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Abstract. We study the problem of fault diagnosis, i.e., localization of
difference(s) between an implementation and a specification in systems
modelled by finite state machines. We show that even considering only
a single fault in a finite state machine there are some situations when
the exact diagnosis of the fault cannot be assured. We give an algorithm
for fault diagnosis. If it is possible the procedure exactly locates a single
fault, and in case exact localization is unfeasible it provides the set of all
potential differences between the implementation and the specification.
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1 Introduction

Conformance testing provides the means to check whether a system behaves
according to its specification. Given an implementation, which is a black box
— i.e., we can only observe its input/output behavior — and the specification of
the system, we test if the implementation conforms to the specification. In case
the specification is given as a finite state machine we want to determine whether
there are difference(s) between the behavior function of the specification and the
implementation machines.

Fault diagnosis — in contrast — addresses the more complex problem of locat-
ing the difference(s) between the protocol specification and an implementation
if they are found to be different. A solution to this problem has various ap-
plications [1]. One of the most important being the correction of a protocol
implementation so that it conforms to its specification.

Much research has been done concerning fault diagnosis for different for-
malisms [2] [3], and using different restrictions on the cardinality of faults . All
papers on fault diagnosis in FSMs are considering a fault model with two types
of changes between the implementation and the specification: output faults and
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transition faults. A number of papers are using the assumption, that the imple-
mentation contains only one — transition or output — fault. There are heuristic
procedures presented for diagnosis of single faults in FSMs (finite state ma-
chines) [4], and in CFSMs (communicating finite state machines) [5] [6]. An
exact fault localization procedure is reported by D. Lee and K. Sabnani capable
of locating a single fault in a finite state machine [7]. Limiting the number of
differences between the specification and the implementation to a single fault,
all of these papers claim to guarantee the precise localization of the difference.

Other contributions consider the case of multiple faults. Procedures for di-
agnosing multiple faults in FSMs and CFSMs were also reported [8] [9]. These
algorithms are not always able to locate the multiple faults of the implemen-
tation [9]. The multiple fault diagnosis method for FSMs only guarantees the
correct diagnosis of certain configurations of faults in an implementation, which
are characterized by a certain type of independence of the different faults [8].

In this paper we concentrate on the case of a single transition or output fault
in an FSM. We show that reduced implementation machines with different single
faults may have the same observable behavior, and consequently — contrary to
the statements found in the literature ( [4] [7] ) — it is in general not possible to
guarantee the precise localization of a single fault in a finite state machine.

We determine a set of sufficient conditions for the guaranteed exact localiza-
tion of a single output or transfer fault. Based on the analytical results we give
an algorithm, a modified version of Lee’s procedure [7], for the fault diagnosis
problem. If it is possible, the method exactly locates the difference between the
implementation and the specification, and in case exact localization is unfeasible
it provides the set of all potential single faults.

The rest of the paper is organized as follows. Section 2 provides the definitions
of basic terms and notations used in the paper. In Section 3 we show that in
some cases fault diagnosis fails to exactly locate a single fault in a finite state
machine. In Section 4 we investigate the conditions for guaranteed the exact
localization of a single fault in an FSM. In Section 5 we give an algorithm for
fault diagnosis, and finally summarize our work in Section 6.

2 Preliminaries

A finite state machine can be used to model a software system. Many specifi-
cation languages, such as SDL [10] and ESTELLE [11], are extensions of the
FSM formalism. Specifications in such languages may be converted into FSMs
from which tests can be generated [12]. Finite state systems produce outputs
on their state transitions after receiving inputs. A finite state machine A is a
4-tuple (I, 0, S, h) where

I is the finite set of input symbols,

— O is the finite set of output symbols,

— S is the finite set of states,

h: D — 20%5 \ @ is a behavior function where D C S x I is the specification
domain and 2°0%% is the set of all subsets of the set S x O.



In case the specification domain D = S x I, the behavior function is defined
for all state-input combinations and the FSM A is said to be completely specified
(or completely defined) what we assume for the rest of the paper.

If for each pair (s,i) € D it holds that |h(s,7)| = 1 then FSM A is said to be
deterministic. In case of a deterministic FSM instead of behavior function h we
use two functions, the transition function 4: S x I — S and the output function
A SxI—O0.

For the rest of the paper, we will focus on completely specified and deter-
ministic machines.

FSM A is said to be strongly connected, if for each pair of states (s;,s;),
there exists an input sequence which takes A from s; to s;.

An FSM can be represented by a state transition diagram, a directed graph
whose vertices correspond to the states of the machine and whose edges corre-
spond to the state transitions. Each edge is labeled with the input and output
associated with the transition. Supposing that the machine is currently in state
s3 and upon input ¢ the machine moves to state sy and outputs 1. This transition

. . c/1
can be written in a form s3 ——— s9.

We extend the transition function § and output function A from input sym-
bols to finite input sequences (strings) I* as follows: For a state s;, an input se-
quence & = iy, ..., i} takes the machine successively to states s;41 = 0(s;,%;),7 =
1,...,k with the final state §(s1,2) = sg+1, and produces an output sequence
A(s1,z) = o1,...,05, where 0; = A(sj,4;),j = 1,...,k. The input/output se-
quence 71011209...1;0; is then called a trace of M. Note that since the FSMs in
our model are deterministic all their traces are deterministic, because there are
no transitions with different next states and/or outputs for the same state-input
combination.

Finite state machines may contain redundant states. State minimization is a
transformation into an equivalent state machine to remove redundant states.

Two states are equivalent written s; = s; if and only if for every input se-
quence the machine will produce the same output sequence regardless of whether
s; or s; is the starting state. In other words, for all input sequences z € I*,
A(sj,x) = A(s;,x). (Note that their succeeding states for a particular input
sequence are also pairwise equivalent).

Two states s; and s; are distinguishable (inequivalent) if there exists a finite
input sequence x which when applied to FSM M causes different output se-
quences starting in either state. In other words 3z € I*, A\(sj, ) # A(s;, z). Such
an input sequence is called a separating sequence of the two inequivalent states.
If the shortest such sequence is of length k then (s;,s;) are k-distinguishable.
A FSM M is reduced (minimized), if no two states are equivalent, that is, each
pair of states (s;, s;) are distinguishable.

Machine equivalence is an equivalence relation on all FSMs with the same
input and output sets.

Completely specified deterministic FSMs M; = (I,0,S5,6,\) and My =
(I,0,5,§',\') are equivalent written M; = My if their sets of traces coincide.



From an other point of view two machines M; and M are equivalent if and
only if for every state in M, there is at least one corresponding equivalent state
in Ms, and vice versa.

A homomorphism from M to My is a mapping ¢ from S to S’ such that for
every state s € S and for every input symbol ¢ € I, it holds that ¢’'(¢(s),i) =
#(0(s,4)) and N (¢(s),7) = A(s,i) [13]. If ¢ is a bijection, then it is called an
isomorphism. In this case M; and M must have the same number of states,
and they are identical except for a renaming of states. Two machines are called
isomorphic if there is an isomorphism from one to the other. Two isomorphic
FSMs are equivalent, but the converse is not true in general.

In each equivalence class there is a reduced machine with the minimal number
of states. In an equivalence class, any two reduced machines have the same
number of states, furthermore, there is a one-to-one correspondence between
equivalent states, which gives an isomorphism between the two machines. That
is, the reduced machine in an equivalence class is unique up to isomorphism.

Note that there is a number of equivalence relations of states of machines.
They are, however, all the same for completely specified and deterministic ma-
chines, and they are only different in case of more general machines like nonde-
terministic machines.

We say that machine M has a reset capability if there is an initial state sg € S
and an input symbol r € I that takes the machine from any state back to sq.
That is, d(s;,7) = s for all states s; € S. The reset is reliable if it is guaranteed
to work properly in any implementation machine M’ i.e., §'(s},r) = s; for all
states s;» € S’, otherwise it is unreliable. Note that reset r is also an input
symbol. Thus, if M has reset then M is considered to be strongly connected if
all the other states can be reached from the initial state sq.

According to the previous works on fault diagnosis, we are considering a
fault model with two types of faults: the output and the transition fault. We say
that a transition has an output fault if, for the corresponding state and received
input, the implementation provides an output different from the one specified
by the output function. We say that a transition has a transition fault if, for the
corresponding state and received input, the implementation enters a different
state than specified by the transition function. An implementation has a single
output (transition) fault if one and only one of its transitions has an output
(transition) fault.

3 Failure of Exact Fault Diagnosis in FSMs

We show that even in the most ’simple’ case it is not always possible to solve
the fault localization problem. That is, even when considering the strictest as-
sumptions — a single fault in a finite state machine (investigated by Ghedamsi et
al. [4] and Lee at al. [7]) — there are some situations where the exact localization
of the fault cannot be assured.

For the rest of the paper we will consider a specification finite state machine
Spec = (I1,0,5,6,\). We denote the number of states, inputs, and outputs by



n = |S|, p = |I|, and ¢ = |O|, respectively. We also consider implementation
machines I'mpl, = (I, 0,5, X)), Impl, = (I,0,5”,8",\") and so on with the
same input and output sets, and the same number of equally labeled states. We
use the term ”"same states” written s, = s/ for states that are labeled alike in

j J
different machines. Of course, these states are not necessary equivalent written

s =g

! Obviously, without any assumptions conformance testing and fault diagnosis
are impossible problems; for any test sequence we can easily construct a machine
Ms, which is not equivalent to M; but produces the same outputs as M; for the
given test sequence. There is a number of natural assumptions that are usually

made in the literature in order for the test to be at all possible [1]:

— The specification FSM Spec is deterministic, completely specified, strongly
connected and reduced.

— Implementation machines do not change during the experiment, and have
the same input I and output O alphabet as Spec.

Furthermore we concentrate on systems with reliable reset capability, and
we assume that there is only one difference — an output or a transition fault —
between an implementation and the specification machine.

All previous works on the diagnosis of a single fault in a FSM ( [4] [7] ) used
the same assumptions, and they claim to provide methods to precisely locate
the single fault.

We show that — contrary to the statements found in the literature — it is in
general not possible to guarantee the precise localization of a single fault in a
finite state machine, not even considering the assumptions above: Take speci-
fication machine Spec and two implementation machines: I'mpl, differing from
Spec by a single fault Fault,, and Impl, differing from the specification by a
single fault Faulty,. Fault, and Fault, are different faults. Evidently, neither
Impl, nor I'mpl, can be equivalent to Spec, since Spec is deterministic, com-
pletely specified, strongly connected and reduced. Interestingly, however, Impl,
and I'mpl, might be equivalent to each other even though the faults they con-
tain differ. In this case it is impossible to decide between the faults, i.e., it is
impossible to exactly locate the fault. The next simple example demonstrates
the situation.

Ezxample 1. Take specification machine Spec shown on Figure 1. The set of input
symbols is I = {a,r}, where r is the reset input, the set of output symbols
is O = {1,2} and the set of states is S = {sg, $1, 52} where sy is the initial
state. Specification machine Spec is deterministic, completely specified, strongly
connected and reduced. Note that the (reliable) reset transitions are omitted
on the figure for the sake of perspicuity. Let us consider two implementation
machines Impl, on Figure 2(a) and Impl, on Figure 2(b) with the same input
and output alphabet as Spec.

The difference between I'mpl, and Spec is a a single transition fault at state
S0, Fault, : 0'(s(,a) = s(, instead of s}. In case of I'mpl, the difference is a single
output fault at sa, Faulty : A”(s§,a) = 1 instead of 2.
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Fig. 1. Specification machine Spec.
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(a) Impl, (b) Imply

Fig. 2. Faulty implementation machines: (a) Impl, contains a single transition fault
at state sg, (b) Impl, contains an output fault at ss.

The two implementation machines are equivalent, as they both produce the
same trace for every input string. Thus, it is impossible to distinguish between
them and therefore between the two faults. Or, to formulate more precisely, is it is
impossible to distinguish among any faulty implementation machines belonging
to the same equivalence class, and therefore among the faults that they contain.

4 Conditions for Guaranteed Fault Diagnosis

We determine a set of sufficient conditions for the guaranteed exact localization
of a single output or transfer fault. That is, we analyze when two (or more) imple-
mentation machines, each differing from the specification by a single dissimilar
fault, cannot be equivalent. Note that we still consider the assumptions made
in the previous section, therefore the specification FSM Spec is deterministic,
completely specified, strongly connected and reduced with reliable reset.

First we show that it is always possible to distinguish two different output
faults if the specification machine has reliable reset capability.

Lemma 1. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, each differing from the specification
by a single and dissimilar output fault, cannot be equivalent, thus any two output
faults can be distinguished.



Proof. Let us consider two implementation machines Impl, and Impl,, both
differing from the specification Spec by a single dissimilar output fault. We reset
the machines and start to explore the state-space of the two implementations
and the specification in parallel. Clearly, until we reach a faulty transition in
one of the machines, for any input string z, the traversed states — and the
output sequences — are the same in the two implementations and the specifi-
cation: &'(sp,x) = "(s§,x) = d(s0,x), and XN (sh,z) = N'(sg,z) = A(so, ).
When we traverse a faulty transition in one of the implementations (let’s say
Impl,) with an input string y, we find an inconsistency between Impl, and
Spec: N (sh,y) # Mso,y). However, since Fault, # Fault, the output of Imply
at the given transition also cannot be equivalent to the output of I'mpl,. There-
fore, N(s(,y) # N'(sy,y), i-e., Impl, and I'mpl, are inequivalent, and input
sequence y can distinguish them.

Note that the statement made in Lemma 1 only holds if the specification machine
has reliable reset capability. We demonstrate a counter-example of Lemma 1 in
case the specification machine does not have reliable reset capability.

all
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Fig. 3. Specification machine Spec without reliable reset capability.

(a) Impl, (b) Imply

Fig. 4. Faulty implementation machines: (a) Impl, contains a single output fault at
state sz, (b) Impl, contains an output fault at s;.

Ezample 2. Take specification machine Spec shown on Figure 3
The set of input symbols is I = {a}, the set of output symbols is O = {1, 2}
the set of states is S = {s1, s2, 83, $4}.



Specification machine Spec is deterministic, completely specified, strongly
connected and reduced. Take two implementation machines I'mpl, on Figure
4(a) and Impl, on Figure 4(b) with the same input and output alphabet as
Spec.

The difference between Impl, and Spec is a a single output fault at state
s3, Fault, : N(sh,a) = 2 instead of 1. In case of Impl, the difference is a single
output fault at s, Faulty : \'(s],a) = 2 instead of 1. The two implementation
machines are clearly equivalent.

Next we show that it is always possible to distinguish a single output and a
single transition fault if the faulty machines are reduced.

Lemma 2. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, one differing from the specification by
a single output fault, the other by a single transition fault cannot be equivalent
if the implementation machines are reduced.

Proof. Let us consider two implementations I'mpl, and I'mpl,. One of the imple-
mentations (let’s say I'mpl,) contains a transition, the other (Impl;) an output
fault. The two implementation machines are reduced therefore they must be iso-
morphic to be equivalent. That is, there has to be a one-to-one mapping ¢ from
S’ to 8" such that for every state s’ in S’ and for every input symbol ¢ in I,
0" (p(s"),1) = ¢(&'(s',1)) and N'(¢(s"),4) = N (s, 4) should hold.

Let’s say the output fault in I'mpl, is at s. Since the output of one of
its transitions has changed s}, has to map to an other state (say s;) of Impl,
where N (s}, i) = N'(s},1), Vi € I. However, this mapping cannot be one-to-one,
as there is no output fault in I'mpl,, and therefore I'mpl, has one less states
with the same output characteristic as s7. Thus, there is clearly no one-to-one
mapping ¢ fulfilling N’ (p(s),1) = N (s',i), Vs’ € §', Vi € I.

Finally we show that it is always possible to distinguish two different single
transition faults if the faulty machines are reduced.

Lemma 3. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, each differing from the specification
by a single and dissimilar transition fault, cannot be equivalent if the implemen-
tation machines are reduced.

Proof. Let us assume the following situation:

Fault, in Imply: (sc _ulor | sq4) = (s, _ules st)
im/0g

Faulty in Imply: (Sy Sp) = (sl imfoa, s

First, take the special case when the two faults are applied to the same transition
in the two implementations, i.e., ¢ = u and [ = m. In this case the outputs are
also the same (f = g) but the next states are not (e # w) because Fault, and
Fault, are dissimilar. In this case there is only one difference between I'mpl,



and I'mply, and therefore, if the implementation machines are reduced (s, % s.,)
we can certainly find an input sequence distinguishing them for example using
Chow’s method [14]: Let y be a separating sequence distinguishing states s, and
s!,. We apply an input sequence (say z) corresponding to the path of the tree
from the initial state to s/, input ¢; and then apply y. This input sequence x - ; -
y certainly distinguishes I'mpl, and Impl,, thus the implementation machines
cannot be equivalent.

Now take the general case when the two faults are applied to different tran-
sitions. Let’s reset the machines and start to explore the state-space of the two
implementations and the specification in parallel. Until we reach a faulty tran-
sition in one of the machines for any input string the traversed states — and the
output sequences — are the same in the two implementations and the specifica-
tion. Let’s say we first encounter Fault, in I'mpl, with an input string z, i.e.,
with & we reach the state s, in Impl, , s in Impl, and s. in Spec. If we input
i; after x, Impl, will transit to s, Spec to sq and Impl, to s)j. Let Y be the set
of all separating sequences distinguishing states s, and sg. Any input sequence
x-1;-y; where y; € Y will clearly distinguish Impl, and Spec. Any of these input
sequences will also distinguish I'mpl, and I'mply, except if all y; € Y starting
from s in Imply traverse Fault, making A(s(,z - 4 - y;) and A(sg, @ - 4 - y;)
consistent for all y; € Y. For that, also in Spec all separating sequences dis-
tinguishing states s. and sy starting from sy traverse transition (s, 4,,); and if
0(8u,im) = Sy then s, and sy are separable, if 0(8y,4m) = Sy then they are not
separable. From that it follows that s/ and s/ in Impl, are not separable. Thus,
the implementation machines cannot be minimal.

Theorem 1. Suppose that the specification machine under consideration is de-
terministic, completely specified, strongly connected and reduced with reliable re-
set capability. Two implementation machines, each differing from the specifica-
tion by a single and dissimilar fault, cannot be equivalent if the implementation
machines are reduced.

Proof. The proof follows from Lemmas 1, 2 and 3.

The theorem shows that if there is only one difference between an implemen-
tation and a specification and the implementation is minimal then it is unique,
no other fault can induce the same change in behavior. Thus it is possible to
identify the given fault.

5 Exact Algorithm for Fault Diagnosis

We give an algorithm — a modification of Lee’s method [7] — for the localization
of single transfer or output faults in finite state machines. We incorporate the
analytical results of Section 4. to quickly verify if the first fault candidate the
algorithm identifies is certainly the only possible one. If it is we conclude that
the difference between the implementation and the specification can be exactly
located, otherwise the algorithm moves on and provides the set of all potential
single faults.



Let us consider a specification finite state machine Spec and an implemen-
tation I'mpl to be diagnosed. The algorithm is made up of two steps:

Step 1 Conformance testing is used to determine if there is difference between
the specification and the diagnosed implementation.
Step 2 Localization of the fault.

5.1 Step 1: Detection of the Fault
For Step 1 of the algorithm a checking sequence needs to be constructed.

Definition 1. Let M be a finite state machine with n states and initial state
so. A checking sequence for M is an input sequence x that distinguishes M from
all other machines with n states. That is, any machine with at most n states not
equivalent to M produces a different output than M on input x starting from the
initial state.

There are a number of conformance testing methods developed for finite state
machines constructing checking sequences. These include the transition tour
[15], the Unique Input Output (UIO) method [16], the Distinguishing Sequence
method [17], the "W-method” [14] and the Wp method [18]. In our algorithm
we create the checking sequence using the W-method proposed by Chow for
machines with reliable reset. It consists of no more than pn? test sequences of
length less than 2n interposed with reset. We apply the checking sequence to
the specification and to the diagnosed implementation. If we do not find an in-
consistency of the observed outputs then we conclude that the implementation
machine is equivalent to the specification, thus there is either no fault in the
implementation or there are more than one, and end of the algorithm. If we find
a difference we move on to Step 2.

5.2 Step 2: Localization of the Fault

During conformance testing an inconsistency was found between the specification
and the diagnosed implementation. Thus, there is at least one of the pn? test
sequences (say z) detecting the fault, i.e. A(sg,z) # A(s(,x). Let us assume
that the earliest inconsistency between A(sg, z) and X (sf), ) is at the k** output
symbol where 1 < k < 2n. Let’s say that the first k elements (inputs) of x carry
the specification machine from sy to si, So, ..., Sk, where these k + 1 states may
or may not be different.

We assume Impl has only a single output or transition fault. In case the
diagnosed implementation machine contains an output fault, x has to traverse
the fault at the k*" transition. If Impl contains a transition fault, then z has to
traverse the fault during the first k¥ — 1 transitions.

Note that if there are more than one test sequences detecting the fault, we
may use either of them for the localization of the fault (for practical reasons we
should choose the shortest sequence). If multiple test cases detect the fault, we
might also check if the set of possibly faulty transitions can be narrowed: For



each test sequence detecting the fault we determine the transitions it traverses
in the specification machine prior to the first inconsistency. Trivially, in Step 2,
we only have to consider the intersection of these traversed transitions.

In the algorithm we consider two cases. First we presume that the fault in
Impl is an output fault and verify if it’s a potential candidate. If the verification
succeeds, then we try to confirm whether it is the only potential candidate. If it
is the only one, then we located the fault and end of algorithm. Otherwise we
move on and presume that the fault could be a transition fault, and similarly
analyze each possibilities. If at the end we don’t find any potential candidates
we conclude that there are more than one fault in I'mpl.

Output Fault We assume that the fault in I'mpl is an output fault, i.e.,
A(sk—1,2k) # N(s)_,,xr) where zy, is the k" input of 2. For the verification we
modify Spec according to the supposed fault: we change the output symbol at
state s;_1 upon input zj to the faulty output symbol N (s,_;,zx). We denote
the modified specification C7. We conduct a checking experiment (conformance
testing) on I'mpl with respect to Cj.

C1, however, is not necessarily minimal. To use Chow’s method for checking
sequence generation, we first have to minimize machine C7 and get C4 reduced-
Let m be the number of states of reduced machine C7 ,equceq- If m < n, that is,
if the reduced conjectured machine has less states than the specification, then
according to Chow we have to use a Z set instead of a W set for test sequence
generation. A Z set can be created by extending the W set the following way [14]:

Z:wuouilr-wu...vormrm-w

Where ”U” is the union operator, ”-” is the string concatenation operator and I

is the input alphabet. The checking sequence is then created by the concatenation
of the sets of sequences P and Z.

If we find that Impl conforms to C7, we conclude that Cy is a potential
candidate. Then we try to confirm if it is the only possible candidate. For that
we simply have to check if the reduced machine C ,¢quceq has equivalent number
of states to the specification. If it has, we conclude that C; is certainly the only
potential candidate, and therefore we exactly located the fault in Impl, end of
algorithm.

If Impl conforms to Cp, but the reduced machine has less states than the
specification, we conclude that C; is a potential candidate, store it in the set of
potential candidate machines PC', and proceed to the following step.

If Impl does not conform to Cy we proceed to the following step.

Transition Fault A transition fault can occur in one of the first k—1 transitions,
ie., 0(sj, 1) # 0'(8), xj41) where j =0, ..., (k —2). We assume, that the fault
occurs in the j*" transition and verify each assumption in turn. On input T;q1 at
state s; the implementation machine is supposed to transit to s;,1. But instead
Impl transits to s,, where s, can be any of the n — 1 states except the right
state s;41. We verify each possibilities in turn.



In each turn we modify Spec according to the supposed fault: we create
candidate machine Cjy; where [ is the cardinality of the set PC, by changing
the next-state symbol of the given transition to the supposed wrong state s,.
We minimize the candidate machine and conduct a checking experiment on I'mpl
with respect to Ci41 reduced-

If we find that I'mpl conforms to Cii1 reduced, We conclude that Cji4 is a
potential candidate. If PC' is not empty (I > 1), we store Cj4; in PC, conclude
that the exact localization of the fault is not possible and move on to the next
turn.

If I = 0 then we try to confirm if it is the only possible candidate. We simply
check if the reduced machine Cji1 reduced has equivalent number of states to the
specification. If it has, we conclude that Cjy; is certainly the only candidate,
and therefore we exactly located the fault in I'mpl, end of algorithm.

If I = 0 and I'mpl conforms to Cj41, but the reduced machine has less states
than the specification, we conclude that Cj;; is a potential candidate, store it
in set PC, and proceed to the next turn.

If Impl does not conform to Cj41 we move on to the next turn.

For each assumed transition there are n — 1 possible next states. Thus, there
are no more than 2n? turns. At the end of the last turn there are three possibil-
ities:

— If [ = 0, we conclude that there are more than one faults in Impl, end of
algorithm.

— If [ = 1, there is only one potential candidate, therefore we exactly located
the fault in I'mpl, end of algorithm.

— If [ > 1, we conclude that the exact localization of the fault is not possible,
and PC is the set of all potential candidates i.e., we determined the set of
all potential single faults, end of algorithm.

Ezample 3. We use an example to demonstrate the algorithm given above. Take
the specification machine Spec shown on Figure 5(a) The set of input symbols is
I ={a,b,r}, where r is the reset input, the set of output symbols is O = {1, 2}
and the set of states is S = {sq, $1, S2, 3} where sg is the initial state. Reset
transitions are again omitted on the figure. Implementation machine on Figure
5(b) contains a single transition fault at state sy. This transition fault is to be
located using the algorithm.

For the detection of the fault (step 1 of the algorithm) we need to construct a
checking sequence. Since our emphasis is not on checking experiments, we omit
the details. A P-set of Spec can be constructed based on a testing tree.

P: {r,ra,raa,rab,rb,rba,rbb, rbaa, rbab}
The characterizing set (W-set) of Spec is:
W : {ab,b}

By concatenating P and the characterizing set we get a basic test set of the
checking sequence, interposed with reset. Obviously, if a prefix of a sequence can
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Fig. 5. Faulty implementation machine Impl contains a single transition fault at state
S2.

detect a fault then the whole sequence also can. Thus, we can remove all the
sequences that are prefix of other sequences. As a result we get the following
test set:

{raaab, raab, rabab, rabb, rbaaab, rbaab*, rbabab*, rbabb, rbbab, rbbb}

We execute the test set on I'mpl. The test sequences marked with * detect the
fault. We use the shortest sequence — rbaab — for the rest of the algorithm. Note
that we can not narrow the set of possibly faulty transitions, because in Spec
sequence rbabab traverses all transitions that rbaab does.

If applied to Spec rbaab produces the output sequence 1112, and if applied
to Impl we get 1111. That is, the fourth outputs are different (k = 4). First
we presume that the fault in I'mpl is an output fault (occurring at the fourth
transition). Since the sequence rbaab carries Spec from sg to ss, s2, 81,81, we
change the output at state s; input b from 2 to 1. We get the machine Cy on
Figure 6(a) We reduce C; and get the machine C} ,edyceq on Figure 6(b) We
conduct a checking experiment (conformance testing) on I'mpl with respect to
Cy reduced- We find that the two machines are not equivalent (for example rab
finds the difference), therefore, we move on and presume that the fault is a
transition fault occurring in one of the first three (k — 1) transitions.

We first conjecture that the first transition goes to a different state than
specified. We have three possibilities: at state sg, on input b the machine goes
to sg, s1 or so instead of s3. We build the according conjectured machines and
verify them in turn. Omitting the details, we find that none of the machines
conform to I'mpl (rba,rbb and rbab rule out the possibilities respectively).

We move on and conjecture that the fault is at the second transition: at
state s1, on input a the machine goes to sg, s1 or s3 instead of so. After building
the machines and conducting the checking experiments we rule out the first two
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Fig. 6. Conjectured machine C; with an output fault at state si (a), and C1 after
minimization (b).

possibilities with sequences rbaa and rbab respectively. We also find that the
third conjectured machine (C; on Figure 7(a)) conforms to I'mpl. Since the set
of potential candidate machines PC' is empty, we try to confirm if it is the only
possible candidate. We find that after minimization Cy has less states than the
specification. Thus, we conclude that C; is a potential candidate, store it in set
PC, and proceed to the next turn. We conjecture that the fault is at the third

Fig. 7. Conjectured machines C; and C>

transition: at state ss, on input a the machine goes to sg, so or sz instead of s;.
The sequence rbaaa rules out the first possibility, but the other two conjectured



machines — Cy (Figure 7(b)), and C5 (Figure 5(b)) — conform to Impl. Since
PC is not empty, we know that the exact localization of the fault is not possible
and store both machines in PC. As k = 4, transition fault may only occur at
the first three transitions, therefore, we have reached the end of the algorithm.

As a result we conclude that the exact localization of the fault is not possible.
PC is the set of possible faulty machines C;, C5 and Cj5 including all potential
single faults.

6 Conclusion

We study the problem of fault diagnosis. The scope of fault diagnosis is beyond
the scope of the fault detection (or conformance testing) problem. While the lat-
ter is concerned with determining if there are difference(s) between the behavior
of the specification and the implementation machines, the former also tries to
identify and locate the difference(s).

We concentrate on the diagnosis of a single transition or output fault in an
FSM. Clearly, the problem cannot be exactly solved if there are two or more
equivalent implementation machines, each differing from the specification ma-
chine by a single dissimilar fault. We show that implementation machines with
different single faults may have the same observable behavior and thus in general
it is not possible to guarantee the exact localization of a single fault in a finite
state machine.

We analyze under what circumstances the exact localization of a single out-
put or transfer fault can be guaranteed. That is, we determine a set of sufficient
conditions when two (or more) implementation machines, each differing from the
specification by a single dissimilar fault, cannot be equivalent. We incorporate
the analytical results into an algorithm for the fault diagnosis problem. In case
it is possible, the algorithm exactly locates the difference between the implemen-
tation and the specification, and when the exact localization is not possible, it
provides the set of all potential single faults.
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