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Abstract. Multiple timing faults, although detectable individually, can
hide each other’s faulty behavior making the faulty system indistinguish-
able from a non-faulty one. A set of graph augmentations are introduced
for single timing faults. The fault detection capability of the augmen-
tations is analyzed in the presence of multiple timing faults and shown
that multiple occurrences of a class of timing faults can be detected.
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1 Introduction

This paper analyzes the fault detection capability of the timed FSM model
introduced in Ref. [7] in the presence of multiple timing faults. It is shown
here that multiple timing faults, although detectable individually, can hide each
other’s faulty behavior thereby making the faulty system indistinguishable from
a non-faulty one. A set of graph augmentations are introduced for single timing
faults. It is shown that the augmentations for single faults can also detect the
presence of multiple faults occurring simultaneously.

Fault coverage has been studied mostly with respect to transfer/output faults
for FSMs [1, 9, 11, 15]. Petrenko et al. [9] investigate fundamental underlying con-
cepts of fault coverage analysis, whose primary focus is protocol conformance
testing. The detection of such faults, which is not part of the timing-fault analy-
sis, depends on the adopted conformance relation, the underlying fault models,
and the state verification method [4, 8, 10, 13]. If a timing fault results in a trans-
fer/output fault, we assume that it is detected with high probability under the
widely accepted assumption that the faults do not increase the number of states
in an implementation under test (IUT).

The related work on testing systems with timing dependencies focuses on
testing Timed Automata (TA) [2], with a theoretical framework in Ref. [12]
achieving a provably complete test coverage at the expense of a prohibitively
large number of test cases. Dssouli et al. [5, 6] introduce a method based on the
state characterization technique using a timed extension of the Wp-method [8].
The technique formulates fault models for timed systems by considering time
specific one-clock and multi-clock timing faults in addition to FSM-like trans-
fer/output faults. The aim of a complete test coverage is relaxed—by choosing



a proper granularity, a “good” fault coverage is achieved with reasonably long
test sequences. Dssouli et al. are the first to present a classification of timing
faults [6], and formally prove that their technique detects all single faults of a
given type [5]. None of the above techniques are shown to have the ability to
detect multiple simultaneous timing faults. A major contribution of this paper is
a formal analysis of such a fault detection capability for the testing methodology
introduced in Ref. [7].

Section 2 of this paper gives the basic definitions. The simplified version of
the timed FSM model of [7] is given in Section 3. Single and multiple timing
faults are discussed in Sections 4 and 5, respectively.

2 Definitions

A communicating protocol can be modeled as a Finite State Machine (FSM)
represented by a directed graph G(V,E). Vertex set V and edge set E represent
the states and transitions triggered by events of a system, respectively. For time-
related FSM, FSM can be extended to consider of a set of timers T that may
be arbitrarily started or stopped.

Timed FSM is a tuple M = (V,A, O, T , E, v0) where V is a finite set of
states, v0 ∈ V is the initial state, A is a finite set of inputs, O is a finite set of
outputs, T is a finite set of timers, and E ⊆ V × (A × T × O) × V is a set of
transitions V ×A× T −→ O × V .

In the presence of timers, an FSM becomes an Extended Finite State Machine
(EFSM). Timer-related variables will appear in addition to the variables from the
tuple above, in the form of conditions 〈tj〉 on the timer variables and of actions
{tj}on variable values. A tuple ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) is a transition ei ∈
E, where vp is a current state, vq is a next state, ai is the input defined in current
state vp or in current transition vp

ei→ vq, oi is the output from current transition
vp

ei→ vq, tj is a vector of timer variables, 〈tj〉 are the conditions on time-related
variables, and {tj} are the actions which update time-related variables.

A timer Tj ∈ T can be defined with a timer vector tj = (Tj , Dj , fj , Lp) where
Tj ∈ {0, 1} is a timer running status variable denoted by a boolean variable,
Dj ∈ R◦+ is a time-characteristic variable that indicates the length of timer Tj ,
fj ∈ R∞ is a time-keeping variable that indicates the time elapsed since timer Tj

started, and Lp ∈ {0, 1} is a flow enforcing variable that forces the test sequence
to traverse the augmented graph according to model specific rules. Timer Tj ∈ T
is expired iff 〈(Tj == 1) ∧ (fj > Dj)〉 and is running iff 〈(Tj == 1) ∧ (fj < Dj)〉.

Tj == 1 (depicted as Tj henceforth) denotes a timer is running and Tj ==
0 (depicted as ¬Tj henceforth) denotes a timer is not running (i.e., stopped,
expired or not started yet). Dj is the length for Tj and ∀ fj ∈ Z∞ is the time
elapsed since its start. When Tj has just started, fj := 0, and fj := −∞ if Tj is
not running. Over an edge ei the value of fj is increased by the cost ci of ei as
fj := fj + ci. Once fj becomes (fj > Dj), Tj is said to be expired or timed-out.
The difference of (Dj −fj) represents the remaining time until Tj ’s expiry. Lp is



a flow enforcing variable where Lp = 0 implies that no transition can leave the
current state vp and Lp = 1 means that all transitions are allowed to leave vp.

For hk = (vk, vk+1, ak, ok, 〈tj〉 , {tj}) (∀hk ∈ E,∀vk ∈ V , ∀k ∈ Z+), a finite
transition sequence is represented as ρ = h1, · · ·hk, hk+1, · · ·hn in the graph G
associated with M . For any ∀k ∈ [1, n− 1], hk was progressed before hk+1.

Assume that there are K running timers: {T1, T2, · · ·Tj , · · ·TK} ⊂ T . Then
edge cost ci ∈ R◦+ is the amount of time required to completely traverse the
current edge ei. Timeout transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) is triggered by
Tj expiry and it becomes feasible if at least one of the running timers Tj expires,
∀Tk 6= Tj , which can be described as follows:

〈tj〉 : 〈Tj ∧ (fj > Dj) ∧ Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk)〉
{tj} : {Tj := 0; fj := −∞; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K,∀k 6= j}

A transition in which timer Tj , ∀j ∈ [1,K], does not expire is defined as a
non-timeout transition. A timer can be started in an action as follows:

〈tj〉 : 〈¬Tj ∧ Tk ∧ (fk < Dk)〉
{tj} : {Tj := 1; fj := 0; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K},∀k 6= j.

A timer can be stopped as follows:

〈tj〉 : 〈Tj ∧ (fj < Dj) ∧ Tk ∧ (fk < Dk)〉
{tj} : {Tj := 0; fj := −∞; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K},∀k 6= j.

3 Modeling Timed FSM

To simplify the test generation from timed FSM models (which are essentially
EFSMs due to the timing variables as described in Section 2), we introduce a
graph augmentation for conversion of G to G′ as follows:

Step (i): All the self loops in G are represented as ordinary (i.e., state-to-
state) edges in G′;

Step (ii): For every state vp in G, an additional state called v′p is introduced
in G′, which becomes the ending state for all of self-loops defined in vp;

Step (iii): For self-loops of vp in G, the return from v′p to vp is ensured by
the introduction of an additional edge called return edge eret

p in G′:

ep,k = (vp, v
′
p) (self-loop converted as state-to-state edge)

eret
p = (v′p, vp) (return edge from replica state v′p)

Step (iv): A new observer state is appended to vp in G′, namely v′′p . This
state can be reached from and to vp via additional edges ep,obs, ep,wait and eret

p,obs,
respectively:

ep,obs = (vp, v
′′
p ) (observer edge)

ep,wait = (vp, v
′′
p ) (wait edge)

eret
p,obs = (v′′p , vp) (return edge from observer state)
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In this model, the new states in G′ are introduced to convert the self-loop
transitions as state-to-state transitions. The role of the observer state is to “con-
sume” pending timeouts and enable outgoing edges by setting Lp to 1. Figure 1
shows, for state vp, an example conversion of self-loops to state-to-state transi-
tions and the introduction of observer states/edges by our model. Augmented
graph G′ will contain two types of transitions, as defined below:

Type 1 Timeout transition ej
i defined as the transition triggered by the expiry

of timer Tj. (Note that in the original graph G, ej
i corresponds to either a state-

to-state edge or a self-loop).

Type 2 Non-timeout transition ei, which may start/stop a timer, may be a
regular, non-timeout, state-to-state transition or may have been converted from
a non-timeout self-loop transition.

3.1 Edge Conditions and Actions for New Model

The original edge conditions and the actions of G are modified by appending
timer-related conditions and actions, as described below.

Edge conditions that need to be satisfied before an edge can be traversed
are formulated using the three variable types described in Section (2): timer
status variables (Tj—on or off), time-keeping variables (Dj—timer length, fj—
time elapsed) and flow-enforcing variables (Lp—edge traversal control). Below
are the edge conditions used by our model:

A Type 1 (timeout) transition is feasible if all of the following conditions are
true during the traversal:
• at least one of the running timers expires (for any two running timers, Tj and

Tk, either Tj or Tk expires, and thus enables the timeout edge):
(
(Tj ∧¬Tk)∨

(¬Tj ∧ Tk)
)
∀Tj 6= Tk

• the timer that expired was the timer with the least remaining time (i.e., if
some Tk was also running, and if Tj ’s remaining time was less, then it was Tj

that expired): Tj ∧
(
¬Tk ∨

(
Tk ∧ (Dj − fj < Dk − fk)

))
∀Tj 6= Tk

• the flow-enforcing variable is set as follows:

Lp ==
{

0, if the edge was a timeout self loop edge in G
1, if the edge was a timeout state-to-state edge in G

These three components of a Type 1 edge condition can be, therefore, com-
bined and formalized as:



• for a converted edge in G′ (i.e., a self-loop edge in G):
〈
Tj ∧ (fj > Dj)∧ Tk ∧

(fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 0)
〉

• for an original edge in G′ (i.e., a state-to-state edge in G):
〈
Tj ∧ (fj > Dj) ∧

Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 1)
〉

The above equations imply that before a timeout transition, Tj should be
still running, remaining time should be the least among all other running timers
and the flow-enforcing variable is appropriately set for either a converted or
an original edge in G′. Any nondeterminism due to multiple timeouts can be
detected during test-sequence generation, e.g., if tmj and tmk are to expire
simultaneously, then (Dj−fj = Dk−fk) and their conditions cannot be satisfied.

Similarly, during the traversal, a Type 2 (non-timeout) transition becomes
feasible if both of the following conditions are true:
• either there is no running timer started in a previous transition (there may

be a timer started on the current transition): 〈¬Tj〉; or, if there is, it did not
expire over a previous transition (time variable fj of running timer Tj is less
than timer’s length Dj): 〈Tj ∧ (fj < Dj)〉

• the flow-enforcing variable is set as:

Lp ==
{

0, if the edge was a non-timeout self-loop in G
1, if the edge was a non-timeout state-to-state edge in G

Therefore, the time conditions for Type 2 edges can be formalized as follows:
• for a converted edge in G′ (i.e., a self-loop edge in G):

〈(
¬Tj ∨ (fj < Dj)

)
∧

(Lp == 0)
〉

• for an original edge in G′ (i.e., a state-to-state edge in G):
〈(
¬Tj ∨ (fj <

Dj)
)
∧ (Lp == 1)

〉
The time condition for the wait edge ep,wait and observer edge ep,obs, from

the original state vp to the observer state v′′p is formulated as:
〈
Lp == 0

〉
.

The return edges (i.e., eret
p and eret

p,obs) added by the graph augmentation to
G′ are no-cost edges with time condition as true:

〈
1
〉
.

Action list can be executed by an edge whose traversal was determined
by its time condition being satisfied. Such an edge may proceed and update all
variables that changed during the current transition accordingly:
• If a timer expires, the timeout edge will reset the status variable Tj to 0 and

the time-keeping variable to −∞:
{
Tj := 0; fj := −∞

}
• If a timer started on a previous transition is still running, the current edge

ei will update its value with its cost ci (which may bring fj > Dj , and thus
timeout Tj and trigger a timeout transition):

{
fj := fj + ci

}
• If a timer is started on the current transition, the current action list will

initialize the timer state Tj to 1 and the time-keeping variable fj to 0:
{
Tj :=

1; fj := 0
}

• The flow-enforcing variable Lp is also set by every edge according to its type:

Lp :=
{

1, set by observer edge to allow traversal of state-to-state edges
0, set by either Type 1 or Type 2 edges



Each edge type will perform a subset of the above listed actions, according
to its specifics, as follows:
• Type 1 (timeout) edge: {Tj := 0; fj := −∞; Tk := Tk; fk := fk +ci; Lp :=

0}
• Type 2 (non-timeout) edge:

{
fk := fk + ci; Lp := 0

}
if the edge starts no

timers;
{
Tj := 1; fj := 0; Tk := Tk; fk := fk + ci; Lp := 0

}
if the edge

starts timer Tj

• Wait (artificial) edge:
{
fj := fj +1

}
or

{
fj := fj +(Dj − fj)

}
where Dj − fj

is the remaining time of timer Tj to timeout
• Observer (artificial) edge:

{
Lp := 1

}
• Return (artificial) edge:

{ }
(i.e., there is no actions for this edge)

Since both edge types, namely Type 1 and Type 2, disable outgoing transi-
tions by setting Lp := 0 the only edges whose actions will enable these transitions
are the artificially-created observer edges.

4 Modeling Timing Faults

In general, timing faults in an IUT can be classified into: (i) 1-clock interval
faults, (ii) n-clock interval faults (introduced by Dssouli et al. [5, 6]), and (iii)
incorrect settings of timer lengths. The goal is to detect such faults during test-
ing through special-purpose timers and graph augmentations that force a test
sequence to take a different path for a faulty IUT than for the conformant one.

In our model during the testing of transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}),
after input ai is applied, the expected output oi should be generated no later than
θ time units, θ ∈ R+. If there is no output observed in θ time units (represented
as ¬oi) or output oi is observed after θ time units, a fault occurs. The θ time
units is part of a test harness rather than the IUT.

4.1 1-Clock Interval Faults

1-Clock Interval Faults are related to timing conflicts due to one clock/timer
regardless of other concurrent clocks/timers. Unacceptable input timing (i.e., an
input may be ’rushed’ or ’delayed’) results either in an unacceptable output value
for a transition or unexpected output timing (i.e., an output may be ’rushed’ or
’delayed’). 1-clock interval faults occur either when at least one input interval
boundary is violated in the IUT or no interval boundary is modified but no
output is observed.

Timing Requirement: Transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) can cor-
rectly trigger only if applied input ai is within the required time interval [α, β]
measured from the traversal of hk—an edge prior to ei in a test sequence.

Based on this requirement, two faults, namely Timing Faults I and II, can
be defined as follows:

Timing Fault I: Input ai is applied either too early (δ′ < α) or too late
(δ′ > β), but output oi may still be observed and state vq be verified in no later
than θ time units from the instance input ai is applied.
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Fig. 2. Augmenting state vp for Timing Fault I detection

Timing Fault II: Input ai is applied within the required time interval [α, β],
but either the output is not observed (i.e., ¬oi) or state vq cannot be verified in
less than δ + θ time units. The detection of Fault II has not been included in
the analysis presented in this paper since it has been handled by transfer fault
detection models reported in literature [9].

Graph Augmentation to Detect Timing Fault I: The modeling of 1-clock
timing requirement for an edge ei = (vp, vq, ai, oi, 〈tj〉 , {tj}), is accomplished by
using two special purpose timers and creating the so-called observer states/edges.
The special purpose timers are called Tα and Tβ with lengths Dα = α and
Dβ = β time units, respectively, where α < β. Note that timers Tα and Tβ are
not the part of the IUT, but maintained by the test harness run by the tester.

The edge ei triggers only after input ai is applied within time interval [α, β]
(i.e., after timer Tα but before timer Tβ expires), and in its action stops timer Tβ .
Therefore, in our augmentation, the modified timing conditions for hk (which
starts Tα and Tβ timers) and ei are as follows:

hk :
〈
¬Tα ∧ ¬Tβ

〉 {
Tα := 1; fα := 0; Tβ := 1;

fβ := 0
}

ei :
〈
¬Tα ∧ Tβ ∧ (fβ ∈ [α, β]) ∧ (Lp == 1)

〉 {
Tβ := 0; fβ := −∞; Lp := 0

}
Additionally, vp (starting state of ei) is replaced by two new states, vp,1 and

vp,2, connected by a new edge ep,1,2 from vp,1 to vp,2; the original incoming
and outgoing edges of vp are connected to vp,1 and vp,2, respectively. The time
condition for ep,1,2 is the expiry of Tα with the cost of zero:

ep,1,2 :
〈
Tα ∧ (fα > α) ∧ Tβ ∧ (Lp == 1)

〉 {
Tα := 0; fα := −∞; Lp := 0

}
Two new observer states, namely v′p,1 and v′p,2, with their associated observer

edges, ep,1,obs and ep,2,obs, are appended to vp,1 and vp,2, respectively. The new
wait edges ep,1,wait from vp,1 to v′p,1 (with cost cp,1,wait = 1 time unit) and
ep,2,wait from vp,2 to v′p,2 (with cost cp,2,wait = 1 time unit), and their return



edges, namely eret
p,1 and eret

p,2 (both with zero cost), are created:

ep,1,wait :
〈
Tα ∧ (fα < α) ∧ Tβ ∧ (fβ < α) ∧ (Lp == 0)

〉 {
fα := fα + cp,1,wait;

fβ := fβ + cp,1,wait

}
ep,1,obs :

〈
Tα ∧ (fα > α) ∧ Tβ ∧ (Lp == 0)

〉 {
Lp := 1

}
ep,2,wait :

〈
¬Tα ∧ Tβ ∧ (fβ < β) ∧ (Lp == 0)

〉 {
fβ := fβ + cp,2,wait

}
ep,2,obs :

〈
¬Tα ∧ Tβ ∧ (fβ ∈ [α, β]) ∧ (Lp == 0)

〉 {
Lp := 1

}

Finally, two new fault edges, named ep,1,fault and ep,2,fault, from vp,1 and
vp,2 to a new fault state called SF−I , respectively, are introduced. The edge
conditions and actions of ep,1,fault and ep,2,fault are formulated such that if
the input is applied before Tα’s expiry (i.e., the lower boundary of [α, β]) and
after Tβ ’s expiry (i.e., the upper boundary of [α, β]), respectively, the sequence
is forced to move into state SF−I . In other words, when input ai is applied, if
the following timing conditions are true, the IUT will be assumed to be in state
SF−I , where the test will be declared as failed:

ep,1,fault :
〈
Tα ∧ (fα < α) ∧ Tβ ∧ (fβ < α) ∧ (Lp == 0)

〉 {
Tα := 0; fα := −∞;

Tβ := 0; fβ := −∞
}

ep,2,fault :
〈
¬Tα ∧ Tβ ∧ (fβ > β) ∧ (Lp == 0)

〉 {
Tβ := 0; fβ := −∞

}
Therefore, ei triggers only when ai is applied after Tα’s and before Tβ ’s

expiry. But if the input interval condition is not satisfied, G′ forces the traversal
of either ep,1,fault, or ep,2,fault, making the tester declare the IUT in the fault
state of SF−I (Figure 2).

4.2 n-Clock Interval Fault

Timing conflicts due to n-clock interval faults are concerned with n clocks/timers
running concurrently. In a faulty IUT, this fault may result in an altered traversal
sequence which can go unnoticed during testing. n-clock interval fault occurs
when at least one edge is traversed out of the required testing sequence.

Timing Requirement: Edge ei = (vp, vq, ai, oi, 〈tj〉 , {tj}), can be only
traversed after a sequence of transitions ρ = h1, hk, hk+1· · ·hn, such that hk was
executed before hk+1 (∀k ∈ [2, n] ⊂ Z+).

Timing Fault III: The required order of edges is not respected and the
relation between them does not hold true (i.e., for at least one edge ∃k ∈ [2, n],
hk+1 was executed before hk). As a result, for a test sequence, the final state
v′q 6= vq is verified and the final output o′i 6= oi is observed.

The graph augmentation for this case has been skipped due to space con-
straints, but an extensive study can be found in Refs. [3, 14].
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4.3 Incorrect Timer Setting Faults

Timing conflicts which arise due to faulty timer length settings in an IUT are
called incorrect timer setting faults where the timer length is incorrectly set
either too short or too long (i.e., the timer expires too early or too late).

Timing Requirement: In a test sequence, edge hk starts timer Tj and is
traversed before ei. Timeout transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) triggers
exactly in Dj time units, where Dj is the timer length.

Timing Fault IV: Timeout transition ei triggers in D′
j time units and

output oi is observed and state vq is verified in shorter than the expected time
(i.e., D′

j < Dj).
Timing Fault V: Timeout transition ei triggers in D′

j time units and output
oi is observed and state vq is verified in longer than the expected time (i.e.,
D′

j > Dj).

Graph Augmentation to Detect Timing Fault IV: Let us consider timer
Tj with length Dj defined by the specification to be started by the actions of
edge hk and to be expired at edge ei (reachable from hk). To detect if the length
for Tj is set to D′

j which is shorter than Dj , we introduce a special purpose
timer Ts where Ds is the correct timer length as defined by the specification.
Timer Ts will be started by edge hk, which also starts Tj . Therefore, after the
augmentation, the time-related conditions and actions for hk are modeled as:

hk :
〈
1
〉 {

Tj := 1; fj := 0; Ts := 1; fs := 0
}

An observer state v′p is appended to state vp via a new observer edge ep,obs,
wait edge ep,wait and return edge eret

p (with cost cp,wait := 1 time unit and
cret
p := 0, respectively).

ep,obs :
〈
Ts ∧ (fs > Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}
ep,wait :

〈
Ts ∧ (fs < Ds) ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}
Finally, a new fault state SF−IV is created which is connected to vp via

ep,fault. The edge condition of ep,fault is modified such that if timer Tj expires
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earlier than expected, the sequence is forced to move to state SF−IV where the
tester declares the verdict of the test as failure:

ep,fault :
〈
Ts ∧ (fs < Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Ts := 0; fs := −∞

}
The edge condition of ei is also modified such that it traverses only when

fs > Ds and Tj expires as shown in Figure 3:

ei :
〈
Ts ∧ (fs > Ds) ∧ (Tj timeout) ∧ (Lp == 1)

〉 {
Ts := 0; fs := −∞;

Lp := 0
}

Graph Augmentation to Detect Timing Fault V: Graph augmentation for
Fault V is similar to that of Fault IV (Figure 3), except that the edge conditions
are formulated differently:

hk :
〈
1
〉 {

Tj := 1; fj := 0;

Ts := 1; fs := 0
}

ep,obs :
〈
Ts ∧ (fs > Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}
ep,wait :

〈
Ts ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}
ep,fault :

〈
Ts ∧ (fs > Ds) ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
Ts := 0; fs := −∞

}
ei :

〈
Ts ∧ (fs > Ds) ∧ (Tj timeout) ∧ (Lp == 1)

〉 {
Ts := 0; fs := −∞;

Lp := 0
}

5 Multiple Faults

It is possible that, for a given test sequence, a single timing fault, occurring
simultaneously with a fault of different type, can exhibit a behavior indistin-
guishable from an IUT without any faults. We prove in this section that the
graph augmentations introduced for single timing faults in Section 4 are capable
of detecting such multiple faults. Due to space constraints, only the pairwise
combinations of Timing Faults I, IV and V are presented in detail. The other
combinations with Timing Fault III are available in [3, 14].

5.1 Multiple Faults of I and V

It is possible that a single Fault I and a single Fault V can hide each other such
that the observable behavior of a faulty system is not distinguishable from a
non-faulty system.

Lemma 1: Graph augmentation for Fault I (Section 4.1) and Fault V (Sec-
tion 4.3) can detect simultaneous presence of a single Fault I and a single Fault
V in an IUT, irrespective of the order they occur in an edge sequence.



Proof: It is possible to construct an edge sequence such that an input applied
too early violating a timing interval requirement of a specification (i.e., Fault I)
followed by a timer expiring too late (i.e., Fault V) can generate an output as if
the IUT is non-faulty. For the general case, consider a test sequence containing
· · · , hx, · · · , ei, · · · , ej , · · · , ek, · · · (Figure 4) where:
• Edge ei has a timing interval requirement that input ai be applied within

the interval of [α, β] (i.e. δ ∈ [α, β], where δ is the instant at which input is
applied, measured from edge hx).

• Edge ej from state vj to state vj+1 starts timer Tz with length Dz. ej :〈
¬Tz

〉{
Tz := 1; fz = 0

}
• Tz timeout triggers edge ek which generates an observable output ok in δ +

ci + c(i+1−→j+1) + Dz + ck time units from hx, where c(i+1−→j+1) is the total
cost of all edges used in the sequence between states vi+1 and vj+1.
If input ai is applied too early (i.e., Fault I where δ′ < α) and, at the same

time, Dz is incorrectly implemented as too long (i.e., Fault V where D′
z > Dz)

such that δ − δ′ ≡ D′
z − Dz, the time at which the output ok is generated

remains the same for both the faulty and non-faulty IUTs. The output ok is
generated in δ + ci + c(i+1−→j+1) + Dz + ck time units for non-faulty IUT and
in δ′ + ci + c(i+1−→j+1) + D′

z + ck time units for faulty IUT after hx. Since
δ − δ′ ≡ D′

z −Dz, Faults I and V can hide each other.
To detect the simultaneous existence of a single Fault I and a single Fault V,

the original graph (Figure 4) is augmented (Figure 5) to include new wait and
fault states with their associated edges (as in Sections 4.1 and 4.3, respectively).
For the above generalized sequence, our graph augmentation introduces special
timers Tx and Ty in the test harness with lengths Dx and Dy, respectively, to
test the requirement of applying input ai in the interval [α, β], where α = Dx

and β = Dy. Augmentation in Section 4.1 state that both special timers to be
started at edge hx:

hx :
〈
¬Tx ∧ ¬Ty

〉 {
Tx := 1; fx := 0; Ty := 1; fy := 0

}
Edge ei triggers after applying input ai within time interval δ ∈ [Dx, Dy] and

stops Ty in its actions:

ei :
〈
¬Tx ∧ Ty ∧ (fy ∈ [Dx, Dy]) ∧ (Lp == 1)

〉 {
Ty := 0; fy := −∞; Lp := 0

}
Similarly, a special purpose timer Ts at the test harness with length Ds is

introduced to define the correct timer length for Tz. Therefore, edge ej starts
both Tz and Ts:

ej :
〈
¬Tz ∧ ¬Ts

〉 {
Tz := 1; fz := 0; Ts := 1; fs := 0

}
For Fault I augmentation, vi (starting state of ei) is replaced by two new

states, vi,1 and vi,2, connected via ei,1,2. SF−I and its incoming edges (ei,1,fault

and ei,2,fault) are created for states vi,1 and vi,2, respectively. Then, an observer
state v′i,1 with its associated edges ei,1,wait, ei,1,obs and eret

i,1 to the vi,1 are intro-
duced. Similarly, v′i,2, ei,2,wait, ei,2,obs and eret

i,2 are created for Tβ (Section 4.1).
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Fig. 5. Graph augmentation for a single occurrence of Faults I and V
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Fig. 6. Timed FSM: T3 is started by applying i10 within time interval [6, 15]

For Fault V, state v′k with edges ek,wait, ek,obs and eret
k are attached to vk whose

outgoing edge is the Tj timeout edge ek. also state SF−V and edge ek,fault are
added to the graph:

ek,obs :
〈
Ts ∧ (fs > Ds) ∧ (Tz timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}
ek,wait :

〈
Ts ∧ (¬Tz timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}
ek,fault :

〈
Ts ∧ (fs > Ds) ∧ (¬Tz timeout) ∧ (Lp == 0)

〉 {
Tz := 0; fz := −∞;

Ts := 0; fs := −∞
}

ek :
〈
Ts ∧ (fs > Ds) ∧ (Tz timeout) ∧ (Lp == 1)

〉 {
Tz := 0; fz := −∞;
Ts := 0; fs := −∞;

Lp := 0
}

After augmentation for both Faults I and V, a correct edge traversal sequence
for a non-faulty IUT can be given as: · · · , hx, · · · , ei,1,wait, eret

i,1 , ei,1,obs, eret
i,1 ,

ei,1,2, ei,2,wait, eret
i,2 , ei,2,obs, eret

i,2 , ei, · · · , ej , · · · , ek,wait, eret
k , ek,obs, eret

k , ek, · · · .
A faulty IUT with Faults I and V, where Fault I is traversed before Fault V,
will not follow this traversal, but, instead, will end up at state SF−I . Similarly,
it can be shown that a sequence where a single Fault V is traversed before a
single Fault I will end up at state SF−V . Therefore, a single Fault I and a single
Fault V, irrespective of the order of their occurrences, can be detected by our
augmentations as indicated in Sections 4.1 and 4.3. �

An example test sequence of containing · · · , e8, e9, e10, e11, e12, · · · is given
for the FSM of Figure 6. Suppose the FSM specification defines that, for e10, the
input i10 should be applied within time interval of [6, 15] seconds (measured from
e8) and that e10 starts T3 with length D3 = 4 seconds. Edge e12 is a timeout
transition for T3, and for edges e9, e10, e11, and e12 the costs are c9 = 4, c10 = 1,
c11 = 4, and c12 = 2 seconds, respectively. In a correct implementation, i10 is
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Fig. 7. Generalization of timer specification where Faults IV and V hide each other
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Fig. 8. Graph augmentation for a single occurrence of Faults IV and V

applied 6 seconds after e8 and timer T3 expires in 4 seconds (i.e. D3 = c11= 4
seconds). Hence, the output o12 generated by e12 is observed in 13 seconds after
e8 traversal (i.e., δ+c10 +D3 +c12= 6 + 1 + 4 + 2 seconds). Now suppose input
i10 is applied too early at 5 seconds after e8, and T3 is incorrectly implemented
too long as D′

3 = 5 seconds. In this scenario, output o12 is also observed in 13
seconds (i.e., δ′ + c10 + D′

3 + c12 = 5 + 1 + 5 + 2 seconds). Therefore, without
the augmentations, this single occurrences of Faults I and V cannot be detected.
However, in the augmented graph G′, the sequence will detect single Fault I by
forcing the traversal to state SF−I as proven by Lemma 1.

Corollary 1: The multiple occurrences of Faults I and V, irrespective of
their occurrence order, are detectable after the graph is augmented for single
Faults I and V as in Sections 4.1 and 4.3.

5.2 Multiple Faults of I and IV

Lemma 2: Graph augmentation for Fault I (Section 4.1) and Fault IV (Sec-
tion 4.3) can detect simultaneous presence of a single Fault I and a single Fault
IV, irrespective of the order they occur in an edge sequence (proof analogous to
that for Lemma 1).

Corollary 2: Multiple occurrences of Faults I and V, irrespective of their
occurrence order, are detectable after the graph is augmented for single Faults I
and IV as in Sections 4.1 and 4.3.

5.3 Multiple Faults of IV and V

Lemma 3: Graph augmentations for Fault IV and Fault V (Section 4.3)
can detect simultaneous presence of a single Fault IV and a single Fault V,
irrespective of the order they occurren an edge sequence.

Proof: Let us first prove that timing faults can hide each other such that
the observable behavior for an IUT with Faults IV and V, and a non-faulty IUT
are identical. Consider an edge sequence over which two timers, namely Tx and



Ty, are started and expired. For the general case, such a sequence can be defined
as · · · , hx, · · · , ei, · · · , ej , · · · , ek, · · · (Figure 7) where:
• Edge hx from state vx to vx+1 starts timer Tx with length Dx. hx :

〈
1
〉{

Tx :=
1; fx := 0

}
• Expiry of Tx triggers edge ei, for which no observable output is generated.

ei :
〈
Tx ∧ (fx > Dx)

〉{
Tx := 0; fx := −∞

}
• Reachable from ei, an edge ej , from state vj to vj+1, starts timer Ty with

length Dy. ej :
〈
¬Tx

〉{
Ty := 1; fy := 0

}
• Expiry of Ty triggers edge ek such that output ok is observed in (Dx +

c(i−→j+1) + Dy + ck) time units after hx is traversed, where c(i−→j+1) is the
cost of all the edges between states vi and vj+1. ek :

〈
Ty ∧ (fy > Dy)

〉{
Ty :=

0; fy := −∞
}

• The inputs for the edges between ei and ek do not have input interval require-
ments (i.e., input timing requirements pertaining to Fault I, which would have
been detected by Corollary 2).
Let us suppose now that Tx is implemented too short (i.e., Fault IV with

D′
x < Dx) and Ty is implemented too long (i.e., Fault V with D′

y > Dy) such
that Dx−D′

x ≡ D′
y−Dy. For a non-faulty IUT, the output ok will be generated

in (Dx + c(i−→j+1) + Dy + ck) time units after the traversal of hx. For an IUT
with Faults IV and V, it will take (D′

x + c(i−→j+1) + D′
y + ck) time units to

generate the output ok. Therefore, since Dx −D′
x ≡ D′

y −Dy, it is possible that
Timing Faults IV and V can hide each other.

Applying the graph augmentation methods described in Section 4.3, the gen-
eralized case of Figure 7 can be modified to include the new wait and fault states
with their associated edges. As shown in Figure 8, our graph augmentation intro-
duces special purpose timers Tsx and Tsy with lengths Dsx and Dsy, respectively,
to define the correct timer lengths for timer Tx and Ty, where Dsx ≡ Dx and
Dsy ≡ Dy time units. In the augmented graph, hx starts both Tx and Tsx, and
ej starts both Ty and Tsy:

hx :
〈
¬Tx ∧ ¬Tsx

〉 {
Tx := 1; fx := 0; Tsx := 1; fsx := 0

}
ej :

〈
¬Ty ∧ ¬Tsy

〉 {
Ty := 1; fy := 0; Tsy := 1; fsy := 0

}
For Fault IV augmentation, a wait state v′i with its associated edges ei,wait,

ei,obs and eret
i are attached to vi whose outgoing edge is the timeout edge ei. A

new state SF−IV and its edge ei,fault is added to state vi:

ei,obs :
〈
Tsx ∧ (fsx > Dsx) ∧ (Tx timeout ) ∧ (Lp == 0)

〉 {
Lp := 1

}
ei,wait :

〈
Tsx ∧ (fsx < Dsx) ∧ (¬Tx timeout) ∧ (Lp == 0)

〉 {
fsx := fsx + 1

}
ei,fault :

〈
Tsx ∧ (fsx < Dsx) ∧ (Tx timeout ) ∧ (Lp == 0)

〉 {
Tsx := 0;

fsx := −∞
}

ei :
〈
Tsx ∧ (fsx > Dsx) ∧ (Tx timeout ) ∧ (Lp == 1)

〉 {
Tsx := 0;

fsx := −∞;Lp := 0
}
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Fig. 9. Timed FSM: T2 is started by T1 expiry

Similarly, for Fault V augmentation, an observer state v′k with its associated
edges ek,wait, ek,obs and eret

k are attached to vk whose outgoing edge is the
timeout edge ek. A new state SF−V and its associated edge ek,fault is added to
state vk:

ek,obs :
〈
Tsy ∧ (fsy > Dsy) ∧ (Ty timeout ) ∧ (Lp == 0)

〉 {
Lp := 1

}
ek,wait :

〈
Tsy ∧ (¬Ty timeout) ∧ (Lp == 0)

〉 {
fsy := fsy + 1

}
ek,fault :

〈
Tsy ∧ (fsy > Dsy) ∧ (¬Ty timeout ) ∧ (Lp == 0)

〉 {
Tsy := 0;

fsy := −∞
}

ek :
〈
Tsy ∧ (fsy > Dsy) ∧ (Ty timeout ) ∧ (Lp == 1)

〉 {
Tsy := 0;

fsy := −∞;Lp := 0
}

After these augmentations, a test sequence for a non-faulty IUT is hx, · · · ,
ei,wait, eret

i , ei,obs, eret
i , ei, · · · , ej , · · · , ek,wait, eret

k , ek,obs, eret
k , ek. For a faulty

IUT where Fault IV is reached before Fault V, the test sequence will end up in
state SF−IV (i.e., the edge ei,fault will be traversed instead of ei), and hence
will detect Fault IV.

Similarly, it can be shown that a test sequence can be constructed such that,
if a single Fault V is traversed before a single Fault IV, the test sequence will
be forced to state SF−V . Therefore, a single Fault IV and a single Fault V,
irrespective of the order of their occurrence, can be detected by augmentations
given in Section 4.3. �

Let us illustrate the simultaneous occurrence of Faults IV and V with an
example. In Figure 9, the FSM specification defines that edges e21 and e23 start
timers T1 (expires in e23 with D1 = 5 seconds) and T2 (expires in e25 with
D2 = 4 seconds), respectively. The costs for the edges e22, e23, e24 and e25 are
given as c22 = 5, c23 = 2, c24 = 4 and c25 = 3 seconds, respectively.

The test sequence for a non-faulty IUT can be constructed as e21, e22, e23,
e24, e25 such that timer T1 expires in 5 seconds and T2 in 4 seconds. Therefore,
using this test sequence, a non-faulty IUT will generate o25 by e25 14 seconds
after e21 traversal (i.e., D1 + c23 + D2 + c25 = 5 + 2 + 4 + 3 seconds). Now
suppose T1 is incorrectly implemented as D′

1 = 4 seconds and T2 as D′
2 = 5

seconds. This faulty IUT would also generate o25 in 14 seconds after e21 is
traversed (i.e., D′

1 + c23 + D′
2 + c25 = 4 + 2 + 5 + 3 seconds). This example

illustrates that, without our augmentations, simultaneous occurrence of single
Faults IV and V may be indistinguishable from the non-faulty IUT for certain
test cases. However, after graph augmentations, the sequence will detect single
occurrences of Fault IV and V by forcing the faulty IUT into state SF−IV .

Corollary 3: The multiple occurrences of Faults IV and V, irrespective of
their occurrence order, are detectable after the graph is augmented for single
Faults IV and V as in Section 4.3.



6 Concluding Remarks

A number of individually detectable timing faults can hide each other’s faulty
behavior, making the faulty system indistinguishable from a non-faulty one. A set
of augmentations for the timed FSM model introduced in Ref. [7] is presented
for single timing faults. The augmentations for the single faults are shown to
be capable of detecting multiple occurrences of pairwise combinations of these
timing faults. Fault detection capabilities of existing timed automata models and
the model studied in this paper will be compared as an extension of this work.
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