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Abstract. Analyzing real-time specifications involves new difficulties in the test gener-
ation process. In addition to usual combinatory explosion, issues like tests executability
and controllability become more problematic. To deal with such issues, the new method
proposed in this paper combines both on the fly computation (not on line) and optimized
symbolic analysis with the underlying concept of real-time observers. A symbolic forward
analysis is used for test executability and a backward analysis is performed to refine the
tests controllability in view of avoiding inconclusive verdicts. The featured observers and
the backward computation are the basis for a more targeted test selection. To illustrate
the method, the work example is a process control communication system. Finally, we
introduce Real-time Ethernet and the related tests produced with our method.

1 Introduction

Real time applications are those are applications for which real-time (i.e. physical time) is the
main execution constraint. They are concerned with business lines such as aeronautics, aerospace,
automotive or telecommunications. These applications often manage the systems and even the
people security and therefore must be designed with very rigorous techniques. For testing real-
time systems, one must carefully define when to submit an input to the Implementation Under
Test (IUT) and when to observe an output. A major issue of automatic test selection from a
formal specification is the combinatory explosion of the analyzed behaviour. In the presence of
real time constraints, the test selection problem is worsened as a huge number of time instances
are relevant to test. Moreover controllability and test executability becomes non trivial [10]. To
deal with such problems, the method proposed in this paper combines different strategies to
improve the efficiency of automatic test selection.

Symbolic techniques were firstly introduced in the field of formal methods, as they produced
reachability graph of reduced size [13,4,17,14]. These techniques have recently been used for
the purpose of “real-time testing”, with some idea of on line testing [9]. But in these testing
approaches, the meaning of “on line’ is that the test sequences are not computed in advance,
before test execution. There is no test suite available before, but the tests are calculated “on
line”, event after event, during test execution. Since these approaches are based on the reuse of
model-checking tools, the resulting tests can not be directly reproduced as they often correspond
to diagnostic traces or run time executions. This also disables a reasonable prediction of test suite
coverage. Meanwhile, an explicit test suite selection strategy can be performed when using test
purposes to characterize the expected tests [8,6,7] and, above all, “to guide” the test selection
process, “off line’, before test execution. This is a different and now classical basis for test
selection against combinatory explosion. Indeed, the “on the fly traversal’ consists of searching
the test pattern from the system model, while avoiding the whole exploration of the model. For
timed systems, the principles of on the fly test selection from test purposes were presented a
few years ago [6,15]. The new features and improvements here are the combination of on-the-
fly traversal and modern symbolic abstractions together with enhanced real-time observers, for



improving the efficiency of test case selection. Here, real-time observers are used to target the
expected tests. Then a symbolic forward analysis is used for test executability and a backward
analysis is performed to refine the tests controllability in view of avoiding inconclusive verdicts.
For illustration, an example of process control system is presented and finally the case study
started with Real-time Ethernet protocol is introduced. The current work is being implemented
in a prototype tool named O0TEST, and which architecture will be introduced. The papers is
organized as follows. Section 2 presents the formalism and notations related timed automata.
The kernel of the test methodology is presented in section 3. Section 4 and 6 are complementary
comments and concluding remarks.

2 Timed Input Output Automata

Let R™ be a set of non-negative real numbers and let X be a set of non negative real-time
valued variables called clocks. The set of Guards G(X) is defined by the grammar g :=  ~
clz—y~cl|lgAg]| true, where z and y € X, c € R and ~€ {<,<,>,>}. We denote
by T the finite sequences of elements in RT called time domain, and by X the finite set of
actions. A time sequence over T is a finite no decreasing sequence p = t1,t3,...,t, and a
timed word w = (ay,t1,), (aa,t2)...(an,t,) is an element of (XxRT)*. A clock valuation is
a function v : X —R™,if § € T the v + § denotes the valuation such that for each clock
x € X,(v+9)(x) =v(z)+ . If r C X then v[r := 0] denotes the valuation such that for each
clock x € X\ r,v[r := 0](z) = v(z) and for each clock x € r, v[r := 0](x) = 0. [r := co]v denotes
the valuation such that for each clock x € X \ r, [r := oo]v(z) = v(z) and for each clock = € r,
[r:= oo]y(x) = oo.

Definition. A Timed Automaton (TA) is a tuple A = (L, Lo, Ly, X, ¥, E,I), where L is a finite
set of locations, Lo(Ls) C L is a subset of initial (final) locations, X is a finite set of clocks. X
is a finite set of events. If the set of events (actions) is partitioned in two disjoint subsets %7
and X', where X7 is the set of input actions and X' is the set of output actions, the TA A is
called Timed Input Output Automaton (TIOA). E C L x G(X)x X x R(X) x L is a set of edges.
We write | =25 I iff (I,a,g,r,1') € E, where [,I' € L are the source and destination locations,
g € G(X) is a conjunction of constraints in G(X), a € X is the action (or event), r € R(X) is
the set of clocks to be reset. I : | — G(X) assigns invariants to locations.

We use the notation such as I % (resp. | £) to denote that there exists I’ such that I % [’

(resp. there is no such I’). This notation naturally extends to time sequences. We write [ N

if from location I, a can be executed at time ¢. A TIOA A is said to be complete, if it accepts
every action in X at every time. It is said to be input-complete if it accepts every input action

in X at every time. A TIOA is called deterministic if VI,l’,!” € L -Va € ¥ -Vt ¢ Rt .| /> (a,%)

PALSD, o — 7 T s called non- blocking if VI € L,Va € ' UR* -1 5.
A Path P in TA A is a finite sequence of consecutive transitions [, 222" [ 29272, )
It is said to be Accepting if it starts in an initial location (I € L) and ends in a final locat10n

(Iy € Ly). A Run of the automaton along the path P is a sequence of the form (lp,vp) 2%
1
(I1,11) % (la,12) ..., where 0 = ty,t5... is a time sequence in T , and v;(i = 1,2...)

is a clock valuation such that: vy(z) = 0,Vz € X ; v + (b —tic1) | gi 5 vi = [ri =
0](vi—1+ (t; —ti—1)). The label of the run is the timed word w = (a1, t1), (a2,t2),... (an, tn). The
set of all timed words in A is denoted Traces(A). If the path P is accepting the timed word w
then it is said to be accepted by the TA A.
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Fig. 1. The process control system - Communicating sensor and actuator

Example. The following presents a process control communication system in an energy production
center. The system operates under real-time constraints with a fault recovery mechanism. The
overall system (figure 1) is composed of a Sensor module, an Actuator module and a Main
module. The different modules communicate through synchronization ports. In the sequel, we
focus on the Sensor module only, which model in represented with figure 2. The sensor tries
to detect the temperature signal from the environment (?t). If no signal was received within 4
time units, the famine signal (!f) is sent to the main module. Otherwise the system proceeds
with checking the pressure (7p) and then sends the (!v) signal to the actuator, for subsequent
operation. In case of failure during this walk, an error procedure (!e) is started for an new
tentative. Finally the sensor resets (!r) and returns to initial state, etc.

x:=0, y:=0

Fig. 2. A process control communication system

The automaton of figure 1 contains six locations L = {Sy, S1, S2, 53,54, S5}, where the set
of initial locations is Lo = {So}, the set of final locations is Ly = {So}. Two clocks z and y and
ten transitions are used. An accepted path of the automaton can be represented by :

(2>2),7¢,(y) S (y>1),?p,(x) S5 (y=2),le,(y) Ss (y=1),!r,(z,y) S

So

(2>2),7¢,(y) (y>1),?p,(x)
- -

4.5

An accepting run of this path is: (S, (3,00)) (S1,(4.5,1.5))

(52, (05,2)) UEE, (55 (1.5,1)) LT, 5(0,0).



where (4.5,1.5) is the valuation v associated to the clock = and y such that v(z) = 4.5 and
v(y) = 1.5.
An accepted timed word of this run is : (?¢,3), (?p,4.5), (le,5), (Ir, 6).

3 Test design

3.1 From symbolic abstraction to executability and controllability

Since actual IUT runs correspond to test execution, the executability problem turns to standard
reachability analysis that handles all the possible executions of the system. For timed automata,
symbolic reachability is now a well established technique addressing the explosion problem of
the reachability graph. Rather than enumerating all the states (e.g. like regions) the states are
characterized and gathered by a Boolean formula. Different approaches exist for representing the
nodes of the reachability graph (Zones represented by Difference Bound Matrix, Clock Difference
Diagram, State classes etc). Currently, we have started to implement them as options in our
00TEST tool, in view of a further performance comparison and analysis. In the sequel, we illustrate
the method with DBM (Difference Bound Matrix) which have an intuitive representation. For
instance, the constraint 0 < x < 4 A y = 0 defines a zone that can be represented using a DBM.
The DBM is (n+1) x (n+1) matrix where n is the number of clocks. Each element D; ; of a matrix
D is an upper bound of the difference of two clocks z; and z; (z; —z; < D; ; where <€ {<, <}).
Given a TA A, the reachability graph (or Reachable Automaton) RA associated with A is a graph
where the nodes (the symbolic states) have the form (I, z), where [ is a location of A and z is a
DBM. The construction of RA is performed with a standard reachability algorithm, augmented
with the computation of successors (future after time progress) of zones. This construction is
called Forward Reachability as it computes symbolic states ([, z) which are reachable from initial
locations of A. The following procedure computes the successor of a symbolic state (I, z).

g9,a,7

Input: (I,z) = (I',I(I")) such that z C I(l).
Output: (I, 2’): Reachable target state.

1. Compute z; = {v+4-v € z and § € R"}; The clock valuations that can be reached from z
by delaying.

2. Compute zz = z1 N I(l); The clock valuations where the constraints of both z; and the
invariant of [ are satisfied.

3. Compute z3 = 29 N g; The clock valuations where the constraints of both 2o and the guard
condition are satisfied.

4. Compute z4 = z3[r := 0] = {v[r := 0] - v € z3}; The clock valuations obtained by resetting
clocks in r in the zone z3.

5. Compute 2z’ = z4 N I(I'); The initial reachable clock valuations in !’.

The Forward Reachability will guarantee the tests executability. But as explained in the follow-
ing section, we are also interested in improving the controllability of the tests execution towards
some specific (Pass) states. So we also need to compute the sufficient and necessary constraints
that can lead from an initial configuration to such particular states. For that, the backward
propagation of constraints from the target states to the initial states should be computed. Such
computation is called Backward Reachability as it calculates symbolic states (I, z) with the actual
necessary constraints for reaching a given state (I’,z’). The following procedure computes the
predecessor of a symbolic state (I, 2').

Input: (I, 2') <2 (1, 2).
Output (I, z"”): Actual predecessor state.



1. Compute z; = {v-36 € R - v+ § € 2'}; The set of clock valuations that can reach 2z’ by
delaying.

2. Compute z5 = z{[r := 0]; The clock valuations just after performing the transition between
I and I’ and thus after resetting clocks in 7.

3. Compute z5 = [r := 00]z5; The clock valuations just before executing the transition; All
clocks in r are allowed to have any values.

4. Compute zj = z4 N g; The set of clock valuations where the constraints of both z} and the
condition that allowed to fire the transition are satisfied.

5. Compute 2" = zj N z; Concrete predecessor constraints in [ obtained by the intersection
between the clock valuations in zj and the invariant of [ (included in z).

A full example will be presented later with figure 8.

3.2 Real-time observers

The current developments are aimed to be used with the observers currently designed in the
framework of the Open source TOPCASED project[11,12]. These observers have been initially
defined for capturing several extra features like fault tolerance, diagnosis, etc, with an underlying
structure of extended timed automata. In this paper, for the time being, we consider the aspects
related to functional conformance requirements. In addition to standard timing requirements,
the observers define not only the expected behaviour expressed in terms of test purpose, but also
some aspects of the behaviour that we are not currently interested in. The latter are excluded
during the search of the target test sequence and therefore enable restricting the behaviour to
be computed. It is up to the test engineer to define a given test observer. We assume that he
has the required knowledge for deciding which features are to be included or excluded. In the
following, we present an approach to model and construct a real-time observer.

Modelling the observer. The observer is used for checking the interactions within the test envi-
ronment. Obviously, its design will be related to the one of the reference specification considered.

Let As = (Ls, Lys, L¢s, Xs, Eg, 239, Eg,Is) be a TIOA model of the Specification. An ob-
server of specification is a TIOA Ao = (Lo, Loo, Lo, X0, X%, X5, Eo, Io) with the following
characteristics:

— The set of locations Lo is equipped with two new disjoint locations Accept € Lyo and
Reject € Lyo. If the location Accept is reached, we conclude that the functionality modeled
by the observer has been satisfied. An efficient set of test cases can be extracted from all
paths reaching and no traversing a location Accept. All path reaching or traversing a Reject
location should be ignored (cf below).

— Yo = Xg such that X, = X} and X}, = X},

— Ao is non blocking, deterministic, and complete TIOA.

In this paper, we use passive observers. They basically model a test purpose which character-
izes some expected functionality involving a Pass verdict, but they also capture undesired (even
if correct) behaviour that lead to inconclusive verdicts. An example is presented in figure 3. The
construction of an observer can be done by completing the test purpose basic functionality. From
every location [ in the test purpose, outgoing transitions are added according to the following
cases :

1. For every a € Xg such that | 2% is an outgoing transition in the test purpose
— If we’d like to test a under (g) only, then a transition | =2 Reject is added to (Eo).
(—g is the negation of g)



— If we are interested in the occurrence of a under another constraint (¢’), then

(a) A loop ! 29, i added;

(b) A transition | “—2"%, Reject is added.

2. If the action a € X is not specified in the outgoing transitions of [
— If we are interested in the occurrence of a under the constraints (g) then a loop in { 29,
and a transition | =% Reject are added to (Eo).

— If we do not take care of the occurrence of a, a loop ! LI, 1 is added to the (Eo)-

Example. Let us consider the process control example of figure 2. A main characteristic of that
real-time system is that only “fresh signals” must be transmitted. We may be interested in the
following properties (test purposes).

1. The system sends signal (/v) to the actuator in less than 1.3 time units after the reception
of the temperature signal (2¢).

2. If an error occurs, it can be corrected within 1 time unit.
etc ...

The figure 3 (right part) represents the observer modelled from the first functionality described
above. In this observer all traces starting with (!f,n > 4) are rejected. Such traces increase the
behaviour to be analyzed while they are useless for the expected tests. On the other hand,
(!f,n < 4) should be preserved as it can detect conformance violation.

@ o< a

'f, n>=4

z<=1.3

lv

Accept

The functionality to be tested

(#, True)

I'ts observer where:

* is one of {?p, 'e, !r,!v}
** is one of {?p, le, !f}
# is one of {!f, ?t, le, ?p, ?v, Ir}

Fig. 3. An example of real-time observer

3.3 On the fly traversal

The main characteristic of our test selection approach is to perform an on-the-fly traversal of the
Reachable (symbolic) Automaton of specification Ag until the current observer Ao is exhausted
(Accept state reached). As usual, this can be formulated on the basis of a synchronous product
of Ag and Ap. This is done in the following, in terms of full synchronization as the observer is
assumed to be complete, by its construction.



Let As = (Ls, Los, Lys, Xs, X%, X%, Es, Is) and Ao = (Lo, Loo, Lyo, X0, X5, X6, Eo, 10).
The synchronous product of As and Ap isa TIOA Asp = (Lsp, Losp, Ltsp, Xsp, Xsp, Esp,Isp)
where:

— Lgp = Lg x Lo is the set of states equipped by two distinguished sets of Accepting and
Rejecting states which are defined as follows :
o Acceptsp = Lg x {Accept} = Lysp ;
e Rejectsp = Ls x {Reject}.
An accepting state is an element from Acceptgp, and it has the form (lg, Accept), and a
rejecting state is an element of Rejectsp and it has the form (Ig, Reject).
— Losp = Los x Lgo is the set of initial locations;
Ysp = XipUXLp such that : X5p = U5 = X%, and Xk p = X4 = 2, is the set of actions;
— Xgp = X5 U Xp is the set of clocks ;
— Egp is the set of transitions defined by the following minimal rule :

(ls a,gs,rs l/S) A (lo a,go,ro lb)
,9s\go,rsU
(Is,1o) &957go,TsTO ( évlb)

Isp is such that I((ls,lo)) = I(ls) N I(lp) is the invariants to locations in Agp.

The synchronous product is illustrated with the specification of figure 2 and the observer of
figure 3. For space and readability reasons, the picture has been decomposed into figure 4 and
figure 5, and is partially drawn.

x>4, z >4
'f
x: =0

Fig. 4. Synchronous product of Specification and Observer



Fig. 5. Synchronous product of Specification and Observer (cont.)

Optimizing the on the fly traversal. The intuition behind the use of the Accept and Reject states
is to eliminate some behaviours and therefore improve (or optimize) the computation during the
search of target test case. The search must be stopped if Accept state is reached while transitions
towards Reject state are not considered. This improves the reachability of the resulting test graph
since much of the behaviour is eliminated. The test graph (the tester structure) can be defined
by the following operations on the synchronous product.

1. Each element of Accepting states in synchronous product TIOA must be transformed in
PASS state.

2. Each element of Rejecting states in synchronous product TIOA must be transformed in
INCONCLUSIVE state.

3. Each transition which initial location is a PASS must be removed.

4. Each transition which initial location is an INCONCLUSIVE state must be removed.

Starting from specification of figure 2 and observer of figure 3, and their product in figure 4
and figure 5, the operations below produce the test graph of figure 6 which is transformed into
the final tester structure in figure 7. In the latter, the inputs of specification are transformed into
outputs and vice versa, and a Fail state is added to capture all the unexpected outputs.

The test graph defines the subset of the product automaton that is considered for the
reachability. Moreover, during the symbolic reachability analysis, the target is the (Accept/PASS)
state and all the transitions that lead to (Reject/INCONCLUSIVE) are not to be traversed.
This obviously improves the performance of the forward analysis. An on the fly traversal of the
synchronous product (restricted to the test graph) produces the test path depicted in figure 8-
(A). This accepting path is submitted to symbolic analysis for generating test cases, which can
be performed during the on the fly traversal (next subsection).

3.4 Test paths executability and controllability improved

Forward symbolic for executability. Let us consider the accepting test path depicted in figure 8-
(A). A forward symbolic reachability detects that a state such as (Si;(z = 3,y = 1.7)) is
not actually reachable in this path because whenever the automaton occupies location S1, the



X>=2
2t
y: =0,

x>4, n>4, !f
x: =0

y<1, ?p, x:=0

x<2,z>1.3
lv

x<2, z<=1. 3 ’
Iv

y<1,z<=1.3
v

I NCONLUSI VE

Fig. 6. Reduced/optimised graph of synchronous product

(?v, True) or (?e, True) or
or (?r, True)

(2f,

(?e,y< 2) or (?r, True)

or (?v, True

x>4, n>4, ?f

or (?e,y<2) y=2
or (?r, True)

x<2, z<=1.3

v

| NCONLUSI VE

Fig. 7. Complete test graph



difference between z and y is at last 2 time units (x —y >= 2). Therefore, a test run containing
such state is unsound and may fail with a correct implementation. The following presents such
unsound test case.

(So, (2,2)) Z=20W) (g (3,1.7)) 22, (g, (0.1,1.8)) Z20,

t1 2 3

(Ss, (0.2, 1.8)).

To guarantee the executability and the test soundness, the “forward” procedure previously
presented must be performed, throughout the sequence of transitions in the test path, so that to
insure the correctness of the propagated constraints (in the related zones). Figure 8-(B) presents
the computed (correct) symbolic states that enable test executability and soundness.

Az ONE PATH LEADING TO PASS

X<2, z<=1.3, ?v

x>=2, It y>=1, Ip
y:=0, z=0 \\_,/ x:=0 \\,/
O<=x<=4 1<=x<=5 0<=x<=3
y>=0 O<=y<2 O<=y<2

B: FORWARD REACHABILITY

O<=x<=4 2<=x<=5 O<=x<=1 O<=x<= i”f
y>=0 0<=(y=2)< 2 1<=(y=2)<2 l<=y=z<=inf
2<= x-y<=4 1<=y-Xx<2 1<=(y—x)<=1.3

C: BACKWARD REACHABILITY

v
It !
2<=x<=4 3<=x<=5 0<=x<=0.3 O<=x<= inf
y>=0 1<=y<=1.3 1<=y=z<=1.3 l<=y=z<=inf
2<=x-y<=4 1<=(y-x)<=1.3 I<=(y-)<=1.3

Fig. 8. Forward and backward reachability analysis for one accepting path

Backward symbolic for controllability. The future of an IUT run is potentially a tree structure
and one can not always control its evolution towards a specific expected state. This often turns
to inconclusive verdict (There was no error but the expected test could not be completed).
To try to avoid such situation, one must compute the minimal constraints necessary to lead
the IUT towards the expected state. Such constraint is computed in a backward manner with
the target symbolic state as input. The “backward” procedure previously presented must be
performed, throughout the sequence of transitions in the executable test path so that to refine
the propagated constraints (in the related zones) until the beginning of the path.

Figure 8-(C) indicates that the PASS state is reachable only if the input !p is sent when the
clock x takes a value in the interval [3,5] rather than in [2,5], and the clock y takes a value
in [1,1.3] rather than [1,2]. In state the S1 of figure 2, such interval [1.3,2] where y > 1.3 can
not allow the interaction !p to be executed in a timely manner, which implies an inconclusive
outcome. Figure 9 shows the controllable zone in S1 in which we must submit the action !p,
where Z is the reachable state space and Z; is the controllable zone. If the action !p is sent



in the Zone Z1 U I(S1)\ Z, an unsound test is generated, and if it is sent in the zone Z2, an
INCONCLUSIVE test is generated. To avoid such situations, !p should be submitted only in the
controllable zone Z;.

Zf

2 3 4 5 x

Fig. 9. Controllable zone of S1

Finally, to instantiate concrete tests, particular valuations (v) of clocks can be chosen and
propagated in the backward reachability. One could for instance consider extreme values like
“minimal /maximal clock valuation” etc.

Ezample of successful test run. Let us consider the path shown in figure 8-(A). After comput-
ing forward and backward reachability graphs (figures 8-(B) and 8-(C)), we obtain the actual
symbolic test path below.

(2<w<4) 1t (3<w<5,1<y<1.3,2<(y—2)<4),!p (0<2<0.3,1<y<1.3,1<(y—2)<1.3),%
R=25 S So S3

The symbolic test path above can be instantiated with the following test case:

=2t
2

S0

This test case means that the tester sends signal !t at 2 time units, waits at last 1 time unit and
submits signal !p. Then it should receive 7v no later than 0.3 time unit after !p was performed.

4 Further comments on the proposed method

Algorithms and complezity - Efficiency, savings of the method. In this paper, the test selection
algorithm proceeds in two steps: First, it uses an on the fly traversal of the product (specification,
observer) with a standard DFS (Depth First Search) performed in conjunction with the symbolic
forward computation. Second, the intermediate test pattern obtained at this step is analysed in
a backward manner for controllability refinement.

The on the fly DFS algorithm is linear with respect to the transitions relation and state
space of the product. Moreover, our approach performs the on the fly selection with an opti-
mized graph, with a reduced transition relation and state space: Check the savings by comparing
the reduced/optimized graph (figure 6) against the synchronous product (figure 4 continued in
figure 5). Finally, symbolic computation is known to produce fewer reachable vertices, which
leads to better performances.

The other aspect is related to controllability during test experiment. As the implementation
is “free”, it can happen that one does not manage to carry out the desired scenario. The test



experiment thus is to be replayed several times in the hope of exhibit the desired behavior,
which is very expensive in times of development. The controllability analysis is necessary for the
selection of more targeted scenarios and for saving the coast of tests (cf previous comments on
the refinements and gain in figure 9).

Foult detection and conformance relation. For timed systems, the principal models of errors
identified in the literature are : output error (when an unexpected output action arrived), transfer
error (when an unexpected state is reached), and time constraints errors (when an output action
arrived too early or too late). The method presented in this paper detects output and time
constraints errors. Moreover, it can be related to the implementation relation, referred to as
tioco below, since the detection of such errors imply a violation of this implementation relation.
The tioco relation is a time extension of the ioco implementation relation used for input-output
systems: Let A; and Ag be two TIOAs modelling the TUT and the specification. The TUT
conforms to its specification if for each behavior of specification, the possible outputs of the IUT
after this behavior is a subset of possible outputs of the specification behaviors. To formally
define this, we use the following notations: Given a run o, Aaftero is the set of all states of A
that can be reached after the execution of . Formally, A after 0 = {I € L4 -1y % [}. The set
out refers to the set of all output actions or delay that can occur when the automaton reach [ :
out(l) = {a € X' URT -1 %}. The relation tioco is defined as follows:

Aj tioco Ag iff Vo € Traces(Ag) - out(A; after o) C out(Ag after o).

Coverage. The test purpose is a natural basis to coverage analysis. It defines/specifies the tests
to be computed from the system model. The method proposed in the paper computes at least
one test case for a given test purpose, if it exists. One could try to compute all the test paths cor-
responding to a given test purpose. This option is easily implemented, but we incur combinatory
explosion, and incur loosing the benefits of the on the fly search. Moreover, without additional
hypotheses on the time domains, it is impossible to compute all the possible instances of timed
tests because of dense time.

Model Transformation
1 . m Other
Environment
. (Open)
Graphical
(Grap ) Tools
User v v
OOTEST Models
Interface
Library for
I OOTEST kernel
S-analysis

Fig. 10. Architecture of 00TEST environment

Architecture and status of 00TEST. The prototype tool 00TEST is under a very “Beta version”. The
test paths generated before backward analysis are not always the shortest one (there is no search
optimization implemented yet). The architecture is presented in figure 10. The tool is designed
to be flexible, evolutive and must be connected to other platforms and tools. Currently the tool



inputs are timed automata generated from a Graphical User Interface, developed in the french
Averroes project [2]. For symbolic analysis, the tool reuses existing libraries for the manipulation
of polyhedra. Many such libraries are available as open source and we have currently used some
extensions of the Polylib library [5]. We can manipulate structures equivalent to DBM, and
few modifications enable the manipulation of Clock Difference Diagrams, or state classes. The
Averroes platform partially implements some model transformation and generates automata in
XML format that can be parsed towards over model-checking tools.

5 Real-time Ethernet protocol

In this section we briefly comment the case study that we are currently carrying in our laboratory,
for testing RT-EP (Real Time Ethernet Protocol). More details can be found in the report [3].

RT-EP [16] has been designed to avoid collision in the Ethernet media, and to achieve a
relatively high speed mechanism for real time communication at a low cost, while keeping the
predictable timing behaviors required in the distributed hard real time communication. Each
station (processing or CPU) in RT-EP has a transmission queue and a set of reception queues.
The number of reception queues can be configured depending on the number of applications
threads running in the system and requiring reception of messages.

The network is logically organized as a ring. Each station knows which other station is its
predecessor and its successor. The protocol works by rotating a token in this ring. The token
holds information about the station having a highest priority packet to be transmitted and its
priority value. The network operates in two phases. The first phase corresponds to the priority
arbitration, and the second phase to the transmission of an application message.

The following operations show the functionality of RT-EP.

— Firstly, each station in RT-EP reads a configuration file describing the token ring and gets
configured as one of its station. The station configured as initial token-master sends the
Initial Token (In-Token) to the successor station.

— Each station listens for the arrival of any packet. When a packet is received, a check is done
to determine its type:

e If it is an information packet (infos) the information is written into the appropriate
reception queue and the station becomes the token-master.

e If it is a token packet, the station checks its type. (1) If it is a Regular Token (Rg-Token)
the station compares the priority carried by the token with the highest priority element on
its transmission queue, changes the regular token if its own priority is higher, and sends
the Update Token (Up-Token) to the next station. (2) If the token is the Initial Token
the station sends information (infos) if it has the highest priority, or sends the permission
(action Tr-Token) to the highest priority station. (3) If the token is the Transmit Token
the state has the highest priority on the ring and it is allowed to transmit it.

To recover faults due to the loss of packets, each station, after sending a packet (information
or token) listens to the media for an acknowledge (action ack), which is the transmission of the
next frame by the receiving station. If no acknowledge is received after some specified timeout,
the station assumes that the packet is lost and retransmits it. The station repeats this process
until an acknowledge is received or a specified number of retrials is produced. In the latter case
the receiving station is considered as a failing station and will be excluded from the ring (action
dk).

Each station in RT-EP can be modeled by the two concurrent automata: a sender module
and a receiver module. The sender is shown in Figure 12, it uses 3 clocks (x,y,w).
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Fig. 12. transmission module



More details on RT-EP can be found in [16, 3].
For testing RT-EP, if we want to test the ability of the protocol to handle faults due to the
loss of packets, we study the following examples:

1. A station should not be excluded from the ring only if it cannot response after 4 retransmis-
sion from the predecessor station.
2. When an Information packet is received, the station can submit an acknowledge no later

than 1851 ns.

The observer related to the first property is shown in figure 13-(B).

Q (*, True) (*, True)

! Infos(V) ! nfos

voi=1 m =0
(*, True) C V <4, V 1= V+1 (*, True) n<11374
!Infos (V) !'Infos
?ack vV =4 me11374
1 dk ?ack 1 dk
(*, True) (*, True)
(A (B)

(*, True): Actions not specified in the set of output transitions of each state

Fig. 13. Observer of the first property; (A) with variable and (B) with temporal interpretation

As examples of test sequences leading to the PASS we have:

TCl _ (SLL].) 'Init (537.[/].) y=932,Tr—Token (SG,L].) y=4163,7Infos (59,L2)
y:=0 y:=0 z:=0,w:=0,m:=0

wi=11374,m:=11374,?dk

.. (89, L2) PASS.

k<1851,m<1851,%ack

T02 _ (NLF].) 1 Init (N2,F]_) y=2119,!Infos

m:=0 m:=0

(N2, F2) PASS.

The first test case is generated from the complete test graph of the transmission module
specification of RT-EP (Figure 12) and the observer of Figure 13. Here we propagated the minimal
value of the time in the case of emission and the maximal value of the time in the case of reception.
This test means that after initialization the tester emits to the IUT a transmit token packet at
930 ns and should observe the information packet no later than 4163 after sending the transmit
token, waits 11374 ns and should observe the output (dk). For receiving the output (dk) the
tester should not submit to the IUT the input (ack). The second test case is generated from the
complete test graph of the reception module of RT-EP and the observer related to the second

property.



6 Conclusion

We have presented a method to test selection for real-time systems. Some ideas in our test design
process are inspired by techniques used, in other respects, in different research fields. The forward
symbolic analysis was used for model-checking of timed systems. The backward analysis was a
technique used in fault tolerance analysis to track the cause of a failure in the past of system
execution. Combining such techniques for the purpose of testing is - to our knowledge - a new
contribution for test selection improvement.

The current work is concerned with functional conformance requirements, and it does not
address the full features of the real-time observers actually to be used in the current project.
These observers are expected to model extra features like failures of the run-time environment,
etc. For future work, our method and its implementation within the 00TEST tool will upgrade in
a short term, to take some aspects of robustness testing into account.
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