
Towards the Testing of Composed Web Services in 3rd
Generation Networks

Abdelghani Benharref, Rachida Dssouli, Roch Glitho, Mohamed Adel Serhani

Concordia University
1455 de Maisonneuve West Bd, Montreal, Quebec

H3G 1M8, Canada
{abdel,m_serhan}@ece.concordia.ca,

{dssouli,glitho}ciise.concordia.ca,

Abstract. With the proliferation of web services in business and as the number
of web services is increasing, it is anticipated that a single web service will
become insufficient to handle multitude, heterogeneous, and complex functions.
Hence, web service composition will be used to create new value added
services with a wide range of functionalities. Management of a composed web
service is a complex issue compared to the management of a non-composed
(basic) web service. In this paper, we propose a multi-observer architecture for
detecting and locating faults in composed web services. It makes use of a
network of observers that cooperate together to observe a composed web
service. An observation strategy based on a set of heuristics is presented to
reduce the number of web services to be observed. Observers are developed as
mobile agent observers to help reducing the load introduced by the observation.
Algorithms for fault detection, notification, and collaboration between
observers are described. Finally, the architecture is illustrated through a case
study for observing a composed teleconferencing web services in a 3G network.
Different components of the architecture are developed. The network load
introduced by the observation is measured and the fault detection capabilities of
the architecture are discussed.

1 Introduction

Web services offer a set of mechanisms for program-to-program interactions over the
Internet [1]. They make use of a multitude of emerging standard protocols, such as
Simple Object Access Protocol (SOAP), Web Services Description Language
(WSDL), and Universal Description, Discovery and Integration (UDDI).

Managing web services is critical because they are being deployed actually in
heterogeneous environments and used in a wide range of applications especially in 3G
networks. In 3G networks, they are being used for engineering Value Added Services
(VAS). VAS are telecommunication standards that add value to those services already
available on the network. Another use is digital imaging where their use is being
standardized [2]. Their use in telecommunications networks is being standardized by
the Open Mobile Alliance (OMA) [3].

Testing web services in open environments with multitude of participants is a hot
issue. Testing can be active or passive. In active testing, fault detection is usually
based on test cases that are applied to the web service under test. Passive testing,
known also as passive observation, is based on traces collection and traces analysis.

A new kind of web services is known as “composed web services”. A composed
web service is any web service that makes use of a set of available web services to
provide a different, more complex, service. Web services composition is generating
considerable interest in recent years ([4], [5], [6]). It has a considerable potential of
reducing development time and effort for new applications by reusing already
available web services. The composed web service is also known as the final web
service and a service participating in a composition as a basic web service.

Currently, there are standards or languages that help building composed web
services such as: WSFL [7], DAML-S [8], and BPEL [9]. These languages make the
web services composition process easier by providing concepts to represent partners
and orchestrate their interactions. BPEL, which represents the merging of IBM's
WSFL and Microsoft’s XLANG, is gaining a lot of interest and is positioned to
become the primer standard for Web service composition. This is the main reason for
which BPEL is used in our work and then will be considered in the remaining parts of
this paper.

Observation of composed web services is more complex than observation of basic
web services. For instance, a fault occurring in the composed web service can
originate in one of the basic web services and propagate to another basic web service.
Furthermore, some faults may occur due to the composition itself, these faults are
known as feature interaction.

Tracking a fault into its originating web service, will require the passive
observation of all, or a subset of, the basic web services. As in distributed systems
[10], this observation requires a network of observers rather than a single observer.

In this paper, we propose a novel architecture for online fault management of
composed web services by observing their basic web services as well as the composed
web service. The architecture is rooted in passive observation. The observers are
model-based and are designed and implemented as mobile agents. The architecture
makes available a web service observer that can be invoked and mobile observers that
are sent back following an invocation.

The remainder sections of the paper are organized as follows: section 2 presents
briefly web services composition and involved technologies followed by related
works on management of composed web services. Section 3 and 4 discuss
respectively the requirements and the fault model of the new architecture for
observation of composed web services. Section 5 introduces different components of
the multi-observer based architecture. It also discusses the limitations of the
architecture in terms of necessary resources and network load. In section 6, we
illustrate the observation procedures through a case study where a conferencing
composed web service is observed. Finally, we provide a conclusion that summarizes
the paper and discusses items for future work.

2 Related work

Management of composed web services is a key issue for their success. Nowadays,
this management is vendor-dependent and too much coupled to the application servers
on which the composed web services are deployed. Few companies provide limited
management features embedded within their platforms. The BPEL process manager
[11], ActiveBPEL [12] and Process eXecution Engine [13] provide web-based
consoles to deploy/undeploy services and manage their instances. These tools can
only be used by the service provider. They manage the composed web services as if it
was a basic web service, that is, without taking into consideration the management of
basic web services participating in the composition. Moreover, since the tools
managing basic web services are also vendor-dependent, exchange of information
between different tools managing different entities is not straightforward.

Most of research activities on management of composed web services are actually
on non-functional aspects of composed web services such as Quality of Service (QoS)
([14], [15], [16], [17]). For functional aspects, the authors in [18] propose the
publication of some testing scripts in the registries. These scripts can be used by
entities to test the correctness of desired web services. This approach requires active
testers and not transparent to concerned web services.

The web services-based architecture for management of web services presented in
[19] is limited to the observation of basic (non-composed) web services. It does not
offer mechanisms to observe composed web services. The observation starts by
invoking the web service observer. The latter generates a mobile agent and sends it to
the hosting platform. The mobile observer checks all the traffic between the client and
the observed web service and reports misbehaviors.

In this paper, we extend this architecture to observe composed web services while
respecting its initial properties of transparency and availability. The observation is
transparent since it does not invoke the web service for the sake of testing. The
architecture is also available to all involved parties including the web service provider
and the requestor since the architecture is based on web services.

3 Requirements

As stated above, observation of composed web services is based on the observation of
the final web service and the participating basic web services. A set of
information/resources is required for the sake of this observation. First of all, the web
service observer must have access to the choreography document describing this
composition. Another issue to solve toward making this observation possible is how
to get the exact locations of the participating web services. Once this list of locations
is known, models of the web services in this list (FSM or FSM annotated with timing
properties) and WSDL documents should also be handed to the observers before the
observation.

Discussions of possible mechanisms to satisfy these requirements are presented in
section 5.4.

4 Fault model

Fault detection is based on the information contained within the available resources.
The models of these resources can be grouped in two groups: statefull
(FSM/Annotated FSM, BPEL) and stateless (WSDL). The observers use this
information to detect the following classes of faults:

From BPEL:
• Ordering Faults (OF): this fault occurs when the order of invocations of different
participating web services is not respected. The “activities” section of the BPEL
document describes the rules and order in which participating web services must be
invoked. It is in fact a violation of an orchestration scenario that is a global property.
This fault only can be detected by a global observer.

From FSM/FSM with timing annotations:
• Input Fault (IF): an input fault occurs if a requestor invokes an operation
unavailable from the actual state of the web service. Unlike OF, this is a local
property.
• Timing Constraints Fault (TCF): when monitoring the response time of web
services, observers can measure the response time of web services and compare it to
the threshold described in the model.

From WSDL:
• Input Type Fault (ITF): an input type fault is observed when a method is invoked
with a wrong number and/or wrong types of parameters with regards to its signature
published in the WSDL.
• Output Type Fault (OTF): this fault occurs if the type of the returned result is
different from the type expected in the WSDL document.

5 Multi-observer architecture

In this section, we will present different functional entities of the architecture and
their interactions. We will then detail required steps for observation, starting from the
invocation of the web service observer and ending with the result of the observation.
Some steps of this procedure will smoothly change depending on the participation of
different involved web services as will be presented latter.

5.1 Overall architecture

The multi-observer architecture is illustrated in Figure 1 where the global observer
and the local observers cooperate for fault management of composed web services.
Local observers check exchanged messages observed at their points of observation
and send these messages to the global observer. Whenever a local observer detects a
fault, it informs the global observer then location and isolation procedures take place.

Due to the position of observation points, fault location at this level is restricted to the
location of a faulty web service, not the exact component within this web service.

Figure 1 Multi-observer architecture

In the case where a basic web service is itself a composed web service, the same
architecture applies for its observation. That is, the web services participating in its
composition will be observed also. This gives the architecture a tree structure and
makes it very flexible in the observation of composed web services.

One of the design keys to be studied is the number of observers. In some cases,
observing all participating web services in a composition is nothing but costly and
useless. A full observation can dump the observers and the network with redundant
information. Observing, for example, just the main web services that represent the
core of the composition can be enough from a fault detection point of view. Potential
suggestions and hints to select the web services to observe are discussed in section
5.3.

For each web service in this list, a mobile agent will passively observe its behavior.
Two problems to solve: who hosts the mobile agent and how to provide it with
exchanged messages? These problems are implementation-related issues and will be
discussed in section 6.3.

5.2 Procedure

Observation is performed in two main steps. The first step consists of the
configuration of the observation components, and the second step is fault
management.

Observation is initiated by invocation of the web service observer. This is done by
the entity willing to observe, which can be the provider of the composed web service,
its client, one of the basic web services, or a mandated third party. After a successful
invocation, the web service observer generates a set of mobile agents and sends them
to the location(s) specified during invocation. Once the mobile agents reach their

Client Final
Service

Service 1

Service 2

Service 3

Global Observer

Local
Observer 1

Local
Observer 3

 Web services interaction Trace collection

Local
Observer 2

target locations, one of them becomes the global observer; other mobile agents are
local observers. The local observers must inform the global observer of their locations
and information about particular basic web services they are observing. At that point,
all the components of the architecture are ready to start observation at the time
specified during the invocation.

After deployment and configuration of all the observers, they start traces analysis
at the time specified during the invocation. This observation will end at the time
specified also during invocation. Whenever misbehavior is observed, local observers
report to the global observer who reports to the web service observer.

5.3 Optimization

In this section, we discuss a set of suggestions and potential criteria that can be
considered to build the list of web services to be observed.

For the selection of web services to observe, an important criterion is the number
of interactions between the final web service and a basic web service. If a web service
has few published interfaces and is invoked few times while others are invoked very
often, observing the latter web services can be more appropriate. Another criterion is
the complexity of a basic web service, from its FSM model: more a model of a web
service is complex (number of states, number of transitions, etc.), more is the
necessity for its observation.

Statistics on previous detected faults is another criterion. If faults occurred in a web
service a certain number of times, a periodic observation of this web service can be a
wise decision.

Selection of web services to observe might be implied by preferences of the final
web service provider. These preferences depend on the importance a basic web
service is playing in the composition or the tolerance of the final web service to some
specific faults generated by some specific basic web services.

5.4 Participation of web services in their self observation

The information required for observation (section 3) can be gathered through
participation of involved web services providers: the provider of the composed web
service, the providers of basic web services or from both. We designate these types of
participation, respectively, as final web service provider’s participation, basic web
services providers’ participation or hybrid participation.
Final web service provider participation. In this participation, the final web service
provider supplies all the required information and resources necessary for the
observation. This includes the BPEL description, WSDL documents, models of the
web services (basic and final), and the list of nodes to host the mobile agents
observers.

This kind of participation is completely transparent to basic web services and their
providers. Additionally, due to the cloning nature of mobile agents, the web service
observer sends only one mobile agent to the final web service provider’s side instead
of a separate mobile agent for each web service to be observed. This mobile agent

will clone itself once it gets into its location. Doing so reduces significantly the traffic
generated by moving mobile agents. If n is the number of web services to be
observed, the complexity of the introduced load decreases from Θ(n) to Θ(1).

The load that will be introduced by the cooperation of observers to detect and
locate a fault is limited to in-site load, that is, within the provider’s domain since all
observers are located there. The complexity of this load can be considered as Θ(1).
Synchronization of observers is also easier than if observers were scattered between
many sites.

The major weakness of the participation of one side is that all information,
resources and observation activities will be within one web service provider.
Basic web services providers’ participation. Unlike the centralized participation,
the basic web services’ participation requires the participation of the providers of all
web services that have to be observed, including the final web service. Each web
service provider supplies the WSDL document and the model of its web service and
hosts the associated mobile observer. In addition, the final web service provides the
BPEL document.

The network load is the major weakness of this type of participation. First, a
mobile agent is generated and sent to each web service in the list of web services to be
observed. The complexity of the load here is Θ(n). The cooperation of the observers
introduces also another Θ(n) network load since observers are in different locations.
Hybrid participation. The hybrid participation is a compromise between the two
kinds of participation presented above. The participation is neither completely
distributed nor centered. The final web service provider supplies a portion of the
required information and resources while a subset of the list of web services to be
observed supplies the remaining portions.

This can be a possible alternative when the final web service can not provide all
the information and resources and only a subset of basic web services’ providers are
willing to participate in the observation. Those basic web services providers’ who
accept to participate in the observation will supply the information related to their
web services and host the associated mobile observers. The final web service
provider’s furnishes information for other basic web services.

The configuration of the hybrid participation ranges between the centralized
configuration and the distributed information, depending on how many basic web
services providers’ are participating in the observation and how much. Thus, the
complexity of the load generated by moving the mobile observers ranges from Θ(1) to
Θ(n) and for the cooperation of observers from in-site load to Θ(n). In the average,
these complexities are around Θ(log n).

In the following section, algorithms implemented by observers are presented and
discussed.

5.5 Algorithms

Passive observation is performed in two steps: 1) passive homing and 2) fault
detection [20]. The homing procedure is required to bring the observer to the same
state as the observed web service. It is needed if the observation starts while
interaction between entities has already started. When the observation starts at the

same time as the interaction between observed entities, the homing sequence is
empty.

For fault detection, every observed event in traces (request or response) is checked
against the expected behavior in the corresponding model. We must note here that
there are some cases where the observer can not decide if a response is expected or
not. This is due to the fact that when the observation starts, it may miss some previous
requests and the homing procedure might not give indication on requests not yet
served. This is mainly the case for asynchronous invocations.

Each time a fault is detected by a local observer, a notification is sent to the global
observer. Notifications must be purged before their correlation. This is done through
two methods: purgeFinalNotification implemented by the global observer and
purgeLocalNotification implemented by local observers. The main purging role is the
ability of a receiver (client, final web service or basic web service) to detect a faulty
received request or response. When a local observer detects an output fault, it notifies
the global observer. It waits then for the reaction of the invoked web service. If the
response of the latter contains a fault indication (in the SOAP message), the local
observer informs the global observer. Otherwise, it sends a second notification to the
global observer requesting fault location.

A faulty output generated by a web service will be detected by its associated
observer. It will also be detected as an input fault by the observer of the receiving web
service. Both observers will generate fault notification. The two notifications must be
correlated since they refer to the same fault.

After receiving a notification from a local observer, the global observer associates
it, if possible, to a previous fault or notification and updates the fault records
accordingly. It waits then for a second notification for a specific period of time before
starting the correlation. This starts by checking the fault records for previously
detected fault. If the same fault has been detected before, the list of suspected web
services is updated with the faulty web service(s) in the fault record. The list of
suspects is then augmented by all basic web services invoked before the notification.
This list is derived from the “activities” section of the BPEL document. Traces
observed by the local observers of the web services in this list are checked to find the
faulty web service. This process is repeated until a faulty web service is identified,
remaining web services are not observed, or no decision can be made due to a lack of
information on behaviors.

In the next section, we illustrate the applicability of the architecture through a
motivating example of a composed web service for conferencing. The detailed
requirements and steps for observation are depicted all along this example.

6 Case study

In this section, we present our experiments using the multi-observer architecture to
observe a composed web service. We introduce the context of utilization of the
composed web service and its participating basic web services. We show a situation
where the observation of basic web services gives more insights for fault

identification. We present implementations of different components of the
architecture, and discuss results with analysis.

6.1 Context

For the end of year meetings, a general manager has to meet with managers from
different departments (Sales and R&D for example). Managers are located in different
locations and due to their time tables cannot meet in a single meeting room. A
practical option is to perform these meetings in a series of teleconferences. Only
mangers are concerned and only those of them that are in their offices can join a
conference. This is implied by security issues since confidential information will be
exchanged during the meetings and communication between different locations is
secured (VPN for example). At the end of each meeting, meetings’ reports must be
printed and distributed among all participating managers.

The manager decides to use a “Conferencing Web Service” (CWS), a composed
web service, who performs all of the required tasks. In fact, it allows creation of a
conference, add and remove users depending on their locations and profiles. At the
end of each meeting, the CWS submits the produced reports for printing. Once printed
and finalized, the paper version is distributed to appropriate locations.

6.2 Web services

To perform the tasks presented above, the CWS is a composition of the following
basic web services:
• Presence WS: this web service contains information on users’ profiles (name,

address, location, status, position, availability).
• Sensors: this web service detects the physical presence of users.
• Call Control: this web service creates and manages a multiparty conference

(initiates the conference, adds/removes users, and ends conferences).
• Printing: at some points during the conferences or later on, managers may want to

print documents (meeting reports …). The printing web service will print these
documents and keeps them for shipping.

• Shipping: documents printed during and after the conference should be distributed
among users located in different locations. The CWS informs the shipping web
service of the location of the documents to be shipped and their final destinations.
Figure 2 shows the composed CWS and its interactions with the basic web

services.

6.3 Implementation issues

All web services, including the web service observer, are implemented in BEA
WebLogic. In fact, CWS is implemented in BEA even if it has a BPEL description.
This is due to some limitations of the BPEL language and the available (non
commercial) application servers. Implementing the CWS in BEA does not affect the

observation process since the latter deals only with the exchanged SOAP messages
which are independent from the adopted platform.

Sales Manager

General Manager

Sensors Network

Printing

Sensors

Call Control

CWS

Presence

Shipping
Sensors Network

R&D Manager

Figure 2 Composed/composing web services

To host the mobile observers, a mobile agent platform should be available. In this
case study, we use JADE [21], an open source platform easy to configure and deploy.
All nodes willing to host mobile observers must download and configure the JADE
libraries. The configuration of jade consists of adding the path of different libraries to
the “path” system environment variable.

For trace collection, in this case study, we make use of the SOAP Handlers
available within the BEA platform. A SOAP Handler, a special java class, intercepts a
request or a response to/from a web service before it gets to the core web service or
the client respectively, and can perform operations on it. In our case, the SOAP
handler sends each event (request or response) in a UDP Datagram to the concerned
mobile observer. The date of occurrence of the event is also sent in this datagram so
that the observer can compute the response time. To be able to detect lost UDP
datagrams, a sequence number field is used. When a mobile observer detects a lost
Datagram (wrong sequence number), it suspends the fault detection and re-perform
the homing procedure. It restarts the fault detection once this procedure is achieved
correctly. Since the behavior of SOAP handlers within all observed web services is
similar, a unique generic SOAP Handler is developed and then distributed to all
providers.

6.4 Single observation

When using the single-observer architecture initially presented in [19], the observer
will check only the traffic between the manager and the CWS. Figure 3 shows the
overall configuration and the information (traces) available to the observer where it is
not aware of the interactions (request/response pairs) between CWS and basic web
services. By doing so, if the CWS fails to provide the requested service or if the QoS
degrades, the observer cannot designate the faulty web service. For example, if the
“Sensors” web service (basic WS) fails to check the actual physical location of a
manager, the CWS can not create a conference. From the observer’s point of view
(and then the manager’s point of view), the CWS failed to create the conference. No
more indication on the failure is available. Figure 4 shows a typical observation
scenario from invocation of the observer (WSO) to the delivery of the verdict of

observation. In this scenario, traces are collected through a participation of the web
service’s provider.

Handler

BEA Weblogic

BEA Weblogic

BEA Weblogic

BEA Weblogic

Manager
Jade

Oberver

BEA Weblogic

WSO

Manager
WSO

web services interactions
Trace collection

CC

Presence

Sensors

Printing

Shipping

BEA Weblogic

BEA Weblogic

CWS
SOAP

Figure 3 Single-observer configuration

observation

General
Manager

WSO CWS Basic
WS

observe
generate
and send
Mobile Agent

Observer

request

trace collection request

response

request

response
response

trace collection
Result of

observationResult of

Figure 4 Single-observer scenario

As will be illustrated in the following subsections, the multi-observer architecture
gives more information in case of misbehaviors. This capability is made possible by
using a network of observers rather than a single observer. Whenever an abnormal
event occurs, cooperation between observers is initiated to track the faulty web
service.

6.5 Multi-observer observation procedure

The general manager is highly concerned about the environment in which meetings
will be carried out using CWS. He decides to make use of the passive observer
available as a web service (WSO) to observe the behavior of the CWS. In addition to
the observation of the CWS, the manager needs to assure that all the steps are
performed according to the agreed on contract and QoS. All the providers accept to
participate in the observation. The provider of the CWS will host all the mobile
observers. It will also provide the BPEL and WSDLs documents, and the FSM
models of each of the basic web services.

Once deployed and configured, mobile observers start by performing the homing
procedure. When this procedure is carried out correctly, fault detection starts. Each
local observer is listening to a UDP port to receive events from SOAP handlers. The
global observer is listening to two different UDP ports: one to receive events (request
or response) from local observers and another port to receive information on detected
faults by the local observers. Each event from a client to its web service is sent by the
SOAP handler to the attached local observer. The latter forwards this event to the
global observer and checks the validity of this event with regards to the model of the
observed web service. If a fault is detected, the local observer notifies the global
observer through a UDP datagram. The global observer tries to associate the new
received fault with a previous fault. If the correlation fails, the global observer notifies
the final service provider, otherwise, the fault is logged and fault detection continues.
For the purpose of this case study, we developed a graphical client allowing the user
to select one of the operations to invoke and provide valid or invalid parameters.
Figure 5 shows the overall configuration of interacting web services, mobile
observers and communication between these entities.

CWS
SOAP

Handler
SOAP

Handler

BEA Weblogic

CC

SOAP
Handler

BEA Weblogic

Presence

SOAP
Handler

BEA Weblogic

Sensors

SOAP
Handler

BEA Weblogic

Printing

SOAP
Handler

BEA Weblogic

Shipping

for CWS
Mobile Oberver

Ja
de

Ja
de

for CC
Mobile Oberver

Ja
de Mobile Oberver

for Presence

Ja
de Mobile Oberver

for Sensors

Ja
de Mobile Oberver

for Printing

Ja
de Mobile Oberver

for Shipping

web services interactions
Trace collection
Trace collection and Fault notification

Jade

Global Oberver

Manager
WSO

BEA Weblogic

WSO

Manager

BEA Weblogic

Figure 5 Multi-observer configuration

The observation procedure of CWS is performed following the steps illustrated in

Figure 6. To keep the figure simple, just one web service handler and one web service
client are depicted in the figure.

6.6 Optimization

The main web service in the composition of the CWS is the Call Control web service.
For this reason, we decide to observe it. Moreover, security of communication during
conferences is of prime importance. As requested by the general manager, only
managers that are in their offices should participate in a conference. So, the

observation of the Presence and the Sensors web services is required. The Printing
and Shipping web services are the only web services that deal with documents, so we
decide to observe only one of them, the Printing web service. We assume that in case
of a misbehavior during printing and shipping procedures, if the fault is not detected
at the Printing web service by its attached observer, the fault is then within the
Shipping web service.

CWS

Global
Observer

Observer
Local

trace collection
and fault
notification

clone

WSO WS
(Handler)

WS−Client

observe observe

request

responsetrace collection

observation
Result of

observation
Result of observation

Result of

generate
and send
Mobile Agent

General
Manager

Figure 6 Multi-observer scenario

6.7 Results and analysis

Network load. The network load introduced by the observation is classified into two
classes: 1) load due to the deployment of mobile agents and 2) load due to the trace
collection process.

Deployment load. Since all observation activities is taking place within the final
service provider’s side, only one mobile agent is generated by the web service
observer and sent to the hosting platform. The size of the traffic to move a mobile
agent from the web service observer to the final web service provider is around 600
Kilobytes (600 Kb). This size is smaller than the size of the mobile agent that was
initially used in [19]. The new mobile observer offers in addition to the fault detection
capabilities, correlation procedures. This includes the ability of a local observer to
send an event to the global event, and the global observer to process a received fault
and correlate it with previous faults. This reduction is made possible by reducing the
size of required libraries and tuning the used data structures.

Trace collection load. Generally, for each interaction between a web service and its
client, 2 UDP datagrams are generated: a first datagram from the SOAP handler to a
local observer, and a second datagram from this local observer to the global observer.
Whenever a fault is detected in a local observer, a third datagram is sent (fault
notification). The average size of a datagram is 150 bytes. So, each response/request
pair introduces 4 datagrams if everything goes fine, 5 datagrams if one of the events is
faulty, or 6 datagrams if both are faulty. We suppose that faults will not occur often,
and then few fault notifications will be generated. This assumption is realistic since

all web services are supposed to undergo an acceptable active testing process. The
trace collection load then is reduced to the forward of events, that is, 4 datagrams for
a request/response pair. This represents a load of 600 bytes.

Executed scenarios. The client application offers, through its graphical interface, the
possibility to invoke any operation from those offered by the CWS. For each
operation, the client decides between a valid and invalid invocation. This selection is
imposed by the FSM-based observers, which are unable to process the parameters of
the invoked operation to decide between valid and invalid parameters. For all
operations, the web service should return the output “true” if the operation is valid
and “false” if the operation is invalid, otherwise a fault occurred.

To illustrate the detection capabilities of our architecture, we injected faults to the
web services and or in the network and monitored the behaviour of the observers.
Most of the injected faults have been detected by the observers. The global observer
was also able to link related notifications that are originated by the same faulty event.
From the BPEL document, the global observer builds the list of partners and the order
in which they are invoked. Correlation is based on this information and the event sent
within the fault notification message.

A fault that cannot be detected occurs when the last event in a communication
between a web service and its client is lost. As discussed before, traces are sent as
UDP packets. To be able to detect lost packets and recover the observation, a
sequence number attribute is used. An observer detects a lost packet if the sequence
number of the following received packet is different than expected. When a lost
packet carries the last event in a communication, observers will not be able to detect
this incident since no future packets will arrive. Table 1 shows brief descriptions of
some of the executed scenarios and the reactions of observers (both local and global)
to the fault.

Target web service Fault description Comments

CWS Submit a printDocument request
before creating a conference

Fault detected by local
and global observer

Call Control Add a user before creating a
conference

Fault detected by local
and global observer

Shipping A trace collection event
(shipDocument response) from
a handler to the local observer is
lost (Figure 7.a)

Neither the local
observer nor the global
observer will detect the
fault.

Shipping A trace collection event
(shipDocument response) or a
fault notification from a local
observer to the global observer
is lost (Figure 7.b)

The global observer will
not be able to detect the
fault or process the
notification (correlation)

Table 1 Some of the executed scenarios

7 Conclusion and future work

As web services, both basic and composed, are rapidly emerging as a new concept for
business-to-business interactions, their management becomes a critical requirement
for their success. Management of composed web services is more complex than the
management of basic web services. This complexity is implied by the fact that a
composed web service aggregates a set of basic web services to provide a different,
more complex service. In fact, in addition to the management of the composed web
service in its own, management of basic web services must be performed accordingly
and all management entities should share management information.

notification

Global
Observer

Local
Observer

Shipping
Handler

trace collection

a. trace event does not reach the local observer b. trace event or fault notification does not reach
the Global Observer

Local
Observer

Global
Observer

Shipping
Handler

trace collection

or fault
trace collection

Figure 7 Scenarios of non-detected faults

In passive observation, the single observation of a composed web service does not
give insights on the behaviors of the basic web services. Many events observed
between a final web service and its client can not be studied and explained without
information on the exchanged events between the final web service and its basic web
services. Thus, observation of all basic web services or at least a subset of these web
services is needed.

In this paper, we presented a multi-observer architecture for the observation of
composed web services. The architecture proposes to observe the final web service
and a set of basic web services. Heuristics to select the basic web services to be
observed are also discussed. To reduce the network load generated by the observation,
the architecture considers mobile agent observers. We discussed also the network load
in terms of mathematical complexity for each type of participation of web services:
final web service provider’s participation, basic web services providers’ participation
or hybrid participation

As a proof of concept, we developed a set of basic web services and a composed
web service for conferencing management. We also evaluated the network load
introduced by the observation and the fault detection capabilities of different
observers.

Future work includes the consideration of an Extended Finite State Machine based
observers. This is a main issue in web services interactions where data flow is
important and fundamental.

References

[1] http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
[2] http://www.i3a.org/i_cpxe.html
[3] http://openmobilealliance.org
[4] B. Benatallah, M. Dumas, Q. Z. heng, and A. Ngu. Declarative Composition and Peer-to-
Peer Provisioning of Dynamic Web services. In Proc. of ICDE'02, IEEE Computer society,
pages 297-308, and Jose, 2002.
[5] Rachid Hamadi, Boualem Benatallah. A Petri Net-based Model for Web services
Composition. ADC 2003: 191-200.
[6] S. Narayanan, and McIlraith, S.Simulation, verification and automated composition of
web services. In Proceedings of the World Wide Web Conference, 2002.
[7] F. Leymann, Web service flow language (WSFL) 1.0. Available online at http://www-
4.ibm.com/software/ solutions/webservices/pdf/WSFL.pdf 2001.
[8] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. McDermott, D. Martin, S.A.
McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, “DAML-S: Web Service
Description for the Semantic Web,” Proc. First Int’l Semantic Web Conf. (ISWC 02), 2002.
[9] BPEL4WS Version 1.1 specification, May 2003 ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf
[10] S. Ghosh and A. Mathur. Issues in testing distributed component-based systems. 1st ICSE
Workshop on Testing Distributed Component-Based Systems. May 1999.
[11] www.oracle.com
[12] http://www.activebpel.org
[13] http://www.fivesight.com/pxe.shtml
[14] A. Mani and A. Nagarajan, “Understanding quality of service for web services”, January
2002. IBM paper: http://www-106.ibm.com/developerworks/library/ws-quality.html
[15] M.A. Serhani, R.Dssouli, A. Hafid, H. Sahraoui “A QoS broker based architecture for
efficient web services selection” IEEE international conference on web services, July 2005,
Orlando Florida, USA.
[16] Hongan Chen; Tao Yu; Kwei-Jay Lin, “QCWS: an implementation of QoS-capable
multimedia web services”, Proceedings of the Fifth International Symposium on multimedia
software engineering, 2003.
[17] M.A. Serhani, R.Dssouli, H. Sahraoui, A. Benharef, E. Badidi “QoS Integration in Value
Added Web Services” In second international conference on Innovations in Information
Technology (IIT05) Dubai, U.A.E, 26-28 September 2005.
[18] Tsai, W.T.; Chen, Y.; Paul, R.; Liao, N.; Huang, H.; “Cooperative and Group Testing in
Verification of Dynamic Composite Web Services” Computer Software and Applications
Conference, 2004. Proceedings of the 28th Annual International, Volume 2, 2004 Page(s):170 -
173 vol.2
[19] A Benharref, R. Glitho and R. Dssouli, Mobile Agents for Testing Web Services in Next
Generation Networks, 2nd International Workshop on Mobility Aware Technologies and
Applications, (MATA 2005), Montreal , Canada, October 2005
[20] D. Lee et al. Passive Testing and Applications to Network Management. Proceedings of
IEEE International Conference on Network Protocols, pages 113-122, October 1997.
[21] http://jade.tilab.com

