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Abstract. Given a nondeterministic protocol specification, we want to
determine the deterministic implementation under test with a confor-
mance of trace inclusion in the specification. We identify them using
both active and passive testing. Four cases are studied with experiments
on Internet protocols. In the first two cases, the implementation ma-
chine is a derived machine of the specification. In the third case, the
implementation machine is a derived machine of the k-way expansion of
the specification machine. The fourth case deals with the general case of
nondeterministic machines.

1 Introduction

Network protocols are often partially specified, the unspecified inputs may be
ignored, or cause an error message [1]. The choices depend on the design of an
implementation. Often network protocols contain optional requirements, which
are specified by “MAY” statements in many RFCs. These two cases can be re-
garded as options in network protocol specifications, providing certain flexibility
to protocol implementations. Due to the options, a protocol cannot be modelled
by a deterministic finite state machine (DFSM). The common approach is to
use a non-deterministic finite state machine (NFSM) to model these protocols
instead. This situation has complicated the protocol testing operations. There
are several studies on testing NFSMs, both active testing [2], [3], [4], [5] and
passive testing [6].

When a vendor implements a protocol, it may implement some of the options
and discard the others, or implement all the options with configuration param-
eters and let the user make the decision. Hence, given a protocol, there may be
different deterministic implementations that conform to the specification. Of-
ten we need to identify the deterministic implementation of the object system.
For example, there are several TCP variants deployed on the Internet. [7] pro-
vided test scenarios to examine these deployments. In general, it is a machine
identification problem, however, it is rather complex.

In this paper, we assume the specification machine A is an NFSM and the
implementation machine B which conforms to A is a DFSM. We study the



problem of identifying the DFSM implementation, given its NFSM specification.
The specification machine is assumed to have n states, p inputs and q outputs.
For such a machine, there are totally (qn)pn/n! candidate machines. The problem
of identifying B is difficult, because the distinguishing sequences for a NFSM
may not exist, when there is a distinguishing sequence, it can be of exponential
length [8]. Due to the difficulty in the general case, some work [3], [5] focus on
the special case of Observable NFSM (ONFSM).

Our approach is different from the exist works in several aspects. First we
provide both passive testing and active testing algorithms for this machine iden-
tification problem. Passive testing/monitoring [6], [9] has been a important area
in network analysis. Our passive testing algorithm can be used to identify new
features of the protocols, like routing protocols, HTTP and TCP. Second we
study the cases of both ONFSM and general NFSM. According to the NFSM is
observable or not and the implementation is a subautomaton or not, there are
four cases. We study the complexity of each case and provide algorithms when
it is feasible. We propose the concept derived machines to study the relation-
ship between implementation and specification in the first three cases. Third we
study the nondeterminism in Internet protocols and propose algorithms to solve
the identification problem. Third we use simulation to show the efficiencies of
the algorithms.

In Section 2 we provide the basic concepts for NFSM. We propose the defi-
nition of derived machines when a DFSM is a subautomaton of an NFSM speci-
fication. Section 3, 4, 5 and 6 study the four cases, respectively. We discuss both
active and passive testing approaches with experiments on Internet protocols.
Conclusion is drawn on Section 7.

2 Preliminaries

The following definitions and properties about NFSMs are based on [8].

Definition 1. A nondeterministic finite state machine (NFSM) M is a 4-tuple
M = (I, O, S, h) where I is a finite set of input symbols, O is a finite set of output
symbols, S is a finite set of states, h is the transition function: S×I → P(S×O),
where P denotes the power set operator.

Definition 2. The transition function f is defined for s, s′ ∈ S, x ∈ I, y ∈ O as
follows:

f(s, x) def= {s′ |∃y [s′, y] ∈ h(s, x)}.
The conditional transition function hy is defined for s, s′ ∈ S, x ∈ I, y ∈ O

as follows:

hy(s, x) def= {s′ | [s′, y] ∈ h(s, x)}.

Definition 3. A NFSM is observable if for all s ∈ S, x ∈ I, y ∈ O, we have
Card(hy(s, x)) ≤ 1, where Card(Z) denotes the cardinal number of the set Z.



In this paper, the specification is assumed to be reduced[8]. Our conformance
relation is defined by trace inclusion [10]. Let sA, sB be the initial states of
machine A, B respectively. The trace of machine M from its initial state sM is
denoted by T (M, sM ).

Definition 4. An implementation machine (B, sB) conforms to a specification
machine (A, sA) if and only if T (B, sB) ⊆ T (A, sA).

We use derived machine when an implementation machine is a subautomaton
of the specification machine. A derived machine is required to be connected and
deterministic.

Definition 5. Given a NFSM A = (I, O, S, h), an implementation machine
B = (I ′, O′, S′, h′) is called a derived machine of A if B is deterministic, con-
nected, and a subautomaton of A.

Since a derived machine B is a subautomaton of the specification machine
A, its trace is included in the trace of A; hence it conforms to A. Note when B
conforms to A, B is not required to be a derived machine of A, which is discussed
in Section 5. There relationship is shown in Figure 1.

derived
machines

conformance

Fig. 1. Derived Machine and Conformance

We now proceed to investigate four different cases of determining the imple-
mentations from active and passive testing.

3 Case 1: Derived Machine of Observable NFSM

Network protocol specifications may allow different responses according to an
input. This kind of nondeterminism is observable and can be judged by the
appearance of the output.

3.1 Active Testing Approach

Usually network protocol systems have reset capability, an input symbol, denoted
by r, leading the machine back to its initial state, and it can be realized by a
restart of the device. Obviously, taking an i/o pair as a symbol, ONFSM can



be regarded as a deterministic finite automaton. To identify the implementation
machine, we have to traverse the transitions with the same input from a state.
The following procedure will construct the implementation machine.

begin
1. B = (I, O, S = {s0}, h = {r}); /* s0: initial state, r: reset */
2. while ( ∃si ∈ S, a ∈ I, h(si, a) not specified in B )
3. trap B in si; /* usually with a sequence started by r */
4. send input a to B, assume output b;
5. find the unique transition h(si, a) = (sj , b) in the transition table of A;
6. add h(si, a) = (sj , b) to h;
7. if ( sj �∈ S) /* a new state explored in B */
8. add sj to S;
end

In step 5, there is a unique transition h(si, a) = (sj , b) in the transition table
of A because A is observable and B conforms to A. If we use a breadth-first search
(BFS) strategy to explore the transitions from the states, the ith explored state
is reachable in i steps with prefix r. Assume the ith state has ki undecided inputs,
ki ≤ p . The complexity of the construction is C ≤ ∑n

i=1 i ∗ ki = O(p
∑n

i=1 i) =
O(pn2) .

Theorem 1. If A is an ONFSM and B is a derived machine of A, the con-
struction procedure takes time O(pn2) to build the derived machine .

3.2 Passive Testing Approach

The passive testing approach is divided into a homing phase and an identification
phase, similar to [6]. The procedure traces the current states of the specification
NFSM A using the observed I/O sequence from the implementation machine B.
A passive testing map records the possible states and their related transitions
during a passive testing.

Definition 6. A passive testing map is a directed graph G = (V, E). For an
observed sequence e1, e2, . . . , ek, V = L0 ∪ L1 ∪ . . . ∪ Lk, where Lj records the
possible states after event ej, a node vij = (si, j) ∈ Lj if si is a possible state
after event ej. E = tr(0, 1)∪ tr(1, 2)∪ . . .∪ tr(k−1, k), where tr(j, j +1) records
the possible transitions from Lj to Lj+1. If (si, j) ∈ Lj, and there is a transition
si

ej→ sv in the specification, then (sv, j + 1) ∈ Lj+1 and {(si, j)
ej→ (sv, j + 1)} ∈

tr(j, j + 1).

Figure 2 gives an example of passive testing map. We use the following no-
tations in our passive testing algorithms:

L−, L+ - the level before and after level L in state tracing
eL = xL/yL - the input/output pair at level L
C - the current state set (C− is the level before the current level)



If a state in the specification can trigger multiple transitions upon an input, it
is a branching state for this input. A derived machine selects from the candidate
transitions.

ON-LINE CHECKING - ALGORITHM I
input: ONFSM A and observed sequence
output: fault detected or machine B

begin
1. B := A; /* B is derived from A by deleting transitions from the branching states */
2. C := {s0, s1, ..., sn−1}; /* the initial possible state set */
3. while ( |C| > 1 & next(x/y) ) /* the homing phase */
4. C := hy(C, x); /* state tracing */
5. record the transitions from C− to C in tr(C−, C); /* for backtracking */
6. L := C−; /* the current level C is a singleton */
7. do /* the backtracking phase */
8. remove states from L with no outgoing transition in tr(L, L+);
9. remove transitions leading to the removed states from tr(L−, L) ;
10. if (|L| ≡ 1)
11. remove transitions {(s, s′, xL/y′)|s ∈ C, y′ �= yL } from B;
12. while ( |L| ≡ 1 ); /* backtrack to decide the past before C */
13. while ( |C| ≡ 1 & next(x/y) ) /* the forward phase */
14. if ( f(C, x) > 1 ) /* branching state for x */
15. remove transitions {(s, s′, x/y′)|s ∈ C, y′ �= y } from B;
16. if ( B becomes deterministic ) /* all the branchings are decided */
17. return B;
18. C := hy(C, x); /* state tracing */
19. if ( |C| ≡ 0 ) /* fault detected */
20. return fault detected;
21. if ( next(x/y) ≡ null ) /* passive testing ends */
22. return B; /* B is not decided yet */
end

The algorithm is mainly composed of three phases, a homing phase (line 2-5),
a backward tracking phase (line 6-12), and a forward tracking phase (line 13-18).

We use an example in Figure 2 to illustrate these phases. Assume the current
state set is {s1, s2} when a sequence a/x b/y c/z is observed. Homing is reached
at the observation of b/y and the current state set is {s6}. Backtracking removes

{s5, s2} from the levels. The transition s1
a/y→ s4 is removed from B. The forward

checking of c/z removes s6
c/y→ s9 from B.

In Algorithm I, since back-tracking is triggered by homing, a node in the
passive testing map can be back-tracked at most once. Hence the time complexity
of this algorithm is O(L), where L is the length of the test sequence. Because
the passive testing map is recorded for backtracking, it has at most n ∗L nodes
.



s1 s2

s3 s4 s5

s6 s7

s8 s9

a/x
a/y

—1

——-1

a/x—2

——-2

——-2

b/y b/x—1

——-1

c/z
c/y×3

——- 3

level i

level i + 1

level i + 2

level i + 3

1 2 3

process 1 : homing phase
process 2 : backward tracking phase
process 3 : forward tracking phase
– j : this transition(state) is removed in process j from the passive testing map
×j : this transition is removed in process j from the implementation machine

Fig. 2. The passive testing map

Theorem 2. If A is an ONFSM and B is a derived machine of A, Algorithm
I is correct. Its time complexity is O(L) and its space complexity is O(n ∗ L),
where L is the length of the test sequence.

3.3 An Example from RIP

In the Routing Information Protocol (RIP) [11], “split horizon” is a scheme for
avoiding problems caused by including routes in updates sent to the gateway
from which they were learned. There are two types of split horizon. The “simple
split horizon” scheme omits routes learned from one neighbor in updates sent to
that neighbor. While “split horizon with poisoned reverse” includes such routes
in updates, but sets their metrics to infinity. In Fig.3, the transition from S1 to
S2 represents “simple split horizon” and the transition from S1 to S3 represents
“split horizon with poisoned reverse”. The two transitions are exclusive.

S1

S2

S3

−/b1

−/b2

a/b1

a/b2

timeout

timeout

start

Fig. 3. split horizon in RIP



To identify the implementation machine, in active testing, the test sequence
is r.a. In passive testing, the derived machine can be decided at the observed
output b1 or b2. We have tried both active testing and passive testing to identify
the RIP implementation. Most vendors set “simple split horizon” as the default
configuration; but Cisco (with IOS version 12) only supports “split horizon with
poisoned reverse”.

4 Case 2: Derived Machine of NFSM

In this section we study the case when the specification A is a general NFSM
(including non-observable transitions) and the implementation B is a derived
machine of A. In active testing, two approaches, machine enumeration and ma-
chine construction, are proposed to solve the machine identification problem. In
passive testing, backtracking is used to eliminate the unselected transitions.

4.1 Active Testing Approaches

In this case, it is NP-hard to determine the implementation machines:

Theorem 3. Given NFSM A, B is a derived machine of A, the problem of
deciding B is NP-hard.

Deciding Hamiltonian Path can be reduced to deciding B out of A, thus the
algorithm is NP-hard. The proof is given in [12] . 
�

Two methods are proposed here to identify the derived machine under test.
The first method is on-line machine enumeration. Candidate machines are enu-
merated on-line and then use cross verification to separate the candidate ma-
chines. The second method is on-line machine construction using distinguishing
sequences. We want to reduce the number of candidate machines by eliminating
the inconsistent transitions with distinguishing sequences. The first method is
“generate then distinguish”, while the second is “distinguish when generating”.
We will compare their efficiencies by simulation experiment.

4.1.1 On-line Machine Enumeration
Commonly the number of derived machines is quite large with nondetermin-

istic transitions. On-line machine enumeration dose not generate all the derived
machines. Instead it constructs machines on-the-fly. It removes inconsistent tran-
sitions according to the output of machine B.

On-line Machine Enumeration

queue Q contains machines to explore
begin
1. Insert A into Q; /*initialization */
2. while Q �≡ φ
3. take a machine M from Q;



4. for each unexplored state s in M ;
5. for each input i
6. get the last y from machine B with input prefix(s).i;
7. remove transitions s × i/y′ → s′ (y′ �= y) from M ;
8. if there is no transition with output y from s × i
9. goto 2; /*for another candidate machine*/
10. if there exists multiple transitions with output y from s × i
11. for each transition t = s × i/y → s′

12. M ′ clones M , M selects t and removes others transitions with s × i;
13 Insert M ′ to Q;
14. goto 3; /*for another candidate machine*/
15. mark state s as explored;
16. print M ; /* M is a derived machine */
17. apply cross verification to identify the derived machine;
end

On-line enumeration generates a set of candidate deterministic machines.
Cross verification [13] is applied to rule out the wrong ones(line 17).

If the specification has l nonobservable branching points of degree r1, r2, ..., rl,
there is at most K =

∏l
i=1 ri candidate machines generated from the enumera-

tion. At each branching point, a sequence with length less than n is applied to
machine B to get the corresponding output. It is known that the minimization
of an DFSM is O(pn log n) [14], where p is the number of input symbols. The
standardization takes time O(pn) [15]. It takes O(pn) to determine if two ma-
chines are isomorphic or not. If the two machines are not isomorphic, it takes
O(pn) to find a distinguishing sequence with length not greater than 2n − 1
which can separate the two machines. The confirmation experiment takes time
O(pn3) [13].

Theorem 4. The on-line enumeration algorithm takes O(Kpn logn+pn3) steps
to identify the derived machine B, where K is the product of all the branching
degrees in the specification machine.

4.1.2 On-line Machine Construction
The second method constructs the machine using pairwise distinguishing se-

quences. The on-line enumeration method generates many candidate machines
when the number of nonobservable transitions increases. If pairwise distinguish-
ing sequences [16] exist, the end states of nonobservable transitions can be de-
cided, reducing the number of candidate machines.

On-line Machine Construction

queue Q contains machines to explore
begin
1. Insert A into Q; /*initialization */
2. while Q �≡ φ



3. take a machine M from Q;
4. while M is not decided
5. explore the visited states in M ;
6. for each state with nonobservable transitions
7. generate pairwise distinguishing sequences;
8. if pairwise distinguishing sequence ds exists
9. use ds to remove inconsistent transitions;
10. if only one candidate state s left
11. marked s as visited;
12. else /*the end states are not distinguishable now*/
13. generate multiple copies according to the nonobervable transitions;
14. add the copies to Q;
15. if M is decided
16. print M ;
17. if there are multiple candidate machines
18. apply cross verification to identify the derived machine;
end

This is an adaptive strategy. The construction procedure approximates the
object derived machine by iterations. When more states are decided, the possi-
bilities of pairwise distinguishing sequences increase and their lengths decrease.

For an NFSM, a distinguishing sequence of two state si and sj may not exist.
If it does, in the worst case, its length is up to (2n − 2)[12]. But in practice they
do exist and are not long. 5

4.1.3 Experiments
Table 1 gives the experimental results of our simulations. In a simulation, a

NFSM specification is generated according to four parameters: number of states,
input/output alphabet, branching rate, where branching rate indicates the possi-
bility of having multiple transitions for an input. Then on-line enumeration and
on-line construction are applied to the NFSM. Each simulation was done 4 times
with the same parameters and calculates the average cost6. From Table 1 we can
tell that in most cases, on-line construction takes less time to identify the object
machine than on-line enumeration.

When multiple copies are generated in on-line enumeration, further splitting
has to be done for each copy. Also a state distinguishing may have to be repeated
on these copies. That is the reason that on-line enumeration takes more time.

For NFSMs with {8 states, 3 inputs, 3 output, branching rate=0.2}, we use
on-line construction to identify the derived machines and study the distribu-
tion of distinguishing sequences, as shown in Table 2. In most cases, pairwise

5 Note that even pairwise distinguishing sequence does not exist, the algorithm still
works by generating multiple copies and then using cross verification.

6 The simulations are carried out on a Pentium 1.2GHz PC. Note that the absolute
time is not important here. Different simulations should not be compared because
the complexity of a NFSM is not merely decided by its parameters.



Table 1. Experiments

# of # of # of branching average time(msec)
states inputs outputs rate on-line enu-

meration
on-line con-
struction

4 2 2 0.2 115 70

4 2 2 0.4 121 42

4 3 3 0.2 335 27

4 3 3 0.4 50 18

8 2 2 0.2 55 16

8 2 2 0.4 66 14

8 3 3 0.2 38 20

8 3 3 0.4 387 34

10 2 2 0.2 63 25

20 2 2 0.2 104 22

distinguishing sequences exist and their length is less than 3. This explains the
advantage of the on-line construction method.

Table 2. Experiment Results on Active Testing

1 2 3 4 5

# of requests for DS 19296 240 64 16 532

DS not exist 0 0 0 2 200

len = 1 17376 162 32 12 266
DS exist len = 2 1920 78 32 2 57

len = 3 0 0 0 0 9

4.2 Passive Testing Approach

4.2.1 Algorithm
The passive testing procedure for identifying derived machines from NFSM

with non-observable transitions is different from ALGORITHM I. The current
state set may not converge even after it reaches a singleton state. To identify B,
backtracking is used to rule out the unselected transitions from A.

ON-LINE CHECKING - ALGORITHM II
input: ONFSM A and observed sequence
output: fault detected or machine B

begin
1. B := A; /* B is derived from A by deleting transitions from the branching states */
2. C := {s0, s1, ..., sn−1}; /* the initial possible state set */
3. while ( |C| > 0 & next(x/y) )



4. if ( |C| ≡ 1 ) /* singleton */
5. remove the transitions {(s, s′, x/y′)|s ∈ C, y′ �= y } from B;
6. C := hy(C, x); /* state tracing */
7. record the transitions from C− to C in tr(C−, C);
8. if (∃s ∈ C−, hy(s, x) ≡ 0) /* discrepancies from the current state set */
9. L := C−, level changed := true; /* the backtracking start level */
10. while ( level changed ) /* backtrack until the current level unchanged */
11. if (∃s ∈ L with no outgoing transitions)
12. foreach (s ∈ L with no outgoing transitions)
13. delete transitions leading to s in tr(L−, L);
14. delete s from L; /* s is not in the current path */
15. L := L−; /* set L to a upper level */
16. else /* the current level unchanged */
17. level changed := false; /* backtracking ends */
18. while ( L < C ) /* go from the unchanged level to the end of the explored levels */
19. if ( |L| ≡ 1 ) /* the current level is a singleton */
20. remove { t|s ∈ L, t = (s, s′, xL/?), t �∈ tr(L, L+) } from B; /* ? means don’t care */
21. if ( B becomes deterministic ) /* all the branchings are decided */
22. return B;
23. L := L+; /* set L to the next level */
24. if ( |C| ≡ 0 ) /* fault detected */
25. return fault detected;
26. if ( next(x/y) ≡ null ) /* passive testing ends */
27. return B; /* B is not decided yet */
end

Algorithm II is different from Algorithm I. Since the current state set is
not monotonously decreased, the backward checking and forward checking are
combined together. Whenever a discrepancy in outputs is observed in the current
state set, backward checking is triggered to remove the invalid paths in the past.
Then forward checking is used to select transitions from singletons.

We use an example specified in Figure 4 to illustrate the procedure. Assume
the current level is {s1} and a sequence a/x b/y c/z is observed. Backward
checking starts at the third level when s5, s7 cannot fire any transitions with
c/z. Backtracking removes s3, s5 from the levels. Hence the upper levels become
singletons. Then forward checking removes the following three transitions from

B: s1
a/x→ s3, s2

b/y→ s5, s2
b/z→ s6.

Backtracking stops when the level L stays unchanged in this tracking. We
call a level L visited in backtracking if one or more states are removed in this
backtracking. A level is at most visited n times in backtracking during the whole
procedure, where n is the number of states in A. The forward checking is similar.

In Algorithm II, the state tracing levels are required to be stored for back-
tracking. Note that when a level becomes a singleton, backtracking will not
overcome it and the level information before it can be discarded.



s1

s2 s3

s4 s5 s6 s7

s8 s9 s10

a/x a/x

—

b/y
b/y

—

b/z

—
b/y—

c/z c/y—

——

c/x—

——

×

× ×

— : this transition(state) is removed from the passive testing map
× : this transition is removed from the implementation machine

Fig. 4. The passive test map

Theorem 5. If A is a NFSM and B is a derived machine of A, Algorithm II is
correct and takes time O(n ∗ L) and space O(nl) for checking where L the test
sequence length, and l < L is the maximum length of a backtracking.

4.2.2 Experiments
In a passive testing simulation, a NFSM and its derived machines are gen-

erated at first; then for each derived machine, multiple observed sequences are
generated; after that the passive testing algorithm is applied to check if the
derived machine can be identified. In Table 3 , the 4 columns in the left are
parameters of the NFSMs; the length of a random generated sequence is n ∗ p
. A set of observed sequences are generated from the derived machine. If there
exists 22 derived machines, 14 are identified by the current set of sequences, it
is denoted as 14/22. The other 8 derived machines are not identified by the ob-
served sequences. It is clear that the observed behavior increases the possibility
of machine identification.

Table 3. The effect of multiple observed sequences

# of # of # of branching length of # of observed sequences
states inputs outputs rate a sequence 0.5*n n 4n 8n

4 2 2 0.1 n*p 5/5 5/5 5/5 5/5

4 2 2 0.2 n*p 10/22 11/22 14/22 14/22

8 2 2 0.2 n*p 11/22 17/22 22/22 22/22

Also some observed sequences should be long enough to reach the all the
states in the machine. Table 4 shows long observed sequences increase the pos-
sibility of machine identification by passive testing.



Table 4. The effect of lengths of observed sequences

# of # of # of branching # of length of observed i/o sequence
states inputs outputs rate sequences 0.5 n*p n*p 2n*p 10n*p

4 2 2 0.1 n 5/5 5/5 5/5 5/5

4 2 2 0.2 n 4/22 11/22 13/22 14/22

8 2 2 0.2 n 6/22 14/22 22/22 22/22

4.3 TCP Congestion Control

Congestion control is required in TCP implementations. Several algorithms have
been proposed and standardized [17] in the network community. In RFC2581
[17], Slow Start and Congestion Avoidance are mandatory , while Fast Retrans-
mit and Fast Recovery (FR/FR) are recommended. Figure 5 shows the difference
between them. The FR/FR algorithm has one more state, FR/FR, than the
basic requirement. When duplicate ACKs (dupAck) are observed, the FR/FR
algorithm counts its number and fires the transition to state FR/FR when there
are 3 dupAcks. The transitions about dupAck are non-observable.

FR/FR
Slow
Start

Congestion
Advoidance

Lost

New

Old

start

[cwnd < ssthreash]
cwnd + +

[cwnd ≥ ssthreash]
cwnd := cwnd + 1/cwnd

3-dupAck
cwnd := cwnd/2
ssthread := cwnd

T imeOut
ssthreash := cwnd/2
cwnd := 1

dupAck

dupAck

retransmitted

T imeOut
ssthreash := cwnd/2
cwnd := 1

[cwnd ≥ ssthreash]
cwnd := cwnd + 1/cwnd3 − dupAck

cwnd := cwnd/2
ssthread := cwnd

T imeOut
ssthreash := cwnd/2
cwnd := 1

dupAck
retransmitted

Fig. 5. TCP Congestion Control Algorithms

Different congestion control algorithms are deployed in the Internet. It is a
job to study their deployment and their influence on TCP performance. In [7],
the authors designed test scenarios to identify what algorithm is used in the
remote web server. It is an active testing approach.



5 Case 3: Conformance Relation in Observable NFSM

The specification machine A is observable but the implementation machine B is
not restricted to a derived machine of A. Fig.6 gives an example that B conforms
to A but B is not equivalent to any derived machine of A.

S1

S2

1/1

0/0

0/1

0/11/1

(a) A

S1

S2

1/1

0/1

0/01/1

(b) B

Fig. 6. Machine A,B, T (B,S1) ⊆ T (A,S1)

We will prove that B is a derived machine of the k-way expansion of A, where
k is the upper bound of the state number of B.

Definition 7. Given a NFSM A = (I, O, S, h), a k-way expansion of A is a
machine A = (I, O, S′, h′) that

∀si ∈ S, sm
i ∈ S′, 1 ≤ m ≤ k;

∀[sj , y] ∈ h(si, x), [sm
j , y] ∈ h′(sl

i, x), 1 ≤ m ≤ k, 1 ≤ l ≤ k 
�

S1

S2

S1′

S2′

1/1

0/0

0/1

0/11/1

1/1

0/0

0/1

0/11/1

0/0

1/1

0/1

1/1

0/1

0/0

1/1

0/1

1/1

0/1

(a) 2-way expansion of A in 6(a)

S1 S1′

S2′

1/1

0/1

0/1

0/0

1/1

1/1

(b) a derived machine of A

Fig. 7. 2-way expansion and its derived machine

We can see that A has k times the number of states in A and k2 transitions
for each transition in A. Our idea is that each state in B may be constructed by



a set of states in A. Intuitively each state in B may be constructed from a copy
of A, by selecting the features it needed. If each state in B can be simulated by
one copy of A, then B may be constructed in the k-way expansion of A.

Theorem 6. Suppose A is a minimal ONFSM specification and B is a minimal
DFSM that conforms to A that has k states. Then B is equivalent to some derived
machine of the k-way expansion of A.

The proof is given in [12]. 
�
Fig.7(b) is a derived machine of the 2-way expansion of machine A in Fig.6.

It is equivalent to machine B in Fig.6.
We show in [12] that B may not be a derived machine of (k−1)-way expansion

of A. k − way expansion is the upper bound and the bound is tight.
There are totally kknp/(k!)n derived machines from the k-way expansion of

A. See [12] for an explanation of the calculation.
For this case we only consider the active testing approach. Enumerating

the derived machines can only be applied when k, n, p are very small numbers.
We examine the topological structure of the graph of the machine, take into
consideration of the strongly connected components(SCC) and the branching to
them, and apply heuristics to reduce the candidate derived machines. We use
the following PPP Authentication to illustrate.

The Password Authentication Protocol (PAP) is used as a PPP authentica-
tion protocol [18]. The dial-in system sends its PAP authentication information
(username, password) in an Authenticate-Request to the server. The server sends
an Authenticate-Ack to indicate the success of authentication. If authentication
fails, the server sends an Authenticate-Nak. It should also attempt to terminate
the link to frustrate a would-be system cracker, although a small number of at-
tempts are often permitted. Most dial-up systems permit users to retry several
times. We take state Ack-Rcvd and its neighbor states from the state machine.
{RAR+, RAR- } are valid inputs for Ack-Rcvd. Another input RAA is for the
PAP server and is ignored in Ack-Rcvd, since Ack-Rcvd is a state for the PAP
client. The SCC containing Ack-Rcvd and its outgoing transitions are shown in
Fig 8.

Assume that the retries number is not greater than 3, we can generate the
derived machines from 3-way expansion of state Ack-Rcvd. The derived machines
can be easily classified into 4 equivalent classes [19]. Since RAR+/SAA is a
distinguishing sequence for state Ack-Rcvd and Closed. We can use it to judge
which derived machine is the implementation machine.

6 Case 4: General NFSM

The specification machine A is a general NFSM and the implementation machine
B is not restricted - may not be a derived machine of A. It can be shown [19] that
B can not be constructed from k-way expansion of A, no matter how large k is
[12]. Obviously, we can disregard the specification A and apply a test to identify
B [16] with an exponential cost. Can we take advantage of the information in the



Opened

Ack-Rcvd Closed

RAR+/SAA

RAR-/SAN
RAR-/SAN

RAR+ receive a good Authenticate-Request
RAR- receive a bad Authenticate-Request
SAA send Authenticate-Ack
SAN send Authenticate-Nak

Fig. 8. PAP Authentication with retries

specification machine and identify the implementation machine more efficiently?
As a pathological case, the given NDFS A may not contain any information, eg,
upon each input/output, there is a transition from each state to all other states.
It remains to be investigated that how to explore the structure and available
information of A to derive B efficiently or that how to characterize A such that
B can be constructed in polynomial time.

7 Conclusion

We have studied the problem of identifying the deterministic implementation
from nondeterministic specification using active or passive testing. From ex-
periences in real network protocol system implementations, we introduce the
concept of derived machines, developed efficient algorithms for determining the
implementation machines, and analyzed the complexity of various cases with
different assumptions on the specifications and implementations. The results are
summarized in Table.5.

Table 5. Derived Machine and Conformance

Case complexity active testing passive testing

derived machine of ONFSM O(pn2)
√ √

derived machine of NFSM NP-hard on-line exploration back-tracking

conformance of ONFSM k-way expansion expand SCC ?

conformance of NFSM exponential ?

We only explored limited structures of the nondeterministic specifications,
i.e., their observability and k-way expansions. In practice, the nondeterminism
is more restricted, as seen from the case studies of PPP, RIP and TCP. It remains
to be studied how to further explore and classify the nondeterministic structure
so that the implementations can be determined more efficiently.
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