5,12] is seen as one of the most profitable
application of formal methods, there are still very few commercial tools capable
of automatically generating tests from a formal description and to execute them
on the real system. The main reason for this is the difficulty of incorporating
algorithms, to the methods, sufficiently powerful to make them scalable, i.e.,
applicable to real systems.

Our contribution: In this paper we present an industrial experience that con-
sists of the application of two test generation tools to an industrial case study,
a reverse directory service proposed by France Telecom, to perform test experi-
ments and to compare their performances. One of the tools is a commercial one,
TestComposer, while the other, SIRIUS, is a prototype developed in an academic
environment. Both tools automatically generate test sequences from test objec-
tives. These latter have been selected taking into account the testing campaign
designed by a service expert of France Telecom. The comparison between these
tools can help us to take a faster choice when modeling a system to validate it.
It is indeed important for the validation phase to know as soon as possible which
tool will be used. This comparison can be based on several criteria according to
the technical resources we have. Among these criteria we can quote: test gen-
eration time, length of test sequences, complexity of the objectives, etc. Other
aspects are also treated to clarify the strong points and the limits of each tool.

Different types of tests exist to ensure the reliability of a tested product.
The tests presented in this paper are conformance tests [4,2], which consists of
testing that an implementation conforms its specification. It must be noted that
at the beginning standardization activities related to conformance concerned the
strict field of communication protocols. Later many researchers proposed [8] the
extension of the applicability of conformance testing methods and its techniques
to cover all the fields where it is possible to specify a system interface or an
operation in a formalism close to that used for protocols (automata, process
algebra, etc.). As this was the case for services specification, it was proposed to
apply these methods to services, in particular, to those provided to a network
user. However, this extension has several consequences on the test generation: it
is necessary to redefine the test methodology according to the characteristics of
the services to be tested; it is necessary to extend the capacity of expression of
the test description languages; it is necessary to define strategies for test selection
adapted to the various types of systems. The test of a transport protocol OSI is
not performed in the same way as a telephone service (i.e. we do not seek the
same errors). In this paper, we propose to apply and compare methods used for
protocol conformance testing to the test of services.

The rest of the paper is organized as follows. Section 2 gives an outline of
the test methodology and test assumptions. In Section 3 the tools applied to
the case study are presented. Section 4 presents the reverse directory service
specification, the test objectives to be checked on the service and provides an
outline of the test generation methods used by each tool. Section 5 presents the
results and compares the performance of each tool. Finally, Section 6 concludes
the paper.

2 Basics

2.1 Service definition

Before introducing our test methodology for services, it is necessary to provide
the service definition, the concept of service in telecommunication being indeed
very important. However, there is no unique definition of a service. In this paper,
we used the definition that considers a service as a product offered by an operator
to a customer in order to satisfy his needs.

2.2 Testing methodology

The service conformance test methodology is based on the one presented in the
standard ISO9646 [2] and it is divided into four aspects:

1. The definition of test architecture: in general, services are hosted on servers
where direct access is difficult for the tester. The service access is done by
users and consequently, the points of control and observation (PCO) are
placed on the user side in order to initialize the transactions, to inject the
events (valid, inappropriate or invalid) and to recover the results. Points
of observation (PO) can be attached to certain strategic points to observe
that data are well transcribed during the transfer between the various enti-
ties (customer, server, Proxy, gateway...). Vocal services such as the reverse
directory studied here add a difficulty to test execution: the interaction is
made over the phone network, either by DTMF? (phone keys) or by voice
which are difficult to handle automatically (see Section 5.6).

2. The description of service behavior using a formal specification language.
The description shows the behavior of the service by taking in consideration
the test architecture and includes the actions of the various entities that
intervene in the correct operation of the service. The formal specification
languages used for the description of the reverse directory service are SDL
[6] and TF* .

3. The characterization of the tests to be carried out and the test generation.
It consists of a selection of tests according to certain preset criteria and the
tests generation following a given procedure. As the size of the specifications
for the services is rather considerable, the use of traditional methods that
produce a global reachability graph from which tests are generated is not
possible. Therefore, it is necessary to use methods which are based on a
partial generation of the accessibility graph by applying different algorithms.
These methods are based on the definition of test objectives to guide the
generation of the tests. In this work, test selection has been based on test
objectives that represent relevant aspects of the reverse directory service
behavior. Different test generation algorithms have been used by the tools
TestComposer and SIRIUS. Many of these algorithms can be embedded in

3 Dual Tone Multi-Frequency
* http://www-verimag.imag.fr/async/IF/

several graph searching strategies like depth-first search (DFS), breath-first
search (BFS) and BDFS which is a random combination of the two methods.
In Section 5.2, we will explain the weight of these strategies in automatic
test generation.

4. Test execution. The generated tests are executed according to the defined test
architecture. Verdicts are established according to a conformance relation on
each PO and PCO. All verdicts are directed to a central tester that deduces
the final verdict. For this case study, test execution has been performed by
France Telecom internal tools, which enable to send DTMF or vocal requests
and to give a verdict from the vocal answers of the service.

After the description of the test methodology for services, we present in the
following section the two tools used for the automatic test generation which are
the commercial tool TestComposer and SIRIUS, a tool developed by INT team.

3 Tools presentation

3.1 TestComposer

TestComposer [11]is a test generator tool commercialized by Telelogic. This tool
corresponds to a major revision of the ObjectGeode TTCgeN tool which is a test
generator produced by Verilog. TestComposer is based on two complementary
prototypes: Tveda and TGV.

Tvedais a tool developed by the research laboratory of France Telecom CNET
(currently France Telecom R&D division). The main features of Tveda are the
automatic generation of test purposes, its heuristic approach to the use of reach-
ability analysis, and the wealth of pragmatic customizations that have been
included to cater to the needs of many different applications within CNET. The
first versions of Tveda only accepted the Estelle language as an input language.
However, an extension that allows the use of SDL language as an input language
was introduced in the version 3, which is integrated with TGV in ObjectGeode.
And a new semantic approach based on the analysis of the reachability graph
produced by the Véda simulator was also applied in this version. The Tveda
tool allows the generation of test sequences by using the heuristics related to
exploration of the reachability graph. Its main advantage is that it calculates
automatically the test objectives, which is not the case with other existing ap-
proaches.

TGV (Test Generation using Verification Technology) is an automatic pro-
totype for the generation of conformance tests developed by IRISA /INRIA and
Verimag within the framework of the PAMPAS project. It allows generating test
cases using an on-the-fly exploration of the state space based on test objectives.
The on-the-fly exploration permits to carry out the reachability graph creation
and the checking of a property at the same time. The advantage of that method
is that it just keeps the required part of the graph necessary for checking the

® http://www.irisa.fr/pampa/

properties. Moreover, this technique can give a partial result even if it stops with
a memory fault. Using on-the-fly algorithms makes the execution of the princi-
pal algorithm activates the execution of each intermediate stage. TGV needs the
specification and the test objective as input and generates the test case in an
Aldebaran automaton format [9]. This format can be then translated into the
TTCN language [13,10].

3.2 SIRIUS

SIRIUS belongs to a set of powerful test tools (TestGen-SDL [3,7]) developed by
the INT team. The major advantage of this tool is that it avoids the exhaustive
generation of the reachability graph of a system specified by building only partial
graphs, allowing solving combinative explosion constraints. SIRIUS is based
on one of the flagship algorithms of TestGen-SDL, namely Hit-or-Jump [7].
In particular it allows the automatic generation of test sequences for the test
in context. This is very significant mainly for the features integration in an
operating platform. In addition to the generation of test sequences from test
objectives, SIRIUS also offers many other functionalities. Indeed, it also allows:

— The automata minimization according to the bisimulation.

The detection of sink nodes.

The transformation of a possibly partial reachability graph in an Aldebaran
automaton.

The parsing and lexing in the purpose of debugging all the output files of
ObjectGEODE.

4 The reverse directory case study

4.1 Vocal services presentation

The development of vocal services at France Telecom R&D division uses many
distinct competencies. There are specialists in the techniques of voice recognition
and text-to-speech systems which provide reusable components. The use and the
adaptation of these components are themselves rather technical: it is necessary
to build models of the sentences being able to be pronounced by the users and
to check the good pronunciation by the text-to-speech system of precise infor-
mation.

However, the main activity in the development of a vocal service consists in
the conception of the dialogue between the human being and the service. An
automaton should be defined, which, reacting to the input pronounced by the
user as determined by the voice recognition, will provide output information
via the text-to-speech system. This dialogue is often specified by a document in
natural language.

In order to formalize the process of the development and the validation of
vocal services, France Telecom R&D division developed a design tool based on

TauG28. This tool makes it possible to design the dialogue of the service in
the form of automata, and to produce a formal specification of it in IF. This
specification can be used for doing simulations and automatic test generation.

At first approximation, the dialogue to be specified can be seen like a re-
active system composed of a single automaton communicating by synchronous
messages. This approximation corresponds to a rather simple problem looking
to the state of the art. However, the following points complicate this first ap-
proximation.

— The vocal services often need to have access to data provided by the infor-
mation system. That makes it necessary to model the vocal service in several
distinct components.

— The assumption of synchronism and atomicity of the vocal messages is not
entirely correct. It is necessary to be able to take into account phenomena
such as the duration of pronunciation of the statements, the fact that the
user can interrupt them or that this interruption can be blocked by the vocal
service (barge-in can be allowed or not).

As a consequence, each dialogue is formalized by a distinct automaton, and
the execution of the service corresponds to the parallel execution of each one,
activated or not in a given state.

Each automaton composing the service can react to inputs of types DTMF
or speech of the user. However, it is not important to model the voice recognition
and its possible errors in the behavior of the vocal service. It is enough to consider
an abstraction of this one starting from events in input of the service, and to
consider an event corresponding to a failure of the voice recognition.

4.2 A reverse directory specification

France Telecom team has written a specification of a reverse directory vocal
service similar to real services of this category deployed over the network, using
the IF language. It is an intermediate language developed by VERIMAG to
describe timed communicating systems. Many tools were also developed allowing
the translation from languages like SDL, LOTOS, UML to IF and the generation
of code or labeled transition systems in order to formally verify some properties.

INT team has used the following tools: TestComposer from ObjectGeode
and SIRIUS developed at the INT. These two tools are based on a well adapted
language for the formal specification of interactive systems: SDL (Specification
Language Description). As the original specification was written in IF, we car-
ried out a translation from IF towards SDL. For that aim, we used the respective
relations between the semantics and syntax of SDL and IF. Moreover, Object-
GEODE tool gives the possibility to draw the specification using a graphical
mode which facilitates the comprehension of the service. Figure 1 produced by
ObjectGEODE tool presents two states of Dialog NumSpec process of the re-
verse directory specification.

5 http://www.telelogic.com/
7 http://www-verimag.imag.fr/

geodedit - [FSM: Dialog_NumSpec] 8 [=1%]

[Fils Edi view Mavigats Tools Window Help _8x

ERRE=ME| L 2| x| = a&mne e >4 4| 2 | ||identher 7
i e 9 | st = |2
OkortExsO0HEBERECD £ 50500000 oo |
=l
=K C\Documents and Setings' = |
=[O gidone continuation_irit decision__continustion_ini;
= O3 block_quidonc
(=)s v
O o s return_cl o, (not
© p_Manager (enonce, ff;‘;g (special
© Dislog_MainDislag specil) , “EI‘SED
(D Dialog_Numhoma T
Disiog NumSpeo decision_continuation_Int = SR ebe
© Dislog_MiseErRiel = — coRthbEchse FEnE ey

1D Dialog_Saisiekiume
(D dimfToSting

I
(]l integerToStiing Ray=at abel_E
(D) ChercheuMums_—
(D ChercheuMums_
O p_Manager i _next

4]] 3 il £ e

X|[¥0L & M3C Ediror V4 £ 1F1 gecdedit (o} Copyrighe 1868-2001 by Telelogis AB.
lja11 righes reserwed

j
T AT T} Messages & Find 1 Find 2 e J.J

Ready [126

Fig. 1. Reverse directory specification using Object GEODE tool

After the redaction of the specification, the ObjectGeode tool makes syntactic
and semantic verifications of the specification. The syntactic analysis ensures
that the specification complies with the syntactic rules of SDL in order to have a
correct specification, whereas the semantic verification ensures the consistency of
the specification. This step is carried out not only by this static analysis but also
by an automatic exhaustive exploration of the specification. This is performed
by testing all possible ways of system execution, with a certain number of rules
and the cases of violations such as deadlocks, loops etc. During the verification,
the main analyzed properties are:

— Safety (absence of deadlock, unspecified reception, blocking cycles, etc).
Deadlock takes place when a state of the system, reachable from the ini-
tial state can not trigger a transition anymore.

— Promptness (livelock), indeed, a state is known as alive if it can be reached
starting from all the states of the global system.

4.3 Determination of test objectives

France Telecom provided the test campaign designed manually by a France Tele-
com service expert. This document was the first reference we used to define our
test objectives. In this document, the validation of the reverse directory service
was described and organized in several phases related on one hand to the service
conformance, and on the other hand to interoperability with the components
used for voice synthesis and recognition. 130 test cases that were informally de-
scribed cover the whole interactions of the service with the user, which includes:
- Unitary checking of each service’s functionality; - Checking of system behaviors
related to eventual user inactivity; - And checking of behaviors activated at the
time of voice recognition failures. The unit checking makes it possible to validate

that all the service functionalities conform to the specification. The other veri-
fications allow the validation of the service ergonomics in the case of defective
use, related either to the user or to the service.

Using this test campaign, we have chosen to test the most relevant service
reactions and functionalities. Therefore, 17 test objectives were obtained which
represent more than 95% of the specification states and transitions. These test
objectives can be classified in four categories: - Errors when dialing a number:
we suppose that the user makes mistakes while trying to dial the telephone
number of whom he wants to know the name. - Functionalities offered after
dialing a normal number: Three functionalities are offered to the user. Only
some reactions of the system are described. - Functionalities offered after dialing
a special number: Some reactions of the system are described. - Errors due to
user inactivity: we suppose that the user stops typing on the keys for a significant
period. Messages for assistance will try to guide him for a good use of the service.

The three first categories describe functional tests of the service. It represents
the details of what have been already called in France Telecom test campaign
"the unitary checking if each service’s functionality". The last category allows
exactly, like in the France Telecom document, the system behaviors verification
related to eventual user inactivity. We did not take into account in our test
objectives the system behaviors related to voice recognition failures because this
service feature was not specified.

Following are the test objectives we have defined in this case study:

N||Objectives to be tested: To test the correct reaction of the system, following
this case:

1{|The user does not press on any key after dialing the 3288. She then

receives messages for assistance before receiving three messages to ask her to
hang up followed by the stop of the service and the disconnection of the user.

2 ||After dialing the 3288, the user presses on the star key as it is

required by the welcome message. Then, if she does not press on any key, an
assistance message is transmitted to her explaining the functionalities of the
service.

3||Error when dialing a number: the user presses on # key without having entered
before a number. Sharp is a key which indicates the end of dialing.

4||Error when dialing a number: the user gives a telephone number that doesn’t
start with 0.

5||Error when dialing a number: the user gives a phone number which contains
less than 10 digits.

6 ||Error when dialing a number: the user gives a telephone number which contains
more than 10 digits.

7||Error when dialing a number: After having begun dialing, the user cancels his
input number and dials * to give another number.

8||The user gives a good normal number (a normal number is a number starting
with 0 and containing 10 digits). This number does not exist in the telephone
directory of the reverse directory, an informative message is then transmitted to
the user.

N ||Objectives to be tested: To test the correct reaction of the system, following
this case:

9 (| The user gives a normal number, receives the name of the corresponding
person and remains inactive; this stops the service.

10{|The user gives a normal number, listens to the name of the corresponding
person and then dials 1 to listen to the spelling of this name.

11{|The user gives a normal number, receives the name of the corresponding
person and presses # that stops the service.

12(|The user gives a normal number, listens to the name of the corresponding
person and then presses 3 to contact this person. The telephone of the called
rings without answer.

13||The user gives a normal number, listens to the name of the corresponding
person and presses 3 to contact this person. The connection succeeds.
14(|The user gives a normal number, listens to the name of the corresponding
person and then dials 2 to listen to the address of the correspondent.
15(|The user gives a good special number. This number does not exist in the
telephone directory of the reverse directory; an informative message is then
transmitted to the user.

16||The user gives a good special number that exists in the telephone directory.
Information concerning this special number is transmitted to the user.

17|/ The user gives a good special number that exists in the telephone directory.
Information concerning this special number is transmitted to the user.
Some variables’ values are transmitted to the system to allow generation of
statistics.

Fig. 2. Test Objectives for the case study

4.4 Generation with TestComposer

According to [11], TestComposer is based on two complementary prototypes
Tveda, which makes it possible to calculate automatically the test objectives and
TGV, which allows, starting from calculated objectives or specific objectives, to
calculate the corresponding tests. In our case, we give specific test objectives
using a "test condition" formalism. The defined or calculated test objectives
may be applied on a global SDL specification representing the system under test
(the case of the reverse directory). We are also able to apply them on a part
of this specification to test a component in a context. From the test objectives,
test cases are produced and stored in a database. Then, the test sequence built
from the obtained test cases is written in a TTCN file. Experimental results are
presented in the Section 5.

4.5 Generation with SIRIUS

As mentioned above, SIRIUS is based on Hit-or-Jump, an algorithm especially
used for components testing to perform test sequences generation through the

specification. This research is guided by objectives which are illustrated by pred-
icates on transitions. The research in the partial reachability graphs is performed
in depth, width or both at the same time, and is restricted by a limited depth.
In order to initialize the generation of test sequences, several parameters are
necessary. Four main files must be developed. The first is the specification of the
service (component to be tested), the second allows to initialize certain variables
if necessary, the third one mentions the stop conditions (i.e. test objectives) and
finally the last one allows the expert to guide the system at the beginning of the
simulation, this file is called preamble. This latter is very important; it allows
reducing in a consequent way the length of the sequence and the duration of
its generation. As for TestComposer, we present our analysis and experimental
results from the SIRIUS use in the following section.

5 Experimental results

This section presents the results of the experimentation performed by both tools.
Different aspects related to test coverage and execution of the tests are also
discussed.

5.1 The proposed tools are scalable

The first objective of this paper is the application of two test generation tools
to an industrial case study. The reverse directory service is an example of signif-
icant size as illustrated by the following table that provides some metrics of the
specification, both in IF and SDL. These numbers are representative of real ex-
amples that have been treated at INT and France Telecom (MAP-GSM protocol,
TCP/IP, SSCOP). It must be noted that the specification in SDL of the service
has 4603 lines and the specification in IF has 1213 lines. The difference is due
to the fact that SDL specification contains many lines of comments describing
graphical aspects of the service specification (cf Figure 1). The SDL specification
has been used by both tools to generate the tests.

Blocks||Processes||States|| Transitions||Signals||Channels|{|Number of lines
IF — 8 7 160 31 15 1213
SDL|| 1 8 77 160 31 15 4603

Fig. 3. Metrics of IF and SDL reverse directory service specification

5.2 Test objectives generation

The results of test generation for the seventeen objectives are recapitulated in
the following table. The tests are performed in the order in Section 4.3. For each
test, the length of the sequence (number of transitions), the test generation time
and the length of the preamble to be provided to guide the simulator to lead the
test objectives are given.

TestComposer SIRIUS
Nb of |Generation|Preamble|| Nb of |Generation|Preamble
transitions| duration | length ([transitions| duration | lenght
Test 1 8 Omn 0s 0 7 Omn 0s 0
Test 2 9 Omn 0s 0 5 Omn 0s 0
Test 3 22 Omn 2s 0 7 Omn 12s 0
Test 4 64 Omn 33s 35 15 3mn 36s 35
Test 5 11 Omn 0s 0 5 Omn 0s 0
Test 6 13 Omn Os 0 5 Omn 1s 0
Test 7 13 Omn Os 0 5 Omn 0Os 0
Test 8 87 Omn 18s 50 28 1mn 40s 50
Test 9 83 Omn 34s 45 24 3mn 47s 45
Test 10 84 3mn 47s 45 25 2mn 33s 50
Test 11 82 Omn 24s 45 25 lmn 52s 45
Test 12 85 Omn 9s 50 24 Omn 36s 50
Test 13 89 Omn 10s 50 25 Omn 51s 50
Test 14 83 Omn 38s 45 24 3mn 59s 45
Test 15 47 Omn 32s 8 14 3mn 34s 8
Test 16 48 4mn 34s 8 14 3mn 368 13
Test 17 49 Omn 12s 14 16 1mn 02s 14

Fig. 4. Some automatic test generation results

The results established in this table are obtained after a BFS (breath-first
search) exploration of the reachability graph. This choice is due to the specificity
of the service which has to take into account after each transition all the possible
inputs injected by the user, to analyze them and generate the right output. The
test objectives we defined are reachable via quite short sequences (almost 50
transitions) and do not need a DFS or BDFS exploration that tries to search in
depth of the reachability graph.

5.3 Performance analysis and discussions

According to the Figure 4, we can elaborate on performancewise comparison
between TestComposer and SIRIUS. First, we can easily notice that the test
generation duration using SIRIUS is larger than using TestComposer. This fact
constitutes a positive point for TestComposer. But if we refer to another criterion
which is the length of test sequences, SIRIUS becomes more efficient. Actually,
the length of tests sequences constitutes a very significant comparative data since
test execution duration depends on it, and mainly when this execution is manual.
This is often the case for vocal services where the test automatization is difficult
because of the peculiarities of DTMF or vocal interaction (see Section 5.6). This
length is on average three times shorter for SIRIUS. Indeed, SIRIUS has an
advantage compared to TestComposer since it allows the automatic elimination
of silent transitions. With this operation, the length of the test sequence becomes
shorter and more comprehensible for the person carrying out the test. This fact

constitutes one of the strongest points of SIRIUS. The Figure 5 recapitulate the
length of the test sequences for the seventeen predefined objectives.

Comparison between TestComposer and SIRIUS
according to the length of test sequences

Lengths 5
401 B TestComposer

2 E SIRIUS

1 3 5 7 9 11 13 15 17
Test Objectives

Fig. 5. Graphics comparison according to the length of test sequences

The automatic test generation is not always possible especially if the system
to be tested presents a complex reachability graph. It is sometimes necessary to
guide the simulator by providing a preamble. This preamble comprises the first
transitions to be followed in order to begin the research of the test objective.
The shortness of the preamble constitutes a strong point of the used tool. In
our application, TestComposer shows superiority compared to SIRIUS. Indeed,
we may in certain cases (test 10 for example) automatically generate tests using
TestComposer giving a 45 transition length preamble, whereas a generation with
SIRIUS requires 5 more transitions.

Another significant comparison criterion between various tools of simula-
tion and test generation is the memory use. With ObjectGEODE, the memory
consumption for the reverse directory telephone service is about 35.0 MB; this
consumption is 10 times lower with SIRIUS (3.1 MB). This is easy to under-
stand, first because SIRIUS only builds a part of the reachability graph for the
test generation and second because Object GEODE has a graphic interface and
several other functionalities which is not the case of SIRIUS.

TestComposer SIRIUS
Generation duration| + Fast generation -
Length of sequence - + Sequence 3 times shorter
Memory used - + Space 10 times smaller
Length of Preamble ||+ Shorter preamble -

Fig. 6. Summary table

According to this summary table, the user can make his choice based on his
personal criteria and the characteristics of his application.

5.4 Test coverage can be evaluated and is reasonable

The advantage of automatic test generation compared to the manual procedures
is that test selection is made by an algorithm and, therefore, it is possible to have
a precise evaluation of the coverage achieved. From this point of view, both tools
TestComposer and SIRIUS produce similar results that correspond to the notion
of coverage normally accepted. Both tools have been based on the know-how of
experts: test objectives were based in the test campaign proposed by the service
expert of France Telecom. By placing this know-how in an algorithmic form we
realize that their strategy for selecting tests correspond to branch coverage of
a subset carefully chosen in the specification. If the test passes successfully, the
implementation conforms the specification; assuming a uniformity hypothesis
(passing once through each branch is representative of the whole protocol).
Furthermore, it should be noted that this test objective study is appropriate,
since it corresponds to a reasonable number of tests. 17 test objectives have been
selected, which cover more than 95% of the specification states and transitions.

5.5 Tests are really usable

The produced tests are really usable, since they have the same format as (and are
of comparable size to) test suites developed manually. Both tools, TestComposer
and SIRIUS, generated tests that are composed of a preamble (shortest path
between the initial state and the starting state for the transition to be tested),
followed by the transition being tested. The structure and length of the tests
produced by both tools correspond therefore to the usual standards. As a final
remark, it is interesting to note that tests can be produced in TTCN [13] and
MSC [1] notation facilitating the portability of the tests.

5.6 Automatic Test Execution

If the phase of automatic tests generation is a problem that can be adequately
treated by test generation tools, because of the nature of reactive system of the
specification, the phase of automatic tests execution encounters many difficulties.

The first difficulty, central with the problem, is related to the heterogeneity
of the platforms executing the services. This heterogeneity, characterized by the
lack of a standardized API to access to the platform, implies that a generic solu-
tion for the tests automation must be based on an emulation of the interaction
between the human and the service.

This consists in emulating the input of tests starting from text to speech or
recorded sound files, and to observe/control the outputs by using techniques of
voice recognition. However, even if it is technically rather easy to associate each
tests input with sound files, the recognition of the output is not good enough.

Concretely, France Telecom R&D division developed a test automaton based
on the voice recognition. This automaton ensures the validity of the PASS and
FAIL verdicts, but produced many false positive characterized by verdict UN-
CONCLUSIVE. Typically, a verdict is FAIL if the service produced an output
instead of a silence, and UNCONCLUSIVE if the output is well envisaged, but
not recognized by the voice recognition.

Taking into account these difficulties, many tests must be carried out manu-
ally at the time of the validation of the service. However, the manual execution
of tests is expensive in resources, because it implies the mobilization of people
and time. In order to optimize the resources as well as possible, a great inter-
est is related in advance to the quality of the generated tests. Those tests must
cover in a minimum of occurrences the functionalities of the service, and must
especially comprise a minimum preamble to validate the test objective.

In this context, the quality of the preambles to the generated tests is a dis-
criminating element at the time of the selection of a tool for generating tests.

6 Conclusion

In this paper, we attempt to compare the performances of two test generation
tools, TestComposer and SIRIUS, by applying them to a real case study pro-
vided by France Telecom, a reverse directory telephone service . These tools
perform automatic test generation based on test objectives. The test objectives
used for the experiments were provided by the France Telecom test plan. Results
of the experimentation show that these test objectives covered quasi completely
the tests provided by the test plan, showing the interest of the use of formal
testing methods. Performance analysis shows that even if test generation time
could be no so important for industrials (they are looking for pertinent and cor-
rect test sequences), this criteria could be important from an academic point of
view in order to compare the algorithm performances. In addition, experiment
show that the length of test sequences is an important criterion to evaluate the
test sequences. In particular, for this case study this element was imperative
because the tests were executed manually by France Telecom. Tests were exe-
cuted manually because the reverse directory is a vocal service and it was very
difficult to automate test execution and mainly to automate voice recognition
that remains non deterministic. Finally, tools comparison allows us to improve
our understanding of the strong points and limitations of each tool.

It must be mentioned also, that this study could be extended to other test
generation tools. France Telecom’s authors are ready to give access to the spec-
ification and the original test plan. This could provide a realistic problem to
designers of automatic test generation tools.

References

10.

11.

12.

13.

ITU-T Rec. Z. 120 Message Sequence Charts, (MSC). Geneva, 1996.

ISO/IEC 9646-1. Information Technology - Open Systems Interconnection - Con-
formance testing methodology and framework Part 1: General Concepts.

R. Anido and al. Engendrer des tests pour un vrai protocole grace & des techniques
éprouvées de vérifications. In Proceeding of CFIP96/Cinquiéme Colloque Franco-
phone sur 1 Ingénierie des Protocoles, editor, In ENSIAS, pages 499-513, Rabat,
Maroc, octobre 1996.

A.V.Aho, A.T.Dahbura, D. Lee, and M.U.Uyar. An optimization technique for
protocol conformance test generation based on uio sequences and rural chinese
postman tours. In IEEE transactions on Communications, 39(3), pages 1604-1615.
C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Automatic executable
test case generation for EFSM specified protocols. In Chapman & Hall, editor,
IWTCS97, pages 75-90, 1997.

A. Cavalli and D. Hogrefe. Testing and validation of SDL systems : Tutorial. In
SDL’95 forum, 1995.

Ana Cavalli, David Lee, Christian Rinderknecht, and Fatiha Zaidi. Hit-or-Jump:
An Algorithm for Embedded Testing with Applications to IN Services. In Jianping
Wu, Samuel T. Chanson, and Qiang Gao, editors, Formal Methods for Protocol
Engineering And Distributed Systems, pages 41-56, Beijing, China, october 1999.
M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches linking test
generation with verification techniques. In A. Cavalli and S. Budkowski, editors,
Protocol Test Systems VII. Chapman & Hall, 1996.

J.-C. Fernandez, H. Garavel, A. Kerbat, L. Mounier R. Mateescu, and M. Sighire-
anu. Cadp : A Protocol Validation and Verification Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, The 8th Conference on Computer-Aided Verifica-
tion, CAV’96, New Jersey, USA, August 1996. Springer Verlag.

G. Rethy 1. Schieferdecker A. Wiles J. Grabowski, D. Hogrefe and Colin Willcock.
An introduction to the testing and test control notation (ttcn-3). In Computer
Networks 42(8), pages 375-403, 2003.

A. Kerbrat, T. Jeron, and R. Groz. Automated test generation from SDL speci-
fications. In R. Dssouli, G.V. Bochman, and Y. Lahav, editors, SDL’99. Elsiever
Science, 1999.

J. Tretmans and A. Belinfante. Automatic testing with formal methods. In Pro-
ceedings of the Tth European International Conference on Software Testing, Eu-
r0STAR’99, November 1999.

ETSI. TTCN-3. TTCN-38 - Core Language.

