
Test Case Minimization for Real-Time Systems
Using Timed Bound Traces⋆

Ismaïl Berrada1, Richard Castanet1, Patrick Félix1, and Aziz Salah2

1 LaBRI - CNRS - UMR 5800 Université Bordeaux 1,
33405 Talence cedex, France

{berrada, castanet, felix}@labri.fr
2 Département d’Informatique,

Université du Québec à Montréal,
201, avenue du Président-Kennedy, Montreal,

Quebec H2X 3Y7, Canada
aziz.salah@uqam.ca

Abstract. Real-Time systems (RTS for short) are those systems whose
behavior is time dependent. Reliability and safety are of paramount im-
portance in designing and building RTS because a failure of an RTS puts
the public and/or the environment at risk. For the purpose of effective
error reporting and testing, this paper considers the trace inclusion prob-
lem for RTS: given a path ρ (resp. ρ′) of length n of a timed automaton
A (resp. B), find whether the set of timed traces of ρ of length n are
included in the set of timed traces of ρ′ of length n such that A is known
but not B. We assume that the traces of ρ′ are only defined by a decision
procedure.

The proposed solution is based on the identification of a set of timed
bound traces. The latter gives a finite representation of the trace space
of a path. The number of these timed bounds varies between 1 and
2 × (n +1). The trace inclusion problem is then reduced to the inclusion
of timed bound traces. The paper shows also how these results can be
used to reduce the number of test cases for an RTS.

Keywords: Timed Input Output Automata, Trace Inclusion, Black-Box
Testing, Conformance Testing.

1 Introduction

Nowadays, real-time systems (RTS for short) span various domains of our daily
life such as telephone systems, patient monitoring systems, and air traffic con-
trol. All these systems are time sensitive because their behavior does not only
depend on the logical result of the computation but also on the time at which
the inputs and outputs are observed. It is well-known to RTS research commu-
nity that the misbehavior of an RTS is generally due to the violation of time
⋆ This research has been supported by the French RNTL project AVERROES and the

Marie Curie RTN TAROT (MCRTN 505121).

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 289–305, 2006.
c⃝ IFIP International Federation for Information Processing 2006

Aiko Pras

290 I. Berrada et al.

constraints. Such malfunctioning may have catastrophic consequences on both
human lives and the environment. Therefore, it is very necessary to make sure
that the implementation of an RTS is error-free before its deployment.

Two formal techniques, namely verification and testing, are usually used to
detect errors in RTS systems. Verification aims at checking that a specification
or a model of the system respects some functional and timing requirements.
However, testing deals with the implementation of the system, usually referred
to as Implementation Under Test or IUT for short, and checks its conformance
to the specification of the system in three steps. First of all, test cases are gen-
erated according to some coverage criteria. Then, those test cases are executed
against the IUT and its reactions are logged. Finally, the verdict is concluded by
analyzing the reactions of the IUT: if the behavior of the IUT during test cases
doesn’t conform to its specification, the IUT is said faulty.

In this paper, we study the following problem:

Trace Inclusion Problem. Consider a path ρ (resp. ρ′) of length n ∈ N of a
timed automaton A (resp. B). How to show that TTrace(ρ) ⊆ TTrace(ρ′) such
that:

– ρ is known: the different constraints and clock updates of ρ are given.
– ρ′ is unknown: only the set TTrace(ρ′) is given (the different constraints and

clock updates of ρ′ are unknown).

with TTrace(ρ) (resp. TTrace(ρ′)) are the timed traces of ρ (resp. ρ′) of length
n1.

Our motivation for studying this problem is testing. The testing research
community distinguishes between three main testing strategies: black-box test-
ing, white-box testing, and grey-box testing. Those testing strategies differ from
each other on the way the test cases are generated. In the case of black-box
testing of RTS, the code of IUT is unknown and only its timed traces are given.
Black-box testing consists then of deriving test cases based solely on the spec-
ification of the IUT. The use of so called conformance relations give formal
characterizations of conditions under which an IUT can be considered as con-
formant to its specification. Checking a conformance relation can be reduced,
in general, to the trace inclusion problem between the implementation and the
specification. By studying this problem, the paper gives the necessary and suffi-
cient conditions to check a conformance relation based on trace inclusion. These
conditions can be then used to reduce the number of test cases considered for
testing an RTS.

The main contribution of this paper is the proposition of a solution to the trace
inclusion problem. The proposed solution is based on the identification of the
timed bound traces of a path. The latter considers only the behaviors of the RTS
on the constraint bounds. Their number varies between 1 and 2× (n+1), where
n is the length of the path. The proof of the existence of those traces 1) considers
the constraint polyhedron corresponding to the set of constraints that each timed
1 A formal definition of TTrace() is given in section 3.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 291

trace of the path has to satisfy and 2) uses some graph transformations that
preserve the positivity of the graph cycles.

As a second contribution, the paper proposes an approach to reduce the num-
ber of test cases considered while testing RTS. The proposed approach is based
on the use of the simulation graph introduced by Tripakis [19]. The fact that the
trace inclusion problem can be solved by the inclusion of timed bound traces,
provides a method to reduce the number of test cases.

The rest of this paper is structured as follows. Section 2 introduces the theo-
retical background of the paper. Section 3 presents the model of timed automata
and its corresponding notations. Section 4 corresponds to the core of this paper
and shows how to generate timed traces from a path. Section 5, based on the
result of Section 4, outlines a method for minimizing the number of test cases
considered while testing RTS. Section 6 presents the related work. Finally, we
conclude and draw some perspectives in Section 7.

2 Background

Through-out this paper, we write R, R≥0, N for the sets of reals, nonnegative
reals and naturals, respectively. +∞ (resp. −∞) is the positive infinity (resp.
negative) such that: t ∈ R, −∞ ≤ t ≤ +∞, t + (+∞) = (+∞) + t = +∞ and
t + (−∞) = (−∞) + t = −∞. R is the set R ∪ {+∞, −∞}. For a set P , 2P is
the powerset of P and for a given order on P , min(P) is the smallest element of
P . Logical “and” and “or” are written ∧ and ∨, respectively.

2.1 Timed Event and Timed Sequence

Let Σ be a finite set of symbols. As usual, Σ∗ will denote the set of finite
sequences and ϵ ∈ Σ∗ the empty sequence. τ will denote an action not in Σ and
Στ the set Σ ∪ {τ}. Let σ be a sequence and X ⊆ Σ. Then, σ|X is the sequence
obtained by erasing from σ all symbols not in X (projection on X).

A timed event over Σ is a pair u = (a, d) such that a ∈ Σ and d ∈ R≥0.
If a is interpreted to denote an event occurrence then d is interpreted as the
timestamp of the occurrence of a. A timed sequence σ = (a1, d1)...(an, dn)
over Σ is a member of (Σ × R≥0)∗ such that the sequence of timestamps is
monotonically increasing. For example, σ = (a1, 3)(a2, 5) is a timed sequence,
however σ′ = (a1, 3)(a2, 2) is not. The set of timed sequences over Σ is noted
TS(Σ). Note that, when X ⊆ Σ, the projection of a timed sequence σ over X
is obtained by erasing from σ all symbols such that the associated event is not
in X .

2.2 Valuations and Polyhedra

Valuations. Let V be a finite set of variables ranged over R≥0. A valuation ν
over V is a function ν : V *→ R≥0 that assigns to each variable a real value. V(V)
will denote the set of all valuations over V . Let X ⊆ V , d ∈ R and ν ∈ V(V).

292 I. Berrada et al.

Then ν[X := 0] is the valuation defined by ν[X := 0](x) = ν(x) if x ̸∈ X and
ν[X := 0](x) = 0 otherwise. Intuitively, ν[X := 0] assigns to each variable in X
the value 0 and leaves the rest of variables unchanged. ν + d is a valuation such
that for all x ∈ V , (ν + d)(x) = ν(x) + d. Intuitively, ν + d is obtained from ν
by advancing all variables by d.

c-Closure [19]. Let c ∈ N. Two valuations ν and ν′ over V are called
c-equivalent if:

– for any x ∈ V , either ν(x) = ν′(x) or (ν(x) > c and ν′(x) > c).
– for any pair (x, y) ∈ V 2, either ν(x)−ν(y) = ν′(x)−ν′(y) or (|ν(x)−ν(y)| > c

and |ν′(x) − ν′(y)| > c).

Polyhedra. An atomic constraint over V is an expression of the form x ◃▹ n or
x − y ◃▹ m where (x, y) ∈ V 2, ◃▹∈ {≤, ≥} and (n, m) ∈ N2. The set of formulas
that are finite conjunctions of atomic constraints (resp. of constraints of the
form x ◃▹ n) will be denoted by Φ(V) (resp. ΦI(V)). Elements of Φ(V) are called
polyhedra. We write true for ∀x∈V x ≥ 0 and zero for ∀x∈V (x ≤ 0 ∧ x ≥ 0).
Let ν ∈ V(V) and Z ∈ Φ(V). Then ν satisfies Z, noted ν ∈ Z, if ν satisfies
all constraints of Z. Z is bounded iff there is d ∈ N such that for all ν ∈ Z,
ν + d ̸∈ Z.

Given a polyhedron Z, the c-closure of Z, noted close(Z, c), is the greatest
polyhedron Z ′ such that Z ⊆ Z ′, and for all ν′ ∈ Z ′ there exists ν ∈ Z such that
ν and ν′ are c-equivalent.

Operations on Polyhedra. We define the operations Z[X := 0] and Z↑ of
forward clock reset and forward time elapse of a polyhedron Z, respectively, as
follows (X ⊆ V):

Z[X := 0] = {ν[X := 0] | ν ∈ Z} Z↑ = {ν + d | ν ∈ Z, d ∈ R≥0}

3 Timed Automata

A clock is a variable that allows to record the passage of time. It is ranged over
R≥0, and the only assignment allowed is clock reset of the form x := 0.

Timed Automata [1]. A timed automaton (TA) A over Σ is a tuple A =
(L, l0, Σ, C, I,→) such that:

– L is a finite set of locations,
– l0 is the initial location,
– Σ is an alphabet of actions,
– C is a finite set of clocks,
– I : L *→ ΦI(C) is a mapping that assigns invariants to locations, and
– →⊆ L × Φ(C) × Στ × 2C × L is the set of edges. An edge has a source, a

label, a guard, a set of clocks to be reset with this edge, and a target.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 293

The labels in Σ represent the observable interactions of A; the special label τ ̸∈ Σ
represents an unobservable, internal action. A transition t = (l, Z, a, r, l′) ∈→ is
noted by l

Z,a,r−−−→ l′. T A(Σ) denotes the set of all TAs over Σ.

Semantics. The semantics of a TA A is defined by associating a labeled transi-
tion system (LTS) S(A) = (S, s0, Γ, →A). A state of S(A) is a couple (l, ν) ∈ S
such that l is a location of A and ν is valuation over C such that ν satisfies the
invariant I(l). The initial state s0 of S(A) is (l0, ν) where ν ∈ zero. Labels of Γ
are included in Στ ∪ {ϵ(d) | d ∈ R} such that {ϵ(d) | d ∈ R} corresponds to the
elapse of time (Waiting d units of time is noted ϵ(d)). There are two types of
transitions in S(A):

– State change due to elapse of time: for a state (l, ν) and d ∈ R≥0 (l, ν)
ϵ(d)−−→A

(l, ν + d) if for all 0 ≤ d′ ≤ d, ν + d′ ∈ I(l) (a timed transition).
– State change due to a location-edge: for a state (l, ν) and an edge (l, Z, a, r, l′),

(l, ν) a−→A (l′, ν[r := 0]) if ν ∈ Z and ν[r := 0] ∈ I(l′) (a discrete transition).

Runs. Let A = (L, l0, Σ, C, I, →) ∈ T A(Σ) and σ = (a1, d1)...(an, dn) ∈
TS(Στ). A run r of A over σ, denoted by (l, ν), is a finite sequence of the
form:

r : (l0, ν0)
(a1,d1)−−−−→ (l1, ν1) ... (ln−1, νn−1)

(an,dn)−−−−−→ (ln, νn)

with li ∈ L, and νi ∈ V(C), for all i ∈ [0, n], satisfying the following requirements:

1. Initiation: for all x ∈ C, ν0(x) = 0.
2. Consecution: for all i ∈ [1, n], there is an edge ti = (li−1, Zi, ai, ri, li) of A,

such that:
– νi−1 + (di − di−1) ∈ Zi.
– νi equals to (νi−1 + (di − di−1))[ri := 0].
– νi−1 + d ∈ I(li−1) holds for all 0 ≤ d ≤ di − di−1.

Intuitively, at the initial location l0, the values of clocks are defined to be zero.
When the transition ti+1 from state li to li+1 occurs, we use the value νi +
(di+1 − di) to check the clock constraints, however, at time di+1, the value of
clocks that are reset in ti+1 is defined to be 0. By convention, d0 is equal to 0.

Example 1. Consider the TA A of the Fig.1 and the timed sequence (a, 2)(b, 3.7).
The run corresponding to this sequence is given below. A clock interpretation is
represented by listing the values [x, y].

(l1, [0, 0])
(a,2)−−−→ (l2, [2, 0])

(b,3.7)−−−−→ (l3, [3.7, 1.7]). ⊓/

The set of timed sequences of A, noted Run(A), is defined by:

Run(A) = {σ | A has a run over σ ∈ TS(Στ)}.

The set of timed traces of A, noted TTrace(A), is defined by:

TTrace(A) = {σ | ∃σ′ ∈ Run(A), σ′
|Σ = σ}.

294 I. Berrada et al.

6

1

2

4

5

3

A

x ≤ 8

true true

x ≤ 4

true

true

x ≤ 5/a/y := 0

x ≥ 3 ∧ y ≤ 4/b/−

x ≤ 8/c/x := 0

x ≥ 2/d/− x ≤ 2/e/−

Fig. 1. Timed automata

Finally, for a path ρ of A of length n (i.e. a suite of n transitions of A), we use
TTrace(ρ) to denote the set of timed traces of length n of the automaton Aρ

induced by ρ 2.

4 Timed Bound Traces of a Path

The goal of this section is to provide an approach to extract timed traces from
a given path. As we will see in the next section, these traces can be used to test
RTS.

The idea behind our approach is as follows: to a path ρ, we can associate a
constraint polyhedron Zρ defining the set of constraints to be satisfied by each
trace of TTrace(ρ). From this polyhedron, we identify some timed traces of ρ
called the timed bound traces (TBT). These latter give a finite representation
of the trace space of ρ. The proof of the existence of TBT is based on some
transformations on the constraint graph associated to a polyhedron, and can be
found in Annex B.

For the rest of this paper, ρ = t1 · · · tn will denote a path of a TA A =
(L, l0, Σ, C, I,→) such that ti = (li−1, Zi, ai, ri, li), for all i ∈ [1, n]. V =
{v1, v2, ..., vn} will denote a set of variables ranged over R≥0, and V0 = V ∪ {v0}
the set V extended with a fictive variable v0 which is always equals to 0. We will
confound elements of Φ(V) with elements of Φ(V0) and a valuation over V with
a valuation over V0.

4.1 Constraint Polyhedron

Let σ = (a1, d1) . . . (an, dn) ∈ TTrace(ρ). According to the definition of
TTrace(ρ), the different instants (di)i∈[1,n] satisfy a set of constraints related
to the transitions of ρ. So, we can associate to ρ a constraint polyhedron Zρ

2 Aρ has the same states and transitions as ρ.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 295

over variables V0 = {v0, v1, · · · , vn} such that: σ ∈ TTrace(ρ) iff the valuation
ν ∈ V(V0) defined by ν(vi) = di, for all ∀i ∈ [0, n], is in Zρ.

In order to define the constraint polyhedron, we need some additional nota-
tions. For a clock x ∈ C and i ∈ [1, n], ρi = t1...ti will denote the path composed
of the first i transitions of ρ. lastxi will denote the index of the transition where
the clock x has been reset most recently before i. Recall that all clocks are reset
at the initial location l0, and thus lastxi = 0 if x was not reset in ρi. Zi will de-
note the constraint polyhedron associated to ρi. The construction of Zi is done
by induction: for i ∈ [1, n],

1. Z0 = true
2. Zi is obtained from Zi−1 as follows:

– Zi := Zi−1 ∧ vi−1 ≤ vi

– If the guard of ti has a term of the form x ◃▹ k then Zi := Zi∧vi−vj ◃▹ k,
where j = lastxi .

– If the guard of ti has a term of the form x−y ◃▹ k then Zi := Zi∧vp−vq ◃▹
k, where q = lastxi and p = lastyi .

– If the invariant of li−1 has a term of the form x ◃▹ k then Zi := Zi ∧ vi −
vj ◃▹ k, where j = lastxi .

Next, Zn will be noted Zρ.

Proposition 1. σ = (a1, d1) · · · (an, dn) ∈ TTrace(ρ) iff there is a valuation
ν ∈ Zρ such that ν(vi) = di, for all ∀i ∈ [0, n]. ⊓/

Proof. See Annex A. ⊓/

Example 2. Consider the path ρ of the automaton of Fig.1, defined by:

(l1, x ≤ 8)
x≤5/a/y:=0−−−−−−−−→ (l2, true)

x≥3∧y≤4/b/−−−−−−−−−−→ (l3, true).

Recall that v0 is equal to zero all time. Then,

Z0 = true, Z1 = v0 ≤ v1 ∧ v1 − v0 ≤ 5 ∧ v1 − v0 ≤ 8

Zρ = Z2 = v0 ≤ v1 ∧v1 −v0 ≤ 5∧v1 −v0 ≤ 8∧v1 ≤ v2 ∧v2 −v0 ≥ 3∧v2 −v1 ≤ 4

By consequence, σ = (a, d1).(b, d2) ∈ TTrace(ρ) iff the valuation ν defined by
ν(v1) = d1, ν(v2) = d2 is in Zρ. ⊓/

Convention. Without losing the generality and for simplicity reasons, we as-
sume that Zρ can be written (syntactically) as:

Zρ =
∧

vi,vj∈V0,vi ̸=vj

(vi − vj ≤ lij), lij ∈ R.

In fact, a constraint of the form vi ≤ c can be written as vi − v0 ≤ c (v0 is equal
to 0) and vi ≤ c∧vi ≤ c′ can be written as vi−v0 ≤ min(c, c′). Furthermore, if vi

does not have a upper bound in Zρ, then we can add the constraint vi−v0 ≤ +∞.
These remarks hold for a constraint of the form vi − vj ≤ c.

296 I. Berrada et al.

Definition 1. Zρ =
∧

vi,vj∈V0,vi ̸=vj
(vi − vj ≤ lij) ̸= ∅ is said in its canonical

form if for all i ∈ [0, n], j ∈ [0, n], there exists a valuation ν ∈ Zρ such that :
ν(vi) − ν(vj) = lij ⊓/

Definition 2. The canonical form of Zρ, noted cf(Zρ), is the greatest canonical
polyhedron included in Zρ. ⊓/

Note that cf(Zρ) and Zρ represent the same space portion and cf(Zρ) = Zρ if
Zρ is in its canonical form.

4.2 Main Results

Theorem 1. Let ρ be a path and cf(Zρ) =
∧

vi,vj∈V0, vi ̸=vj
(vi − vj ≤ lij) be the

canonical form of its constraint polyhedron. Assume that Zρ is bounded and not
empty (Zρ ̸= ∅). Then, for all k ∈ [0, n] :

1. There is a valuation νM
k (Zρ) of Zρ such that: for all i ∈ [0, n], i ̸= k,

νM
k (Zρ)(vi) − νM

k (Zρ)(vk) = lik.
2. There is a valuation νm

k (Zρ) of Zρ such that: for all i ∈ [0, n], i ̸= k,
νm

k (Zρ)(vk) − νm
k (Zρ)(vi) = lki. ⊓/

Intuitively, if Zρ is bounded and nonempty, then for each variable vk ∈ V0, there
is a valuation νM

k (Zρ) (resp. νm
k (Zρ)) which reaches the bounds (lik)k ̸=i,i∈[0,n]

(resp. (lki)k ̸=i,i∈[0,n]) of cf(Zρ) constraints, where vk is a right (resp. left) mem-
ber. We have assumed that Zρ is bounded to ensure the existence of νM

k (Z).
The valuations νm

k (Z) exist even Zρ is not bounded because variables of V0 are
ranged over R≥0.

Proof. See Annex B. ⊓/

Computation of νM
k (Zρ) and νm

k (Zρ). Theorem 1 establishes the existence
of valuations (νM

k (Zρ))k∈[0,n] and νm
k (Zρ)k∈[0,n], and their unicity. Having in

mind that v0 = 0, a direct application of this theorem gives: for all k ∈ [0, n],

1. νM
k (Zρ) is the valuation defined by:
– If k = 0 then νM

k (Zρ)(vi) = li0.
– Else νM

k (Zρ)(vi) = −l0k + lik and νM
k (Zρ)(vk) = −l0k

for all i ∈ [1, n], i ̸= k.
2. νm

k (Zρ) is the valuation defined by:
– If k = 0 then νm

k (Zρ)(vi) = −l0i.
– Else νm

k (Zρ)(vi) = lk0 − lki and νm
k (Zρ)(vk) = lk0

for all i ∈ [1, n], i ̸= k.

Example 3. Let Zρ = 0 ≤ v1 ∧ v1 ≤ v2 ∧ v1 ≤ 5 ∧ v2 ≥ 3 ∧ v2 − v1 ≤ 4 be
the constraint polyhedron of the example 2. Zρ is bounded. Its canonical form
is defined by: cf(Zρ) = (v2 − v0 ≤ 5)∧ (v0 − v2 ≤ 0) ∧ (v1 − v0 ≤ 9) ∧ (v0 − v1 ≤
−3) ∧ (v1 − v2 ≤ 4) ∧ (v2 − v1 ≤ 2). Then,

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 297

νM
0 (Zρ) =

(
9
5

)
v1
v2

νM
1 (Zρ) =

(
3
5

)
νM
2 (Zρ) =

(
4
0

)

νm
0 (Zρ) =

(
3
0

)
νm
1 (Zρ) =

(
9
5

)
νm
2 (Zρ) =

(
3
5

)
⊓/

Now, consider the two suites of timed sequences (σMk)k∈[0,n] and (σmk)k∈[0,n]
defined by:

– σMk = (a1, νM
k (Zρ)(v1)) · · · (an, νM

k (Zρ)(vn)).
– σmk = (a1, νm

k (Zρ)(v1)) · · · (an, νm
k (Zρ)(vn)).

Note that, for all k ∈ [0, n], σMk ∈ TTrace(ρ) and σmk ∈ TTrace(ρ) (according
to proposition 1).

Definition 3. The timed sequences (σMk)k∈[0,n] and (σmk)k∈[0,n] are called the
timed bound traces (TBT) associated to ρ. ⊓/

Timed bound traces give a finite representation of the trace space of a path.
According to Theorem 1, the number of TBT is 2 × (n + 1) (n is the length of
the path). However, this number varies between 1 and 2 × (n + 1) and depends
on the number of clock resets used in the path. Thus, a path without clock resets
has at most 2 TBT. The complexity of computing σMk or σmk from cf(Zρ) is
O(n). The computation of the canonical form of a polyhedron depends on the
data structures used. The algorithm given in [8] allows to compute this form and
to test if a polyhedron is empty. Its complexity is O(n3).

4.3 Trace Inclusion

Consider a path ρ (resp. ρ′) of length n ∈ N of a timed automaton A (resp. B). To
show that TTrace(ρ) ⊆ TTrace(ρ′) is equivalent to show that cf(Zρ) ⊆ cf(Zρ′).
We consider here the case where Zρ is known and only the set TTrace(ρ′) is
known. We assume that Zρ (resp. Zρ′) is bounded and not empty.

Corollary 1. TTrace(ρ) ⊆ TTrace(ρ′) iff σMk ∈ TTrace(ρ′) and σmk ∈
TTrace(ρ′), for all k ∈ [0, n]. ⊓/

Intuitively, the corollary gives the necessary and sufficient conditions to show
that TTrace(ρ) ⊆ TTrace(ρ′). In fact, it is sufficient to show that timed bound
traces of TTrace(ρ) are also timed traces of TTrace(ρ′).

Proof. See Annex C. ⊓/

5 Application: Testing

A test case (test for short) is an experience performed on the IUT by the tester.
In the case of RTS, there are different types of tests, depending on the capabilities
of the tester to observe and react to event. Analog-clock tests [9, 13] can measure

298 I. Berrada et al.

precisely the real-time delay between observed actions. Digital-clock tests can
only count how many “ticks” of a finite-granularity clock have occurred between
two actions. Analog-clock testers can measure real-time precisely, but they are
difficult (if not impossible) to implement for real-time IUT. Digital-clock testers
have access to a periodic clock/counter and are implementable for any IUT.
However, they can announce a “Pass” verdict when it is “Fail” (the reception of
an event “a” after 2.7 units of time and the same reception after 2.8 units of time
will look the same for a digital-clock tester). The use of a digital-clock tester
does not mean the discretization of time, the specification is still dense-time but
the capabilities of the tester are discrete-time. In this paper, we consider digital-
clock testers. Furthermore, we will consider static tests, i.e. the response of the
digital-clock tester is the same and known in advance.

5.1 Simulation Graph [19]

Tripakis defines a number of different abstractions for timed automata and study
the properties they preserve. These abstractions are based on the simulation
graph, which is built by forward reachability and preserves all linear properties.
In the simulation graph, the passage of time is hidden and only the discrete-state
changes can be observed.

Let A be a TA, S = (l, Z) be a symbolic state (i.e. a location l of A and a
polyhedron Z), and t = (l, Z ′, a, r, l′) be a transition of A. Then,

postc(S, t) = (l′, close(((Z ∩ Z ′)[r := 0])↑, c))

Intuitively, postc() contains all states (and their c-closure) that can be reached
from states in S by taking transition t and letting some time pass. Given the
initial location l0 of A, the simulation graph S(A, c) (c is a natural constant
greater than the closure of A) is generated using a depth-first search starting
from S0 = (l0, zero↑) and generating for each vertex S = (l, Z) in the stack,
the successors S′ = postc(S, t), for each transition t = (l, Z1, a, r, l′) of source l
in A. The exploration of the branch leading to Si is stopped if: either Si = ∅
or there is a previously generated vertex Si ⊂ S′. Otherwise, Si is added to the
set of vertexes and S

a−→ Si to the set of edges of the simulation graph. It has
been shown in [19] that S(A, c) is finite and there is a run of A from l0 to lf if
in the simulation graph there is a vertex S = (lf , −). Moreover, for each path
S0 = (l0, Z0)

a1−→ S1 = (l1, Z1)...
an−−→ Sn = (ln, Zn) in the simulation graph,

there is a run r = (l, ν) of A such that νi ∈ Zi, for all i ∈ [0, n], and vice versa.

5.2 Digital-Clock Test Derivation

Our goal here is not to provide a complete method to derive digital-clock tests,
but only to give the broad lines of an approach to build statically digital-clock
tests. The reader can found in [3] a complete algorithm to derive tests for digital-
clock/analog-clock testers.

For generating tests, our approach uses the simulation graph. In fact, as we
have said, S(A, c) gives a finite representation of the reachable state space; each

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 299

path of S(A, c) has a run of A and each run of A is inscribed in path of S(A, c).
Classical methods for untimed systems can be applied, in general, to derive a
set of paths from the graph S(A, c). Let ATSM (A) be a set of paths derived
from S(A, c) with a method M , and with respect to a given coverage criterion
(states, transitions,...). Element of ATSM (A) can not be used directly to test a
given implementation of A because they are abstract.

Each path ρ ∈ ATSM (A) defines a set of timed traces TTrace(ρ). Corollary
1 has a great influence on test cases considered for the path ρ. In fact, according
to this corollary, the number of distinct tests required for the trace inclusion is
between 1 and 2 × (n + 1) test cases corresponding to the timed bound traces
of ρ. Here, we assume that the time is bounded for each ρ ∈ ATSM (A) because
testing is a finite experience. When a path ρ ∈ ATSM (A) is not bounded, we
can choose a natural constant MAX to limit the time of observations.

Thus, the approach that we introduce derives abstract paths form the simu-
lation graph; for each abstract path derived, between 1 and 2× (n+1) test cases
are generated corresponding to TBT of this path. These latter are then deco-
rated by the different verdicts. Our approach does not suffer from the explosion
problem, since we use only tests that meet the timed bound traces.

6 Related Work

Regarding works in analyzing RTS, [2] have studied the problem of timestamp
generation. The solution proposed consists in computing one timed trace cor-
responding to the minimal accumulate delay run. The approach of Tripakis for
generating timed diagnostics presented in [19, 20] was based on a symbolic analy-
sis. The solution proposed uses the simulation graph to generate abstract paths.
For each abstract path, the authors chose randomly the instant of firing the tran-
sitions. In [14], the authors show the existence of timed diagnostics associated to
a symbolic path, but do not provide a method to compute them. In [10], the au-
thors propose to use the verification tool Uppaal to generate the optimal timed
trace corresponding to a state. In [16], the authors propose several algorithms
to compute the minimal timed diagnostic that reach a given state.

Regarding works on testing, [13] propose a method to derive analog/digital-
clock test cases. The approach proposed was based on a symbolic analysis. How-
ever, the proposed method for digital tests considers “ticks” of clocks as an
observable event. As a consequence of this choice, is the presence of long chains
of ticks in the test cases generated as reported in [13]. The authors propose then
a heuristic to compact chains of ticks, but this heuristic does not give always
minimal tests and it is not trivial.

An extension of test theory for Mealy machines in the case of dense RTS was
proposed by Springintveld et al. [18]. The authors suggested to perform a kind of
discretization of the region graph model. Another work generating test sequences
for a discretized deterministic timed automaton is given by En-Nouaary et al. in
[7]. The authors propose to build a grid automaton from the region graph, and
use a Wp method for the generation assuring a good coverage of the initial spec-
ification, but the number of generated test cases can be large. In [5], an implicit

300 I. Berrada et al.

clock is used, the time is discrete and the proposed model is a temporized tran-
sition system. In [12], the authors have chosen as model temporized automata
with discrete time. The model is transformed into automaton without time, but
with two special events on clocks: set and expire. In [6], the system specifica-
tion is based on a constraint graph. From a fault model, the authors define test
criteria and generate test cases according to the test criteria. Since constraint
graph is used as a model, only delays can be expressed between two successive
events, and the coverage of faults cannot be complete. In [15], the generation of
test cases is produced from logic formula (time is expressed by using two con-
structors: future and past). A unique clock is used and the temporal domain is
discrete. [11] propose a generation method based on must/may traceability. The
authors propose to test first, the correctness of the implementation of states and
transitions. For that, they transform the specification into a FSM, and use the
UIOv-method to derive test cases. [17] use symbolic analysis for event-recording
automata inspired by the Uppaal model-checker.

All of these methods successfully generate timed test cases but most of them
suffer from an exorbitant number of test cases. The solution that we have pro-
posed was based on the use of timed bound traces and does not suffer from these
problems.

7 Discussion

In this paper, we have studied the trace inclusion problem of RTS. Our solution
was based on the identification of the timed bound traces (TBT) corresponding
to a given path. The trace inclusion problem is then reduced to the inclusion of
TBT. As an application, the paper showed how to use these results to reduce the
number of test cases for an RTS. The idea behind our approach was the use of
the simulation graph to derive abstract paths and the generation of a finite set
of test cases from each abstract path corresponding to the timed bound traces.

To our knowledge, the identification of TBT, and the solution proposed for
trace inclusion problem are new results. Furthermore, our approach for gener-
ating tests, does not suffer from an exorbitant number of test cases because we
consider only test cases corresponding to TBT.

To have a complete coverage of the timed trace space of the specification while
testing (according to corollary 1), the assumption of the event determinism of the
specification is required. This model is quite restrictive, and the generalization
will benefit many RTS. Especially, the determinism assumption may be broken
by the on-the-fly determinization techniques. Of course, for the class of event-
recording automata (ERA), the determinism assumption is not a limitation since
this class of timed automata can be determinized.

Finally, timed bounds traces can be used to report counterexamples during
timing verification: once the verification tool determines the sequence of transi-
tions that leads to a violation of a safety property, the timed bound traces pro-
vide greater diagnostic feedback. In this case, the TBT are called timed bound
diagnostics.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 301

References

1. R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science,
126:183-235, 1994.

2. R. Alur, R. Kurshan and M. Viswanathan. Membership problems for timed and
hybrid automata. 19th IEEE Real-Time Systems Symposium, 1998.

3. Ismail Berrada. Modélisation, Analyse et Test des Systèmes Communicants à Con-
traintes Temporelles : Vers une Approche Ouverte du Test. Phd thesis, Université
Bordeaux 1, Bordeaux, France, 14 December, 2005.

4. Laura Brandán and Ed Brinksma. A test generation framework for quiescent real-
time systems. Proceedings of the 4rd International Workshop on Formal Approaches
to Testing of Software, FATES2004, Linz, Austria September 21, 2004.

5. Rachel Cardell-Oliver. Conformance testing of real-time systems with timed au-
tomata specifications. Formal Aspects of Computing, 12(5):350-371, 2000.

6. Duncan Clarke and Insup Lee. Automatic test generation for the analysis of a
real-time system: case study. In 3rd IEEE Real-Time Technology and Applications
Symposium,

7. A. En-Nouaary, R. Dssouli, F. Khenedek and A. Elqortobi. Timed test cases gener-
ation based on state characterization technique. In 19th IEEE Real Time Systems
Symposium (RTSS’98), Madrid, Spain, 1998.

8. Robert W. Floyd. Algorithm 97 (shortest path). Communications of the
ACM,18(3):165-172, 1964.

9. T. Henzinger, Z. Manna and A. Pnueli. What good are digital clocks?. ICALP’92,
LNCS 623, 1992.

10. Anders Hessel, Kim G. Larsen, Brian Nielson, Paul Pettersson and Arne Skou.
Time-optimal real-time test case generation using Uppaal. In FATES2003, Mon-
treal, Quebec, Canada, October, LNCS 2931, pp. 118-135, Springer.

11. T. Higashino, A. Nakata, K. Taniguchi and A. Cavalli. Generating test cases for a
timed i/o automaton model. TESTCOM99, Budapest, Hungary, September 1999.

12. A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for
testing real time protocols, TESTCOM, Ottawa, Canada, 2000.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN 2004, Spring-Verlag Heidelberg, pp. 109-126, 2004.

14. Kim G. Larsen, Paul Pettersson and Wang Yi. Diagnostic model-checking for
real-time systems. In Proc. of WVCHS III, number 1066 in LNCS, pp. 575-586.
Springer-Verlag, October 1995.

15. Dino Mandrioli, Sandro Morasca and Angelo Morzenti. Generating test cases for
real-time systems from logic specifications. ACM Transactions on Computer Sys-
tems, 13(4):365-398, 1995.

16. P. Niebert, S. Tripakis and S. Yovine. Minimum-time reachability for timed au-
tomata. In Mediterranean Conference on Control and Automation, 2000.

17. B. Neilson ans A. Skou. Automated test generation for timed automata. TACAS’01,
LNCS 2031, Springer 2001.

18. Jan Springintveld, Frits Vaandrager and Pedro R. D’Argenio. Testing timed au-
tomata. Theoretical Computer Science, 252(1-2):225-257, March 2001.

19. Stavros Tripakis. The formal analysis of timed systems in practice. PhD thesis,
Université Joseph Fourier, Grenoble, 1998.

20. Stavros Tripakis. Timed diagnostics for reachability properties. In Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS’99, Amsterdam,
Holland, 1999.

302 I. Berrada et al.

Annex A: Proof of Proposition 1

Proof. For all i ∈ [0, n], vi represents the instant of firing ti according to a global
clock. Thus, the suite (vi)i∈[0,n] is monotonically increasing. By convention, we
assume the existence of a transition t0 where all clocks are reset at instant v0 = 0.
Initially, Z0 is equal to true. At step i ∈ [1, n], if ti has a term over x of the form
x ◃▹ k, then the actual value of x corresponds to the time elapsed since the last
reset of x. Thus, the value of x is exactly vi −vj where j = lastix. The constraint
vi − vj ◃▹ k is then added to Zi. If ti has a term of the form x − y ◃▹ k then, the
constraint vp − vq ◃▹ k is added to Zρ, where q = lastxi et p = lastyi . In fact, the
time elapsed since the last reset of x (resp. y) in transition tq (resp. tp) is equal
to vi − vq (resp. vi − vp). Thus, x − y = (vi − vq) − (vi − vp) = vp − vq. Finally,
the same approach is applied to the invariant of a location. ⊓/

Annex B: Proof of Theorem 1

In subsection 4.1, we have showed that we can associate to ρ a constraint poly-
hedron Zρ. In order to proof the main theorem of subsection 4.2, we need to
define the constraint graph Gρ associated to the polyhedron Zρ and some trans-
formations on Gρ. Before that, let us recall some graph notions.

Graph Notations

Graphs. A directed labeled graph (DLG for short) G is a triple (V, E, w), where

– V is a finite set of elements {v1, v2, · · · , vk} called vertexes,
– E is the set of couples of distinct elements of the cartesian product V × V

called edges (E = {(vi, vj)|vi, vj ∈ V ∧ vi ̸= vj}),
– wG : E *→ R is a function that assigns to each edge a weight.

The couple (vi, vj) ∈ E, noted vi → vj , represents the edge of source vi and
target vj . Note that G is a complete graph.

Paths. Let G = (V, E, w) be a DLG. A path p is a sequence of edges e1.e2...en

(ei is an edge). A path of length n is a path of n edges. The weight of p, noted
w(p), is defined by: w(p) =

∑
i∈[1,n] w(ei). Let e = vi → vj be an edge. Then,

path(e) is the set of paths of source vi and target vj . A cycle with root vi is path
from vi to itself. An elementary cycle (e-cycle for short) is a cycle that does not
visit a vertex twice, except from the root vertex. The graph G is said:

– nonnegative if the weight of each cycle of G is nonnegative. Formally, for all
cycle c, w(c) ≥ 0.

– minimal if the weight of each edge e is less than or equal to the weight of each
path of path(e). Formally, for all e ∈ E, for all p ∈ path(e), w(e) ≤ w(p).

Next, we will use the term graph to denote a DLG.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 303

Graph-Theoretic Formulation

Let Zρ =
∧

vi,vj∈V0,vi ̸=vj
(vi − vj ≤ lij) be the constraint polyhedron associated

to ρ. The constraint graph Gρ = (V0, E, w) associated to Zρ is the graph defined
by (Recall that V0 = {v0, v1, ..., vn}):

w(vj → vi) = lij ∧ vj → vi ∈ E ⇐⇒ vi − vj ≤ lij is a term of Zρ.

Proposition 2. Zρ is not empty iff Gρ is nonnegative. ⊓/

Intuitively, the set TTrace(ρ) is not empty iff the constraint graph Gρ does not
contain negative cycles. The proof of the theorem can be found in [8].

Definition 4. Zρ is said in its canonical form if its constraint graph Gρ is
minimal. ⊓/

This definition is equivalent to the definition 1 (subsection 4.1). Next, we will
introduce three transformations that keep the positivity and/or the minimality
of the transformed graph. To save space we omitted the proof of the next lemmas,
but they are based on the comparison of the weights of e-cycles, and can be found
in [3]. Let G = (V0, E, wG) be the constraint graph of Zρ.

Transformation m(). The function m() associates to G = (V0, E, wG) the
graph G′ = (V0, E, wG′) such that: for each edge vp → vq ∈ E,

wG′(vp → vq) = min({wG(p) | p ∈ path(vp → vq)}).

Intuitively, the weight of e = vp → vq, in G′, is equal to the minimal weight,
in G, of all paths of source vp and target vq. This weight is either reached by a
path, i.e. there is p ∈ path(e) such that wG′(e) = wG(p), or wG′(e) = −∞ when
{wG(p) | p ∈ path(e)} is not bounded. Note that, G′ is a minimal graph.

Proposition 3. G is a nonnegative graph iff m(G) is not. ⊓/

Intuitively, the transformation m() preserves the positivity of cycles.

Definition 5. Let m(Gρ) = (V0, E, wm) be the minimal graph of Gρ. The can-
onical form of Zρ, noted cf(Zρ), is the polyhedron defined by:

cf(Z) =
∧

∀vi,vj∈V0, vi ̸=vj

(vi − vj ≤ lij) such that vj −→ vi ∈ E, wm(vj −→ vi) = lij .

⊓/

This definition is equivalent to definition 2 (subsection 4.1) and gives a method
to compute the canonical form of a polyhedron.

304 I. Berrada et al.

Transformation Ri→∗(). Let i ∈ [0, n]. The function Ri→∗() associates to
G = (V0, E, wG) the graph G′ = (V0, E, wG′) such that: for each edge vp → vq ∈
E,

wG′(vp → vq) =

{
−wG(vi → vp) if q = i

wG(vp → vq) otherwise

Intuitively, if vp → vq is not an incoming edge of the vertex vi then, this edge
keeps the same weight in G and G′. Otherwise, the weight of vp → vq is replaced,
in G′, by the opposite weight of the outgoing edge vi → vq of vi. The next lemma
establishes some properties of this transformation related to the minimality and
the positivity of the transformed graph.

Lemma 1. Let G be a nonnegative graph and i ∈ [0, n]. Consider the graph
G′ = m(Ri→∗(G)). Then,

1. Ri→∗(G) is a nonnegative graph.
2. If G is minimal then, for all edges vp → vq ∈ E :

wG′(vp → vq) =

⎧
⎪⎨

⎪⎩

wG(vi → vq) if p = i

−wG(vi → vp) if q = i

−wG(vi → vp) + wG(vi → vq) otherwise ⊓/

Intuitively, the transformation Ri→∗() preserves the positivity of cycles. When
G is minimal and nonnegative, the second point of the lemma gives a method
to compute the minimal graph associated to Ri→∗(G) using the weights of G.

Transformation R∗→i(). This transformation is similar to Ri→∗(). The trans-
formed graph G′ = (V0, E, wG′) is defined by: for each edge vp → vq ∈ E,

wG′(vp → vq) =

{
−wG(vq → vi) if p = i

wG(vp → vq) otherwise

Intuitively, the only difference between G and G′ is in the weights of outgoing
edges of vertex vi: for all vi → vq ∈ E, wG′(vi → vq) is equal to the opposite
weight of wG(vq → vi). The next lemma reports properties similar to those of
Ri→∗(G).

Lemma 2. Let G be a nonnegative graph and i ∈ [0, n]. Consider the graph
G′ = m(R∗→i(G)). Then,

1. R∗→i(G) is a nonnegative graph.
2. If G is minimal then, for all edges vp → vq ∈ E :

wG′(vp → vq) =

⎧
⎪⎨

⎪⎩

wG(vp → vi) if q = i

−wG(vq → vi) if p = i

wG(vp → vi) − wG(vq → vi) otherwise ⊓/

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 305

Proof of Theorem 1

Proof. To prove the theorem, it is equivalent to show that, for all k ∈ [0, n], the
polyhedra:

ZM
k =

∧

viV0, vi ̸=vk

(vi − vk ≤ lik ∧ vk − vi ≤ −lik) ∧
∧

vi,vj∈V0, vi ̸=vj ̸=vk

(vi − vj ≤ lij)

and

Zm
k =

∧

viV0, vi ̸=vk

(vk − vi ≤ lki ∧ vi − vk ≤ −lki) ∧
∧

vi,vj∈V0, vi ̸=vj ̸=vk

(vi − vj ≤ lij)

are not empty sets (ZM
k ̸= ∅ and Zm

k ̸= ∅). In fact, let Gρ be the constraint
graph of cf(Zρ) and k ∈ [0, n]. cf(Zρ) is canonical then Gρ is minimal. Zρ ̸= ∅
implies that Gρ is a nonnegative graph (proposition 2). Now, one can notice
that the constraint graph G(ZM

k) (resp. G(Zm
k)) associated to ZM

k (resp. Zm
k)

is nothing else than the graph obtained from Gρ by the transformation Rk→∗()
(resp.R∗→k()) defined above: G(ZM

k) = Rk→∗(Gρ) et G(Zm
k) = R∗→k(Gρ). So,

according to the first point of the lemma 1 (resp. lemma 2), we deduce that
G(ZM

k) (resp. G(Zm
k)) is a nonnegative graph and by consequence, ZM

k ̸= ∅
(resp. Zm

k ̸= ∅). Furthermore, the second point of lemma 1 (resp, lemma 2) gives
a method to compute the canonical form of ZM

k (resp. Zm
k). ⊓/

Annex C: Proof of Corollary 1

Proof. The proof is a consequence of TTrace(ρ) ⊆ TTrace(ρ′) iff cf(Zρ) ⊆
cf(Zρ′). As (νM

k (Zρ))k∈[0,n] and (νm
k (Zρ))k∈[0,n] reach all bounds of cf(Zρ), then

if νM
k (Zρ) ∈ Zρ′ and νm

k (Zρ) ∈ cf(Zρ′), we can deduce that bounds of cf(Zρ)
are less than the bounds of cf(Zρ′). The density and convexity properties of sets
cf(Zρ) and cf(Zρ′) imply that all ν ∈ cf(Zρ) is also in cf(Zρ′). ⊓/

	Front matter
	Chapter 1
	Introduction
	Input Output Symbolic Transition Systems
	Data Types
	Input/Output Symbolic Transition Systems
	Semantics

	Symbolic Execution
	Definition
	Inclusion Criterion

	Conformance Testing for IOSTS
	Our Approach
	Preliminary Definitions and Informal Description
	Inference Rules

	Criterion-Based Test Purposes
	Implementation Issues

	Conclusion

	Chapter 2
	Introduction
	Controllable Combinatorial Coverage in a Nutshell
	Definition of Combinatorial Coverage
	Grammar Properties Related to Combinatorial Coverage
	The Basic Algorithm for Test-Data Generation
	Control Mechanisms for Combinatorial Coverage
	Depth Control
	Recursion Control
	Balance Control
	Dependence Control
	Construction Control

	Testing an Object Serialization Framework
	Related Work
	Concluding Remarks

	Chapter 3
	Introduction
	Formal Model
	Predicates of the Logic
	Manipulating Observations
	Model Predicates
	Other Predicates

	Deduction Rules of the Logic $\calH \calO \calT \calL$
	Conclusions and Future Work

	Chapter 4
	Introduction
	Finite State Machines
	Testing from Non-deterministic FSMs
	Prerequisites
	Reaching States
	Distinguishing States
	Test Suite Generation

	Bounded Sequence Testing from Non-deterministic FSMs
	Quasi-deterministic FSMs
	Test Suite Generation
	General Type of FSMs

	The l-Bounded Product FSM
	State Counting for Bounded Sequences
	Conclusions

	Chapter 5
	Introduction
	Presentation of $LaTe$
	Main Requirements
	Non-deterministic Operators
	Operational Semantics
	An Example: Unanimity Vote

	Description of the Case Study: Testing a Voice-Based Service
	Methodology of the Experiment
	Test Architecture
	Some Test Cases

	Experimental Results and Discussion
	Results and Pros
	Discussion

	Conclusion

	Chapter 6
	Introduction
	Basic Notions
	Definition of a Hypothesis Contrast: Pearson's χ^2

	Tests and Composition of Machines
	Probabilistic Relations
	Upper Bound of Probability of Failure for a User
	Conclusions and Future Work

	Chapter 7
	Introduction
	Related Works
	Test Cases Generation for Web Services Using EFSM
	Modeling Web Service with EFSM
	Test Cases Generation Algorithm Using EFSM

	Application to Parlay-X Web Services
	Conclusion
	References

	Chapter 8
	Introduction
	Related Work
	Requirements
	Fault Model
	Multi-observer Architecture
	Overall Architecture
	Procedure
	Optimization
	Participation of Web Services in Their Self Observation
	Algorithms

	Case Study
	Context
	Web Services
	Implementation Issues
	Single Observation
	Multi-observer Observation Procedure
	Optimization

	Conclusion and Future Work
	References

	Chapter 9
	Introduction
	Basics
	Service Definition
	Testing Methodology

	Tools Presentation
	TestComposer
	SIRIUS

	The Reverse Directory Case Study
	Vocal Services Presentation
	A Reverse Directory Specification
	Determination of Test Objectives
	Generation with TestComposer
	Generation with SIRIUS

	Experimental Results
	The Proposed Tools Are Scalable
	Test Objectives Generation
	Performance Analysis and Discussions
	Test Coverage Can Be Evaluated and Is Reasonable
	Tests Are Really Usable
	Automatic Test Execution

	Conclusion

	Chapter 10
	Introduction
	Concurrent PCOs and Alternative Behavior in TTCN-3
	Discrete-Time Quasi Birth-Death Processes
	A QBD Model for PCOs
	Model Results
	Conclusions

	Chapter 11
	Introduction
	Background
	TTCN-3 Test Systems
	IUT and the Test Harness
	TTCN-3 Concepts and Usability for Software Testing
	Distributed Test System Main Concepts
	Testing Multithreaded and Concurrent Software Modules
	Usage of Mock Objects

	C to TTCN-3 Language Mappings
	A Practical Example
	Mapping of Functions
	Mapping of Pointers

	Test Case Implementations
	Conclusions
	References

	Chapter 12
	Introduction
	Related Work
	Foundations
	Load Test Specification with TTCN-3
	Load Test Specification Patterns
	Factors Influencing Test Distribution

	TTCN-3 Test Distribution Realization
	Test Component Distribution Language
	TTCN-3 Architecture Design for Distributed Execution
	Test Execution Evaluation

	Balancing Algorithms Applied to Test Distribution
	An Example
	Summary
	References

	Chapter 13
	Introduction
	Related Work
	Preliminaries
	Tests and Consistently Testable Protocols
	Consistently Testable Protocols

	Impact of Single Transition Changes on a Test
	Interaction Context of Transitions
	Adding a Transition
	Replacement and Deletion of Transition

	Impact of Multiple Transition Changes on a Test
	Handling Redundancies in Multiple Updates

	Conclusion

	Chapter 14
	Introduction
	An n-Port FSM and Directed Graphs
	The Problem Definition
	Our Proposed Solution
	Identifying Transitions Involved in Observability Problems
	Identifying Verifiable Transitions
	Identifying Subsequences to Be Added to τ_0
	Adding Subsequences to τ_0

	Conclusions and Final Remarks

	Chapter 15
	Introduction
	Concurrent Composition
	Compositional Testing of Concurrently Composed csFSMs
	Fault Model
	Concepts and Notations
	Initial Tour Coverage Tree
	The C-Method

	Application of the C-Method
	Related Work
	Interoperability Testing
	Testing in Context
	Compositional Testing

	Conclusions and Future Work
	References

	Chapter 16
	Introduction
	Preliminaries
	Input Output Transition Systems and Finite State Machines
	Parallel Composition of IOTSs

	Fault Propagation
	Test Definitions
	Test Architecture
	Problem Definition
	Translation of an Internal Test Case
	Translation of an Internal Test Suite

	Exhaustive External Test Suites
	Conclusions
	References

	Chapter 17
	Introduction
	Preliminaries
	An Existing Approach
	Basics
	Checking Sequence Construction

	Using UIO Sequences for State Recognition
	Modified Method for Checking Sequence Construction
	Conclusion and Future Work

	Chapter 18
	Introduction
	Preliminaries
	The Optimization Model
	Conclusions
	References

	Chapter 19
	Introduction
	Background
	Timed Event and Timed Sequence
	Valuations and Polyhedra

	Timed Automata
	Timed Bound Traces of a Path
	Constraint Polyhedron
	Main Results
	Trace Inclusion

	Application: Testing
	Simulation Graph [19]
	Digital-Clock Test Derivation

	Related Work
	Discussion

	Chapter 20
	Introduction
	Timed Input Output Automata
	Test Design
	From Symbolic Abstraction to Executability and Controllability
	Real-Time Observers
	On the Fly Traversal
	Test Paths Executability and Controllability Improved

	Further Comments on the Proposed Method
	Real-Time Ethernet Protocol
	Conclusion

	Chapter 21
	Introduction
	Preliminaries
	Multi-port TIOA
	Communicating Multi-port TIOA
	A Simple Real-Time Communication Protocol

	Test Behavior Tree
	Test architecture
	Generating Test Behavior Tree

	Transformation to \sc{TIMED}TTCN-3 Codes
	$\sc{TIMED}TTCN-3
	Transformation to $\sc{TIMED}TTCN-3 Test Cases

	Comparisons with Real-Time TTCN
	Real-Time TTCN
	Problems in Transformation from Test Behavior Tree to Real-Time TTCN
	Possible Extensions of Real-Time TTCN
	Comparisons Between \sc{TIMED}TTCN-3 and Real-Time TTCN

	Conclusion
	References

	Chapter 22
	Introduction
	Approach
	A Case Study
	Description Techniques for Network Security
	Approach for Test Generation

	Rules Formalisation
	Syntax of Security Rules
	Semantics
	Expression of Security Rules

	Test Generation
	Test Cases and Test Execution
	Test Generation Functions
	Test Operators
	Soundness of the Test Generation Function

	Case Study Application
	${\cal C}$-Rule
	${\cal F}$-Rule

	Perspectives

	Chapter 23
	Introduction
	Modeling and Methodologies
	Security Protocol Model
	Intruder Model
	Testing Security Requirement: Message Confidentiality

	Message Confidentiality Testing
	A Simple Passive Monitoring Algorithm
	Active Testing – Guided Random Walk
	Experiment

	Mutation Testing
	A Fault Model: Predicate or Guard Absence
	Mutation Test Generation Algorithm
	Experiment

	Conclusion
	References

	Back matter

