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Abstract. Middleware is at the heart of any distributed application
and its correctness therefore requires rigorous testing. Since middleware
technologies typically support heterogeneous environments, its API is
available for different programming languages. Functional tests written
to test the functionality of a middleware platform therefore have to be re-
written for all those programming languages. The framework introduced
in this paper shows how functional tests written in Java can automati-
cally be translated to other programming languages such as C++. This
is achieved by using the XML-based programming language XMLVM.
XMLVM can automatically be created from Java class files. The cross-
language translations are accomplished by using XSL-transformations of
XMLVM programs.

1 Motivation

Middleware allows the development of cross-platform, language-independent,
distributed applications. Middleware is used in different contexts such as eCom-
merce applications or system-to-system integration, which places high demand
on the correctness of middleware platforms. Several activities have created tens
of thousands of test cases to ensure the correct behavior of a middleware tech-
nology. Among those efforts are CORVAL, COST, and WS-I (see [2], [15], and
[4] respectively). One of the challenges of middleware functional testing is that
by definition a middleware platform supports multiple programming languages.
The implication of this heterogeneity is that functional tests have to be written
in every language that is supported by a middleware technology, which leads to
redundant and error-prone work.

Of the 100,000 lines of functional tests that were contributed as part of the
COST (CORBA Open Source Testing, see [15]) effort, roughly half of the code



tests C++ API whereas the other half tests the Java API of CORBA imple-
mentations. Every test therefore exists in two different implementations: C++
and Java. While these tests are functionally identical, they have to be re-written
because of different language mappings for C++ and Java. The framework in-
troduced in this paper allows a functional test to be written in Java and then
to automatically derive the same test for other programming languages. This
reduces manual work as well as potential for errors. We achieve this goal by
making use of some advanced XML technologies. At the core of our framework
is an XML-based programming language that allows cross-language translation
of functional tests written in Java.

The paper is structured as follows: Section 2 introduces the problems related
to writing functional tests for two different middleware technologies: CORBA
and Web Services. Section 3 describes our framework. We present our XML-
based programming language XMLVM and show how functional tests written in
Java can automatically be translated to C++. Section 4 provides a conclusion
and outlook.

2 Functional Testing of Middleware

This section highlights two real-life examples of functional testing for two dif-
ferent middleware technologies: CORBA and Web Services. In both cases it will
become evident that a lot of testing code has to be virtually replicated in every
programming language that is supported by the respective middleware technol-
ogy.

2.1 Use case 1: CORBA Functional Testing

CORBA (Common Object Request Broker Architecture) defines an architecture
for a platform independent middleware for object-oriented applications (see [1]).
The core specification of CORBA, as standardized by the OMG, consists of over
1000 pages with hundreds of API functions. A functional test written for any
of those functions would need to be translated into all languages that are being
supported by CORBA. The following example illustrates this problem. The Java
code excerpt demonstrates a functional test for a Dynamic Any using JUnit (see
[9]):

J1: // Java

J2: public class DynAnyBaseTest extends junit.framework.TestCase {

J3:

J4: private org.omg.CORBA.ORB orb = null;

J5: private org.omg.DynamicAny.DynAnyFactory dynany_factory = null;

J6:

J7: // ...

J8:



J9: public void testAccessBasicValue ()

J10: {

J11: int longVal1;

J12: int longVal2;

J13: org.omg.CORBA.TypeCode tc = null;

J14: org.omg.DynamicAny.DynAny dynAny = null;

J15:

J16: longVal1 = 700;

J17: longVal2 = 0;

J18: tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_long);

J19: dynAny = dynany_factory.create_dyn_any_from_type_code (tc);

J20: dynAny.insert_long (longVal1);

J21: longVal2 = dynAny.get_long ();

J22: assertEquals ("DynamicAny error", longVal1, longVal2);

J23: }

J24: }

The code above was taken from an actual functional test from the COST
project. A Dynamic Any is a generic container for one data item. The type of
the data item that can be contained in the Dynamic Any is determined when
the Dynamic Any is created (lines J18 and J19). The Dynamic Any supports
all types of the CORBA-IDL. The example above shows a simple functional
test that first writes a long with value 700 into a Dynamic Any (line J20),
extracts the value contained in the Dynamic Any (line J21) and then compares
the two values to make sure that they are identical (line J22). Below is the same
functional test, but now written in C++ using CPPUnit (see [8]):

C1: // C++

C2: class DynAnyBaseTest : public CppUnit::TestCase {

C3: private:

C4: CORBA::ORB_ptr orb;

C5: DynamicAny::DynAnyFactory_ptr dynany_factory;

C6:

C7: // ...

C8:

C9: public:

C10: void testAccessBasicValue()

C11: {

C12: CORBA::Long longVal1;

C13: CORBA::Long longVal2;

C14: CORBA::TypeCode_var tc;

C15: DynamicAny::DynAny_var dynAny;

C16:

C17: longVal1 = 700;

C18: longVal2 = 0;

C19: tc = CORBA::TypeCode::_duplicate (CORBA::_tc_long);

C20: dynAny = dynany_factory->create_dyn_any_from_type_code (tc);

C21: dynAny->insert_long (longVal1);



C22: longVal2 = dynAny->get_long ();

C23: CPPUNIT_ASSERT_EQUAL_MESSAGE ("DynamicAny error",

C24: longVal1, longVal2);

C25: }

C26: };

Conceptually the functional test above is doing exactly the same as the Java
version, except that the CORBA’s C++ API and CPPUnit are used in this case.
Despite the similarities there are some differences. E.g., the way the TypeCode is
created (J18 vs. C19) or how to use the assert-API in JUnit and CPPUnit (J22
vs. C23).

2.2 Use case 2: Web Services

Web Services are an emerging technology that have made a lot of head-waves
over the past few years. Conceptually identical to CORBA, it has gained certain
prominence because of Microsoft’s commitment to support Web Services. XML
is used extensively as the underlying foundation of many of the Web Services
standards. The WS-I (Web Services Interoperability) organization issues the set
of standards (called basic profile) that define the scope of Web Services (see
[4]). It is interesting to note that Web Services do not support the concept
of portability. I.e., the API for a certain programming language might differ
significantly between different Web Services products.

The following code excerpt illustrates this problem:

// Java using Sun’s WS Developer Kit

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AccountIF extends Remote {

public void deposit (int amount) throws RemoteException;

public void withdraw (int amount) throws RemoteException;

public int balance () throws RemoteException;

}

The code excerpt above shows the server-side mapping of a simple bank
account interface using Sun’s Web Services SDK. In Sun’s implementation of the
Web Services standards, the server-side implementation must implement a Java
interface that extends the Remote interface. Furthermore, every method that
belongs to the interface must throw the exception RemoteException. Below is a
code excerpt that shows the same bank account interface using BEA’s WebLogic
Server:

// Java using BEA’s Web Logic Server

public class Account implements com.bea.jws.WebService

{

static final long serialVersionUID = 1L;



/**

* @common:operation

*/

public void deposit (int amount);

{

...

As can be seen, BEA implements the bank account interface through a Java
class that is derived from com.bea.jws.WebService. All remote methods are
marked through a special JavaDoc comment @common:operation. It is apparent
that functional testing for Web Services pose even greater challenges than for
CORBA. Due to lack of portability, the functional tests have to be re-written
for each Web Service product, even though Java is used in all instances.

3 Framework

This section introduces our framework. The goal is to write a functional test
only once, and create the functional test for different languages automatically.
In Section 3.1 we briefly discuss a non-solution. Section 3.2 gives an overview
of Java’s virtual machine. Based on those explanations, we introduce our XML-
based programming language called XMLVM in Section 3.3. Section 3.4 finally
describes how we use XMLVM to solve the problem of cross-language functional
testing.

3.1 Non-solution

Before we present our solution to cross-language functional testing, we want
to briefly discuss a non-solution. Initially we took the approach of defining a
new programming language based on XML. Flow control statements (such as if
and while) and other elements of an object-oriented programming language are
represented by appropriate XML-tags. There are numerous projects that have
created such XML-based programming languages (see [5, 12, 13, 7, 11]). Once a
test case has been written in this language, it is relatively easy to translate it to
another high-level programming language such as Java or C++. This can easily
be accomplished by using XSL-transformations (see Figure 1).

However once we started to pursue this idea, we quickly realized that there
were several disadvantages over using an XML-based programming language in
this way. First and foremost programmers have to learn a new programming lan-
guage. Someone using this approach would need to master a new programming
language for which no tools (such as smart editors or syntax checkers) exist.
Another problem resulted in the fact that XML tends to be very “verbose”.
By this we mean that it takes on the average more lines of code to express an
algorithm in XML compared to other high-level languages. This is because of
the rigid syntax that XML imposes on the structure of a document. For these
reasons we took a different approach.



Fig. 1. Non-solution: Mapping XML to C++ and Java.

3.2 Java’s Virtual Machine

As outlined in the previous section, it is not practical to expose a programmer
to an XML-based programming language. Yet XML has much to offer due to the
availability of rich tool sets. In order to exploit the benefits of XML, but make
it transparent to programmers, we created a low-level XML-based programming
language that is not intended for human readers. In order to use standards as
much as possible, we decided to use the byte code executed by a Java virtual
machine as a model for our XML-based programming language.

Before we explain our approach, we provide a few details on the Java Virtual
Machine concept (for more details see [10]). A Java compiler translates the Java
source code to hardware independent byte code that is stored in a class file. The
byte code resembles the machine code of other hardware architectures. The Java
virtual machine implements a simple stack based machine (see Figure 2).

Fig. 2. Java VM.

The Java VM maintains an instruction pointer to the class file that points
to the next instruction to be executed. Upon entering a method, a new frame



consisting of a stack and local variables is created. This frame will be deleted
upon exiting the method. The Java VM maintains a pointer to the current
frame (which represents the most nested method call). A method has only access
to its own stack and local variables. The actual parameters of a method are
automatically stored in the local variables. Besides the stack frames, the Java VM
maintains a garbage collected heap where a program can allocate new objects.

The Java byte code features a mix of low-level and high-level virtual machine
instructions. On the one hand side one finds simple instructions such as iadd that
pops two integers off the stack and pushes the sum back onto the stack. On the
other side there exist high-level instructions such as new (for instantiating new
objects) and invokevirtual (invoke a virtual method). These instructions go
beyond the capabilities of normal machine languages and explain the difficulties
in creating a real CPU that can execute Java byte code natively.

3.3 XMLVM

The Java byte code resembles the machine code of other hardware architectures.
It is interesting to note that Sun Microsystems as the inventor of Java never
standardized an assembly language of their own byte code. Several assemblers
were developed, but they had to invent their own syntax. The most commonly
used assembly syntax stems from the Jasmin project (see [14]).

The first step in creating a cross-language functional testing framework con-
sist in defining an XML-based programming language that is based on the Java
byte code. This effectively defines an assembly language for the Java virtual ma-
chine whose syntax is based on XML. Since we mimic the syntax very closely
to the Java byte code instructions, there is a direct bi-directional mapping be-
tween Java class files and our XML-based programming language. Since the
XML-based programming language is closely related to the byte code of the
Java virtual machine, we call our language XMLVM.

In practice, programs are not directly written in XMLVM, but rather created
automatically from class files. The programmer is thus not exposed to the details
of XMLVM, but can implement his or her programs in Java. The following
XML follows the XMLVM schema and demonstrates the translation of the Java
functional test for Dynamic Any presented in Section 2.1:

X1: <?xml version="1.0" encoding="UTF-8"?>

X2: <xmlvm>

X3: <class name="DynAnyBaseTest" isPublic="true"

X4: isSynchronized="true" extends="junit.framework.TestCase">

X5: <field isPrivate="true" name="orb"

X6: type="org.omg.CORBA.ORB" />

X7: <!-- ... -->

X8: <method name="testAccessBasicValue"

X9: isPublic="true" stack="3" locals="5">

X10: <signature>

X11: <return type="void" />

X12: </signature>



X13: <code>

X14: <!-- ... -->

X15: <getfield class-type="DynAnyBaseTest"

X16: type="org.omg.CORBA.ORB" field="orb" />

X17: <getstatic class-type="org.omg.CORBA.TCKind"

X18: type="org.omg.CORBA.TCKind" field="tk_long" />

X19: <invokevirtual class-type="org.omg.CORBA.ORB"

X20: method="get_primitive_tc">

X21: <signature>

X22: <return type="org.omg.CORBA.TypeCode" />

X23: <parameter type="org.omg.CORBA.TCKind" />

X24: </signature>

X25: </invokevirtual>

X26: <astore type="java.lang.Object" index="3" />

X27: <!-- ... -->

X28: </code>

X29: </method>

X30: </class>

X31: </xmlvm>

The above XML was automatically created using our tool. The complete
XML is much longer and cannot be reproduced here. A few details are worth
mentioning. We will relate the XMLVM output with the original Java functional
test from Section 2.1. Line X3 contains the class declaration (line J2). Line X5
contains the instance member orb (line J4). Line X8 contains the declaration of
method testAccessBasicValue() (line J9). The stack and locals attributes
in line X9 state how big the stack and how many local variables are needed for
this method. Note that the Java compiler computes this information by doing
a flow analysis. Lines X10 to X12 show the signature, and lines X13 to X28 the
implementation of method testAccessBasicValue().

Lines X15 through X26 show an excerpt of the byte code generated by the
Java compiler. Those lines represent the compiled version of Java source code at
line J18. There are basically four byte code instructions: <getfield> (line X15)
pushes the value of instance member orb onto the stack and <getstatic> (line
X17) pushes the value of static variable org.omg.CORBA.TCKind.tk long onto
the stack. <invokevirtual> (line X19) calls the virtual method get primitive tc().
This instruction assumes that the object reference to the target object as well
as the actual parameters are on the top of the stack (which was done by the
previous two instructions). Once the call to get primitive tc() returns, the
result is on the top of the stack. <astore> (line X26) pops this result off the
stack and saves it in a local variable.

3.4 Mapping XMLVM to other languages

The XML presented in the previous section was automatically generated and it
represents an intermediate artifact not intended to be inspected by programmers.
The principal idea of our framework is to translate XMLVM to other high-level



programming languages. The translation is done using XSL-translations (see [3]).
Figure 3 shows the overall translation process.

Fig. 3. XMLVM transformation process.

API transformation: As shown in the figure, the source program is first trans-
lated to XMLVM by a tool. The resulting XMLVM then undergoes an API trans-
formation. The purpose of the API transformation is to adapt the API from the
source to the target language. The original test case was written using specific
APIs such as Java-CORBA and JUnit. If the test case is to be translated to
C++, this API has to be adapted to the appropriate API available for the tar-
get language. For each API exist a XSL-stylesheet that adapts the API. The
following list gives some examples of API transformations if the target language
is C++:

– JUnit to CPPUnit:
• Base class junit.framework.TestCase (J2) changes to CppUnit.TestCase

(C2)
• assertEquals() (J22) changes to CPPUNIT ASSERT EQUAL MESSAGE()

(C23)
– CORBA for Java to C++:

• Namespace prefix omg.org.CORBA (J4) changes to CORBA (C4)
• Method get primitive tc() (J18) changes to duplicate() (C19)

Note that the output of API transformation is still an XMLVM program (re-
ferred to as XMLVMAPI in Figure 3) and consequently uses XMLVM notation,
such as “.” for the scope operator. The examples given above are mostly simple
renaming operations that can easily be achieved by appropriate XSL-stylesheets.



The more complex example is the creation of a TypeCode (J18). This situation
can be handled by a more complex XSL-stylesheet. This XSL-template basi-
cally looks for a call to get primitive tc() and then transforms the API to a
semantically equivalent version to be used for C++.

Each API transformation is handled by its own XSL-stylesheet and depend-
ing on how many different libraries (e.g., JUnit, CORBA, etc) are used, multiple
stylesheets may be applied. The result of the API transformation is again an
XMLVM program. The excerpt below demonstrates the resulting XMLVM after
the applying the XSL-stylesheets for API transformation:

A1: <getstatic class-type="CORBA"

A2: type="CORBA.TypeCode" field="_tc_long" />

A3: <invokestatic class-type="CORBA.TypeCode"

A4: method="_duplicate">

A5: <signature>

A6: <return type="CORBA.TypeCode" />

A7: <parameter type="CORBA.TypeCode" />

A8: </signature>

A9: </invokestatic>

A10: <astore type="CORBA.Object" index="3" />

The excerpt above shows the result of translating the original XMLVM code
for creating a TypeCode (lines X15 to X26 in Section 3.3). Instead of using the
ORB-singleton to create a TypeCode via get primitive tc(), the TypeCode is
now created by duplicating the constant tc long that all CORBA conformant
C++ ORBs are required to have.

Language transformation: The result of the API transformation is another
XMLVM program. The final step in this translation process consists in gen-
erating code for the target language. This translation is done by yet another
XSL-stylesheet. The idea for this last step of our framework is to map XMLVM-
instructions one-to-one to the target language, without attempting to reverse
engineer (or de-compile) the original Java program. Since the Java VM is based
on a simple stack-based machine, we simply mimic a stack-machine in the target
language. An example helps to illustrate this approach. The XMLVM instruction
<astore> pops an object reference off the stack and saves it to a local variable.
Here is the XSL-template that creates C++ code for this instruction:

<xsl:template match="astore">

<xsl:text>

locals[</xsl:text>

<xsl:value-of select="@index"/>

<xsl:text>] = stack.pop();</xsl:text>

</xsl:template>



As an example, the <astore> instruction in line A10 would translate to the
following C++ code:

locals[3] = stack.pop();

This C++ code makes reference to variables locals and stack. Those vari-
ables are declared for every method and it is with the help of those variables that
we mimic the VM’s stack-machine. The code below represents the C++ version
of the XMLVM program shown in lines A1 to A10 of the previous section:

T1: // C++

T2: class DynAnyBaseTest

T3: : public virtual CppUnit::TestCase

T4: {

T5: CORBA::ORB_ptr orb;

T6: DynamicAny::DynAnyFactory_ptr dynany_factory;

T7:

T8: // ...

T9:

T10: void testAccessBasicValue()

T11: {

T12: XMLVM::Locals locals(5);

T13: XMLVM::Stack stack(3);

T14: XMLVM::Object op1;

T15: XMLVM::Object op2;

T16: locals[0] = this;

T17:

T18: // ...

T19: stack.push(CORBA::_tc_long);

T20: op1 = CORBA::TypeCode::_duplicate((CORBA::TypeCode_ptr)

T21: stack.top(0));

T22: stack.remove(1);

T23: stack.push(op1);

T24: locals[3] = stack.pop();

T25: // ...

T26: }

T27: }

As can be seen from the code excerpt, there is a natural mapping from
XMLVM to C++. The intention is not to generate readable code, but correct
code that uses the API of the target language. The above code is automatically
created by the XSL-language transformation and is not meant to be inspected
by programmers. We mimic Java’s VM via the two classes XMLVM::Locals and
XMLVM::Stack (lines T12 and T13). Those two C++ classes are part of the XM-
LVM library for C++. Class XMLVM::Stack features common stack-operations
such as push and pop. Both of these classes implement the garbage collection
that is normally done by Java’s VM. Variables op1 and op2 (lines T14 and T15)
are used as temporary variables needed by some XMLVM-instructions.



4 Conclusions and Outlook

Functional testing for middleware requires individual tests to be re-written in all
programming languages that are supported by that middleware. The framework
introduced in this paper proposes a novel way to automate this manual and
error prone task. In our framework functional tests are written once in Java.
The class file that contains the compiled version of the functional test is then
translated to XMLVM; an XML-based programming language. Then various
XSL-transformations can be applied to first transform the API and then to
translate the functional test to another high level language.

It is important to emphasize the fact that we effectively translate functional
tests written in Java to other programming languages. This works well for APIs
(such as Dynamic Any) that exists in all different languages, but there are lim-
itations for language specific APIs. E.g., the CORBA C++ language mapping
defines various helper types for C++ pointers that can be recognized by the
suffix ptr and var. These helper types do not exist in Java, simply because
C++ pointers are much more complex than Java object references. Functional
tests that specifically test the correctness of these helper types would need to be
written manually in C++.

XMLVM is at the core of our framework. We have implemented it based on
the Byte Code Engineering Library (BCEL) which is part of Apache’s Jakarta
project (see [6]). We are currently investigating other uses of XMLVM in different
contexts. One possible use could be in a code migration framework for web-based
applications based on previous work (see [16]). Another potential use of XMLVM
could be byte code instrumentation using XSL-transformation.
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