
Comparing Bug Finding Tools with Reviews and

Tests?

Stefan Wagner1, Jan Jürjens1, Claudia Koller1, and Peter Trischberger2

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, D-85748 Garching, Germany
2 O2 Germany

Georg-Brauchle-Ring 23-25, D-80992 Munich, Germany

Abstract. Bug finding tools can find defects in software source code us-
ing an automated static analysis. This automation may be able to reduce
the time spent for other testing and review activities. For this we need to
have a clear understanding of how the defects found by bug finding tools
relate to the defects found by other techniques. This paper describes a
case study using several projects mainly from an industrial environment
that were used to analyse the interrelationships. The main finding is that
the bug finding tools predominantly find different defects than testing
but a subset of defects found by reviews. However, the types that can
be detected are analysed more thoroughly. Therefore, a combination is
most advisable if the high number of false positives of the tools can be
tolerated.

1 Introduction

Software failures can have enormous consequences in terms of threatening peo-
ples lives as well as economic loss because various critical systems rely on soft-
ware. Furthermore, software becomes increasingly complex, which makes the
prevention of failures even more difficult. However, software quality assurance
accounts already for around 50% of the development time [13]. Therefore it is
important to improve defect-detection techniques as well as reduce their costs.
Automation can be an option in that direction. For example, automated test-case
generation based on executable models is also under investigation as a possibility
to make testing more efficient [16].

Extensive research has been done on finding defects in code by automated
static analysis using tools called bug finding tools, e.g. [1, 7, 8]. Although the
topic is subject of ongoing investigations, there are only few studies about how
these tools relate among themselves and to other established defect-detection
techniques such as testing or reviews.

We will now discuss the problem situation in more detail. We briefly define
the terms we use in the following: Failures are a perceived deviation of the output

? This research was supported in part by the Deutsche Forschungsgemeinschaft (DFG)
within the project InTime.



values from the expected values whereas faults are the cause of failures in code
or other documents. Both are also referred to as defects. We mainly use defect
in our analyses also if there are no failures involved as with defects related to
maintenance only.

Problem. We address the question of how automated static analysis using bug
finding tools relates to other types of defect-detection techniques and if it is
thereby possible to reduce the effort for defect-detection using such tools. In
detail, this amounts to three questions.

1. Which types and classes of defects are found by different techniques?
2. Is there any overlap of the found defects?
3. How large is the ratio of false positives from the tools?

Results. The main findings are summarised in the following.

1. Bug finding tools detect a subset of the defect types that can be found by a
review.

2. The types of defects that can be found by the tools can be analysed more
thoroughly, that is, the tools are better regarding the bug patterns they are
programmed for.

3. Dynamic tests find completely different defects than bug finding tools.
4. Bug finding tools have a significant ratio of false positives.
5. The bug finding tools show very different results in different projects.

Consequences. The results have four major implications.

1. Dynamic tests or reviews cannot be substituted by bug finding tools because
they find significantly more and different defect types.

2. Bug finding tools can be a good pre-stage to a review because some of the
defects do not have to be manually detected. A possibility would be to mark
problematic code so that it cannot be overlooked in the review.

3. Bug finding tools can only provide a significant reduction in the effort neces-
sary for defect-detection if their false positives ratios can be reduced. From
our case studies, we find the current ratios to be not yet completely accept-
able.

4. The tools have to be more tolerant regarding the programming style and
design to provide more uniform results in different projects.

Experimental Setup. Five industrial projects and one development project from
a university environment were selected which are either already in use or in the
final testing phase. We evaluated several bug finding tools and chose three repre-
sentatives that were usable for the distributed web systems under consideration.
The bug finding tools and dynamic tests were used on all projects. A review was
only possible for a single project. The warnings issued from the tools were anal-
ysed with experienced developers to classify them as true and false positives. All
defects that were found were classified regarding their severity and defect types.
The comparison was done based on this classification.



Contribution. We are not aware of studies that compare the defects found by
bug finding tools with the defects found by other techniques, in particular not
of any based on several, mainly industrial, projects. A main contribution is also
a thorough analysis of the ratio of false positives of the bug finding tools as this
is a significant factor in the usability of these tools.

Organisation. Sec. 2 gives an overview of bug finding tools in general (Sec. 2.1)
and the three tools that were used in the projects (Sec. 2.2). The projects are de-
scribed in Sec. 3 with general characteristics in Sec. 3.1 and specific descriptions
in Sec. 3.2. The approach for the comparison of the techniques can be found in
Sec. 4 with a general discussion in Sec. 4.1, the defect classification in Sec. 4.2,
and the introduction of the defect types in Sec. 4.3. The analysis of the study is
described in Sec. 5 with the comparison among the bug finding tools in Sec. 5.1,
bug finding tools versus reviews in Sec. 5.2, bug finding tools versus testing in
Sec. 5.3, and the defect removal efficiensies in Sec. 5.4. We discuss our findings
in Sec. 6 and describe related work in Sec. 7. Finally, we conclude in Sec. 8 and
sketch intended future work in Sec. 9.

2 Bug Finding Tools

This section provides an introduction to bug finding tools in general and de-
scribes briefly the three tools that were used in the case study.

2.1 Basics

Bug finding tools are a class of programs that aim to find defects in code by
static analysis similarly to a compiler. The results of such a tool are, however,
not always real defects but can be seen as a warning that a piece of code is critical
in some way. There are various techniques to identify such critical code pieces.
The most common one is to define typical bug patterns that are derived from
experience and published common pitfalls in a certain programming language.
Furthermore, coding guidelines and standards can be checked to allow a better
readability. Also, more sophisticated analysis techniques based on the dataflow
and controlflow are used. Finally, additional annotations in the code are intro-
duced by some tools [7] to allow an extended static checking and a combination
with model checking.

2.2 Analysed Tools

The three bug finding tools that we used for the comparison are described in
the following. We only take tools into account that analyse Java programs be-
cause the projects we investigated, as described below, are all written in that
language. All three tools are published under an open source license. We used
these three tools as representatives for tools that mainly use bug patterns, coding
standards, and dataflow analysis, respectively. We deliberately ignored tools that
need annotations in the code because they have quite different characteristics.



FindBugs. The tool FindBugs was developed at the University of Maryland and
can detect potentially problematic code fragments by using a list of bug patterns.
It can find faults such as dereferencing null-pointers or unused variables. To some
extent, it also uses dataflow analysis for this. It analyses the software using the
bytecode in contrast to the tools described in the following. The tool is described
in detail in [8]. We used the Version 0.8.1 in our study.

PMD. This tool [15] concentrates on the source code and is therefore especially
suitable to enforce coding standards. It finds, for example, empty try/catch
blocks, overly complex expressions, and classes with high cyclomatic complexity.
It can be customised by using XPath expressions on the parser tree. The version
1.8 was used.

QJ Pro. The third tool used is described in [17] and analyses also the source
code. It supports over 200 rules including ignored return values, too long variable
names, or a disproportion between code and commentary lines. It is also possible
to define additional rules. Furthermore, checks based on code metrics can be
used. The possibility to use various filters is especially helpful in this tool. We
evaluated version 2.1 in this study.

3 Projects

We want to give a quick overview of the five projects we analysed to evaluate
and compare bug finding tools with other defect-detection techniques.

3.1 General

All but one of the projects chosen are development projects from the telecommu-
nications company O2 Germany for backend systems with various development
efforts and sizes. One project was done by students at the Technische Universität
München. All these projects have in common that they were developed using the
Java programming language and have an interface to a relational database sys-
tem. The O2 projects furthermore can be classified as web information systems
as they all use HTML and web browsers as their user interface.

3.2 Analysed Projects

The projects are described in more detail in [12]. For confidentiality reasons, we
use the symbolic names A through D for the industrial projects.

Project A. This is an online shop that can be used by customers to buy products
and also make mobile phone contracts. It includes complex workflows depending
on the various options in such contracts. The software has been in use for six
months. It consists of 1066 Java classes that consist of over 58 KLOC (kilo lines
of code).



Project B. The software allows the user to pay goods bought over the Internet
using a mobile phone. The payment is added to the mobile bill. For this, the
client sends the mobile number to the shop and receives a transaction number
(TAN) via short message service (SMS). This TAN is used to authenticate the
user and authorises the shop to bill the user. The software has not been put into
operation at the time of the study. Software B has 215 Java classes with over 24
KLOC in total.

Project C. This is a web-based frontend for managing a system that is used to
convert protocol files between different formats. The tool analysed only interacts
with a database that holds administration information for that system. The
software was three months in use at the time it was analysed. It consists of over
3 KLOC Java and JSP code.

Project D. The client data of O2 is managed in the system we call D. It is a
J2EE application with 572 classes, over 34 KLOC and interfaces to various other
systems of O2.

EstA. The only non-industrial software that we used in this case study is EstA.
It is an editor for structuring textual requirements developed during a practical
course at the Technische Universität München. It is a Java-based software using
a relational database management system. The tool has not been extensively
used so far. It has 28 Java classes with over 4 KLOC.

4 Approach

In this section, the approach of the case study is described. We start with the
general description and explain the defect classification and defect types that
are used in the analysis.

4.1 General

We use the software of the five projects introduced in Sec. 3 to analyse the
interrelations between the defects found by bug finding tools, reviews, and tests.
For this, we applied each of these techniques to each software as far as possible.
While a review was only made on project C, black-box as well as white-box tests
were done on all projects. We ran the bug finding tools with special care to be
able to compare the tools as well. To have a better possibility for comparison
with the other techniques, we also checked each warning from the bug finding
tools if it is a real defect in the code or not. This was done by an inspection of
the corresponding code parts together with experienced developers. The usage of
the techniques was completely independent, that is, the testing and the review
was not guided by results from the bug finding tools.

The external validity is limited in this case study. Although we mostly con-
sidered commercially developed software that is in actual use, we only analysed



five systems. For better results more experiments are necessary. Furthermore,
the tests on the more mature systems, i.e. the ones that are already in use, did
not reveal many faults. This can also limit the validity. Moreover, the data from
only one review is not representative but can only give a first indication. Finally,
we only analysed three bug finding tools, and these are still under development.
The results might be different if other tools would have been used.

In the following we call all the warnings that are generated by the bug finding
tools positives. True positives are warnings that are actually confirmed as defects
in the code, false positives are wrong identifications of problems.

4.2 Defect Categorisation

For the comparison, we use a five step categorisation of the defects using their
severity. Hence, the categorisation is based on the effects of the defects rather
than their cause or type of occurrence in the code. We use a standard categori-
sation for severity that is slightly adapted to the defects found in the projects.
Defects in category 1 are the severest, the ones in category 5 have the lowest
severity. The categories are:

1. Defects that lead to a crash of the application. These are the most severe
defects that stop the whole application from reacting to any user input.

2. Defects that cause a logical failure. This category consists of all defects that
cause a logical failure of the application but do not crash it, for example a
wrong result value.

3. Defects with insufficient error handling. Defects in this category are only
minor and do not crash the application or result in logical failures, but are
not handled properly.

4. Defects that violate the principles of structured programming. These are de-
fects that normally do not impact the software but could result in perfor-
mance bottlenecks etc.

5. Defects that reduce the maintainability of the code. This category contains
all defects that only affect the readability or changeability of the software.

This classification helps us (1) to compare the various defect-detection tech-
niques based on the severity of the defects they find and (2) analyse the types
of defects that they find.

4.3 Defect Types

Additionally to the defect classification we use defect types. That means that
the same or very similar defects are grouped together for an easier analysis. This
is not based on any standard types such as [2, 4, 9] but was defined specifically
for the applications.

The defect types that we use for the bug finding tools can be seen as a
unification of the warning types that the tools are able to generate. Examples
for defect types are “Stream is not closed” or “Input is not checked for special
characters”.



5 Analysis

This section presents the results of the case study and possible interpretations.
At first, the bug finding tools are compared among each other, then the tools
are compared with reviews, and finally with dynamic tests.

5.1 Bug Finding Tools

We want to start with comparing the three bug finding tools described in Sec. 2
among themselves. The tools were used with each system described above.

Data. Tab. 1 shows the defect types with their categories and the corresponding
positives found by each tool over all systems analysed. The number before the
slash denotes the number of true positives, the number after the slash the number
of all positives.

Table 1. Summary of the defect types found by the bug finding tools

Defect Type Category FindBugs PMD QJ Pro

Database connection is not closed 1 8/54 8/8 0/0
Return value of function ignored 2 4/4 0/0 4/693
Exception caught but not handled 3 4/45 29/217 30/212
Null-pointer exception not handled 3 8/108 0/0 0/0
Returning null instead of array 3 2/2 0/0 0/0
Stream is not closed 4 12/13 0/0 0/0
Concatenating string with + in loop 4 20/20 0/0 0/0
Used “==” instead of “equals” 4 0/1 0/0 0/29
Variable initialised but not read 5 103/103 0/0 0/0
Variable initialised but not used 5 7/7 152/152 0/0
Needless if-clause 5 0/0 16/16 0/0
Multiple functions with same name 5 22/22 0/0 0/0
Needless semicolon 5 0/0 10/10 0/0
Local variable not used 5 0/0 144/144 0/0
Parameter not used 5 0/0 32/32 0/0
Private method not used 5 17/17 17/17 0/0
Empty finally block 5 0/0 1/1 0/0
Needless comparison with null 5 1/1 0/0 0/0
Uninitialised variable in constructor 5 1/1 0/0 0/0
For- instead of simple while loop 5 0/0 2/2 0/0

Observations and Interpretations. Most of the true positives can be as-
signed to the category Maintainability of the code. It is noticeable that the dif-
ferent tools predominantly find different positives. Only a single defect type was
found from all tools, four types from two tools each.



���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���������� ���������� 	�	�	
	�	�	
	�	�	


�


�


�


���
���
���

���
���
���

��
��
��

���
���
���

����������0
10

0
20

0
30

0
40

0
50

0

������

������
PMD

FindBugs

QJ Pro

Total

1 32 4 5

N
um

be
r o

f T
ru

e 
Po

si
tiv

es

Defect Category

Fig. 1. A graphical comparison of the number of true positives found by each tool and
in total

Considering the categories, FindBugs finds in the different systems positives
from all categories and PMD only from the categories Failure of the application,
Insufficient error handling, and Maintainability of the code. QJ Pro only reveals
positives from the categories Logical failure of the application, Insufficient error
handling, and Violation of structured programming. The number of faults found
in each category from each tool is graphically illustrated in Fig. 1. Also the
number of types of defects varies from tool to tool. FindBugs detects defects of
13 different types, PMD of 10 types, and QJ Pro only of 4 types.

The accuracy of the tools is also diverse. We use the defect type “Exception
is caught but not handled” that can be found by all three tools as an example.
While FindBugs only finds 4 true positives, PMD reveals 29 and QJ Pro even
30. For this, the result from QJ Pro contains the true positives from PMD
which in turn contain the ones from FindBugs. A reason for this is that QJ Pro
is also able to recognize a single semicolon as an non-existent error handling,
whereas the other two interpret that as a proper handling. This defect type is
also representative in the way that FindBugs finds the least true positives. This
may be the case because it uses the compiled class-files while PMD and QJ Pro
analyse the source code.

A further difference between the tools is the ratio of true positives to all
positives. PMD and FindBugs have a higher accuracy in indicating real defects
than QJ Pro. Tab. 2 lists the average ratios of false positives for each tool and
in total. It shows that on average, half of the positives from FindBugs are false
and still nearly a third from PMD. QJ Pro has the worst result with only 4%
of the positives being true positives. This leads to an overall average ratio of



0.66, which means that two thirds of the positives lead to unnecessary work.
However, we have to notice that FindBugs and PMD are significantly better
than that average.

Table 2. Average ratios of false positives for each tool and in total

FindBugs PMD QJ Pro Total

0.47 0.31 0.96 0.66

An illustrative example is the defect type “Return value of function is ig-
nored”. FindBugs only shows 4 warnings that all are true positives, whereas QJ
Pro provides 689 further warnings that actually are not relevant. Because all the
warnings have to be looked at, FindBugs is in this case much more efficient than
the other two tools.

The efficiency of the tools varied over the projects. For the projects B and
D, the detection of the defect type “Database connection not closed” shows only
warnings for true positives with FindBugs. For project A, it issued 46 warnings
for which the database connection is actually closed. Similarly, the detection rate
of true positives decreases for the projects D and A for the other two tools, with
the exception of the well recognised positives from the maintainability category
by PMD. This suggests that the efficiency of the defect detection depends on
the design and the individual programming style, i.e. the implicit assumptions
of the tool developers about how “good” code has to look like.

A recommendation of usage of the tools is difficult because of the issues
described above. However, it suggests that QJ Pro, although it finds sometimes
more defects than the other tools, has the highest noise ratio and therefore is the
least efficient. FindBugs and PMD should be used in combination because the
former finds many different defect types and the latter provides very accurate
results in the maintainability category. Finally, PMD as well as QJ Pro can be
used to enforce internal coding standards, which was ignored in our analysis
above.

5.2 Bug Finding Tools vs. Review

An informal review was performed only on project C. The review team consisted
of three developers, including the author of the code. The reviewers did not
prepare specifically for the review but inspected the code at the review meeting.

Data. The review revealed 19 different types of defects which are summarised
in Tab. 3 with their categories and number of occurrences.

Observations and Interpretations. All defects found by bug finding tools
were also found by the review. However, the tools found 7 defects of type “Vari-
able initialised but not used” in contrast to one defect revealed by the review. On



Table 3. Summary of the defect types and defects found by the review

Defect Type Category Occurrences

Database connection is not closed 1 1
Error message as return value 1 12
Further logical case ignored 2 1
Wrong result 2 3
Incomplete data on error 2 3
Wrong error handling 2 6
ResultSet is not closed 4 1
Statement is not closed 4 1
Difficult error handling 4 10
Database connection inside loop opened and closed 4 1
String concatenated inside loop with “+” 4 1
Unnecessary parameter on call 5 51
Unnecessary parameter on return 5 21
Complex for loop 5 2
Array initialised from 1 5 21
Unnecessary if clauses 5 8
Variable initialised but not used 5 1
Complex variable increment 5 1
Complex type conversion 5 7

the other hand, the review detected 8 defects of type “Unnecessary if-clause”,
whereas the tools only found one. The cause is that only in the one defect that
was found by both there was no further computation after the if-clause. The
redundancy of the others could only be found out by investigating the logics of
the program.

Apart from the two above, 17 additional types of defects were found, some
of which could have been found by tools. For example, the concatenation of a
string with “+” inside a loop is sometimes not shown by FindBugs although
it is generally able to detect this defect type. Also, the defect that a database
connection is not closed was not found, because this was done in different func-
tions. Furthermore it was not discovered by the tools that the ResultSet and the
corresponding Statement was never closed.

Other defect types such as logical faults or a wrong result from a function
cannot be detected by bug finding tools. These defects, however, can be found
during a review by following test cases through the code.

In summary, the review is more successful than bug finding tools, because
it is able to detect far more defect types. However, it seems to be beneficial
to first use a bug finding tool before inspecting the code, so that the defects
that are found by both are already removed. This is because the automation
makes it cheaper and more thorough than a manual review. However, we also
notice a high number of false positives from all tools. This results in significant
non-productive work for the developers that could in some cases exceed the
improvement achieved by the automation.



5.3 Bug Finding Tools vs. Testing

We used black box as well as white box tests for system testing the software
but also some unit tests were done. The black box tests were based on the
textual specifications and the experience of the testers. Standard techniques
such as equivalence and boundary testing were used. The white box tests were
developed using the source code and path testing. Overall several hundred test
cases were developed and executed. A coverage tool has also been used to check
the quality of the test suites. However, there were no stress tests which might
have changed the results significantly. Only for the projects EStA and C, defects
could be found. The other projects are probably too mature to be able to find
further defects by normal system testing.

Data. The detected defect types together with their categories and the number
of occurrences are summarised in Tab. 4. We also give some information on
the coverage data that was reached by the tests. We measured class, method,
and line coverage. The coverage was high apart from project C. In all the other
projects, class coverage was nearly 100%, method coverage was also in that area
and line coverage lay between 60 and 93%. The low coverage values for project
C might be explained by the fact that we invested the least amount of effort in
testing this project.

Table 4. Summary of the defect types and defects found by the tests

Defect Type Category Occurrences

Data range not checked 1 9
Input not checked for special characters 1 6
Logical error on deletion 1 1
Consistency of input not checked 2 3
Leading zeros are not ignored 2 1
Incomplete deletion 2 2
Incomprehensible error message 3 7
Other logical errors 2 3

Observations and Interpretations. The defects found by testing are in the
categories Failure of the application, Logical failure, and Insufficient error han-
dling. The analysis above of the defects showed that the bug finding tools pre-
dominantly find defects from the category Maintainability of the code. Therefore
the dynamic test techniques find completely different defects.

For the software systems for which defects were revealed, there were no iden-
tical defects found with testing as well as the bug finding tools. Furthermore,
the tools revealed several defects also in the systems for which the tests were not
able to find one. These are defects that can only be found by extensive stress



tests, such as database connections that are not closed. This can only result in
performance problems or even a failure of the application, if the system is under
a high usage rate and there is a huge amount of database connections that are
not closed. The most defects, however, are really concerning maintainability and
are therefore not detectable by dynamic testing.

In summary, the dynamic tests and the bug finding tools detect different
defects. Dynamic testing is good at finding logical defects that are best visible
when executing the software, bug finding tools have their strength at finding
defects related to maintainability. Therefore, we again recommend using both
techniques in a project.

5.4 Defect Removal Efficiency

The defect removal efficiency is as proposed by Jones in [11] the fraction of all
defects that were detected by a specific defect-detection technique. The main
problem with this metric is that the total number of defects cannot be known.
In our case study we use the sum of all different defects detected by all techniques
under consideration as an estimate for this number. The results are shown in
Tab. 5. The metric suggests that the tools are the most efficient techniques
whereas the tests where the least efficient.

Table 5. The defect removal efficiencies per defect-detection technique

Technique Number of Defects Efficiency

Bug Finding Tools 585 76%
Review 152 20%
Tests 32 4%

Total 769 100%

However, we also have to take the defect categorisation into account because
this changes the picture significantly. The Tab. 6 shows the efficiencies for each
techniques and category with the number of defects in brackets. It makes obvious
that tests and reviews are far more efficient in finding defects of the categories
1 and 2 than the bug finding tools which are the most severe defects.

6 Discussion

The result that bug finding tools mainly detect defects that are related to the
maintainability of the code complies with the expectation an experienced devel-
oper would have. Static analysis only allows to look for certain patterns in the
code and simple dataflow and controlflow properties. Therefore only reviews or
tests are able to verify the logic of the software (as long as the static analysis
is not linked with model checking techniques). The tools do not “understand”



Table 6. The defect removal efficiencies for each category

Category Bug Finding Tools Reviews Tests Total

1 22% (8) 35% (13) 43% (16) 100% (37)
2 15% (4) 50% (13) 35% (9) 100% (26)
3 85% (40) 0% (0) 15% (7) 100% (47)
4 70% (32) 30% (14) 0% (0) 100% (46)
5 82% (501) 18% (112) 0% (0) 100% (613)

the code in that sense. The prime example for this is the varying efficiency over
the projects. In many cases, the tools were not capable to realise that certain
database connections are not closed in the same Java method but a different
one. They only search for a certain pattern. Therefore, the limitation of static
analysis tools lies in what is expressible by bug patterns, or in how good and
generic the patterns can be.

However, it still is surprising that there is not a single overlapping defect de-
tected by bug finding tools and dynamic tests. On the positive side, this implies
that the two techniques are perfectly complementary and can be used together
with great benefit. The negative side is that by using the automated static anal-
ysis techniques we considered, it may not be possible to reduce costly testing
efforts. That there is only little overlapping follows from the observation above
that the tools mainly find maintenance-related defects. However, one would ex-
pect to see at least some defects that the tests found also detected by the tools,
especially concerning dataflow and controlflow. The negative results in this study
can be explained with the fact that most of the projects analysed are quite ma-
ture, and some of them are already in operation. This resulted in only a small
number of defects that were found during testing which in turn could be a reason
for the lack of overlapping.

A rather disillusioning result is the high ratio of false positives that are
issued by the tools. The expected benefit of the automation using such tools lies
in the hope that less human intervention is necessary to detect defects. However,
as on average two thirds of the warnings are false positives, the human effort
could be even higher when using bug finding tools because each warning has to
be checked to decide on the relevance of the warning. Nevertheless, there are
significant differences between the tools so that choosing the best combination
of tools could still pay off.

Bug finding tools that use additional annotations in the code for defect-
detection could be beneficial considering the overlap of defects with other tech-
niques as well as the false positives ratio. The annotations allow the tool to
understand the code to a certain extent and therefore permits some checks of
the logic. This deeper knowledge of the code might reduce the false positives
ratio. However, to make the annotations requires additional effort by the devel-
opers. It needs to be analysed if this effort is lucrative.

The effort and corresponding costs of the determination of defects using the
tools (including checking the false positives) was not determined in this study.



This is however necessary to find out if the use of bug finding tools is beneficial
at all.

7 Related Work

There are only few studies about how bug finding tools relate among themselves
and to other established defect-detection techniques such as testing or reviews.

In [18] among others PMD and FindBugs are compared based on their warn-
ings which were not all checked for false positives. The findings are that although
there is some overlap the warnings generated by the tools are mostly distinct.
We can support this result with our data.

Engler and Musuvathi discuss in [6] the comparison of their bug finding tool
with model checking techniques. They argument that static analysis is able to
check larger amounts of code and find more defects but model checking can check
the implications of the code not just properties that are on the surface.

In [10] a static analysis tools for C code is discussed. The authors state that
sophisticated analysis of, for example, pointers leads to far less false positives
than simple syntactical checks.

An interesting combination of static analysis tools and testing in described
in [5]. It is proposed to use static analysis to find potential problems and au-
tomatically generate test cases to verify if there is a real defect. However, the
approach obviously does not work with maintenance-related defects.

Bush et al. report in [3] on a static analyser for C and C++ code which is
able to find several more dynamic programming errors. However, a comparison
with tests was not done. Nevertheless, our observation that the defect-finding
capabilities depend strongly on the coding styles of different programmers is
supported in this paper.

In [22] an evaluation of static analysis tools for C code regarding buffer over-
flows is described. The defects were injected and the fraction of buffer overflows
found by each technique was measured. It is also noted that the rates of false
positives or false alarms are unacceptably high.

Palsberg describes in [14] some bug finding tools that use type-based anal-
ysis. He shows that they are able to detect race conditions or memory leaks in
programs.

8 Conclusion

The work presented is not a comprehensive empirical study but a case study
using a series of projects mainly from an industrial environment giving first
indications of how the defects found by bug finding tools relate to other defect-
detection techniques.

The main findings are that the bug finding tools revealed completely different
defects than the dynamic tests but a subset of the types of the review. The defect
types that are detected by the tools are analysed more thoroughly than with



reviews. The effectiveness of the tools seems to strongly depend on the personal
programming style and the design of the software as the results differed strongly
from project to project. Finally, a combination of the usage of bug finding tools
together with reviews and tests would be most advisable if the number of false
positives were lower. It probably costs more time to resolve the false positives
than is saved by the automation using the tools.

Therefore, the main conclusion is that bug finding tools can save costs when
used together with other defect-detection techniques, if the tool developers are
able to improve the tools in terms of the false positives ratio and tolerance of
different programming styles.

9 Future Work

This study is only a first indication and needs further empirical validation to be
able to derive solid conclusions. For this, we plan to repeat this study on different
subjects and also taking other tools into account, e.g. commercial tools or tools
that use additional annotations in the source code. Also, the investigation of
other types of software is important, since we only considered web applications
in this study.

How the proper combination of the different techniques can be found is also
subject to further research. As a first step more reliability-oriented measures,
such as the failure intensity efficiency [19, 20] can be used to compare the bug
finding tools with other techniques. This can give more clues in terms of the effect
on the reliability of the usage of bug finding tools. However, a comprehensive
treatment of the subject needs to incorporate the false positives ratio into a cost
model based on [21] to be able to determine the economically best alternatives.

Acknowledgments

We want to thank the authors of the tools FindBugs, PMD, QJ Pro for investing
such an amount of work in the tools and making them available to the public.

References

1. T. Ball and S.K. Rajamani. The SLAM Project: Debugging System Software via
Static Analysis. In Proc. 29th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

2. B. Beizer. Software Testing Techniques. Thomson Learning, 2nd edition, 1990.
3. W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic

programming errors. Softw. Pract. Exper., 30:775–802, 2000.
4. R. Chillarege. Orthogonal Defect Classification. In Michael R. Lyu, editor, Hand-

book of Software Reliability Engineering, chapter 9. IEEE Computer Society Press
and McGraw-Hill, 1996.

5. C. Csallner and Y. Smaragdakis. CnC: Combining Static Checking and Testing.
In Proc. 27th International Conference on Software Engineering (ICSE’05), 2005.
To appear.



6. D. Engler and M. Musuvathi. Static Analysis versus Model Checking for Bug
Finding. In Proc. Verification, Model Checking and Abstract Interpretation (VM-
CAI’04), volume 2937 of LNCS, pages 191–210. Springer, 2002.

7. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended Static Checking for Java. In Proc. 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2002.

8. D. Hovemeyer and W. Pugh. Finding Bugs is Easy. SIGPLAN Notices, 39(12),
2004. To appear.

9. IEEE. IEEE Standard Classification for Software Anomalies, 1993. IEEE Std
1044-1993.

10. R. Johnson and D. Wagner. Finding User/Kernel Pointer Bugs With Type Infer-
ence. In Proc. 13th USENIX Security Symposium, 2004.

11. C. Jones. Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill, 1991.

12. C. Koller. Vergleich verschiedener Methoden zur analytischen Qualitätssicherung.
Diploma Thesis, Technische Universität München, 2004. In German.

13. G.J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.
14. J. Palsberg. Type-Based Analysis and Applications. In Proc. 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE’01), pages 20–27. ACM Press, 2001.

15. PMD. http://pmd.sourceforge.net (February 2005).
16. A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa,

R. Zölch, and T. Stauner. One Evaluation of Model-Based Testing and its Automa-
tion. In Proc. 27th International Conference on Software Engineering (ICSE’05),
2005. To appear.

17. QJ Pro. http://qjpro.sourceforge.net (February 2005).
18. N. Rutar, C.B. Almazan, and J.S. Foster. A Comparison of Bug Finding Tools

for Java. In Proc. 15th IEEE International Symposium on Software Reliability
Engineering (ISSRE’04), pages 245–256, 2004.

19. S. Wagner. Efficiency Analysis of Defect-Detection Techniques. Technical Report
TUMI-0413, Institut für Informatik, Technische Universität München, 2004.

20. S. Wagner. Reliability Efficiency of Defect-Detection Techniques: A Field Study.
In Suppl. Proc. 15th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE’04), pages 294–301, 2004.

21. S. Wagner. Towards Software Quality Economics for Defect-Detection Techniques.
In Proc. 29th Annual IEEE/NASA Software Engineering Workshop, 2005. To
appear.

22. M. Zitser, R. Lippmann, and T .Leek. Testing Static Analysis Tools using
Exploitable Buffer Overflows from Open Source Code. In Proc. 12th ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT’04/FSE-12), pages 97–106. ACM Press, 2004.


