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Abstract. The problem of generating the test cases is one of the most important 
issues in the software testing research and practice. Test threads, especially the 
thin-threads which are the usage scenarios in a software system, are frequently 
used to generate test cases for the scenario-based software testing. However, 
the derivation of the test threads is usually a manual and labor-intensive task. In 
this paper, we propose an automated approach using anti-ant-like agents to di-
rectly generate test threads from the UML artifacts. The generated test threads 
can then be used to generate and to prioritize the test cases for scenario-based 
software testing. 

1   Introduction 

Recently, great amount of attentions have been given to effectively using UML, 
which is the industrial de-facto standard for modeling object-oriented software sys-
tems, in software testing (see, for example, [9] and the references therein). One of the 
focused research topics is using UML artifacts for scenario based testing. Scenarios 
represent the sequences of executions in a software system. There are two important 
problems which are generally associated with the scenario-based testing techniques, 
namely the generation of the test scenarios [1, 3], and the prioritization of the testing 
scenarios [1, 4].  

Properly generated test scenarios are essential for the scenario-based software test-
ing to achieve the test adequacy and to guarantee the software quality. Test thread 
derivation, especially thin-thread derivation is a frequently used approach for the 
generation of the test scenarios [1, 3, 5, 15]. Thin-threads, in the forms of thin-thread 
trees and associated condition trees, can be derived from the scenarios-based business 
model [1, 5] or directly from the UML artifacts [3], and then test scenarios can be 
generated from the thin-threads. The generated test threads can also be used to priori-
tize the test cases for scenario-based software testing [4]. Additional data object tree 
can be generated to assist in analyzing the content-dependencies which may lead to 
couplings between the test scenarios [3]. One main problem with the generation of 
thin-threads is that the generation procedures are either manual/labor-intensive [1, 5], 
or can not be fully automated [3]. 

It is well-known that the development of techniques which support the automation 



of software testing will result in significant cost savings. Recently, the application of 
Artificial Intelligence (AI) techniques in Software Engineering (SE) emerges as an 
area of research that brings about the cross-fertilization of ideas across two domains 
[8]. It has been identified that one of the SE areas with a more prolific use of AI tech-
niques is software testing [18]. The focus of these techniques involves the applica-
tions of genetic algorithms (GAs), for examples [19] and [21]. Recently, efforts have 
been made to apply Ant Colony Optimization (ACO) algorithms to software testing 
[11, 20, 21]. However, none of the reported investigations using ACO approaches 
addresses the generation of test threads from the UML artifacts for scenario-based 
software testing. 

ACO simulates the behavior of real ants. The first ACO technique is known as Ant 
System [12] and it was applied to the traveling salesman problem. Since then, many 
variants of this technique have been produced. ACO can be applied to generate solu-
tions for combinatorial optimization problems. The artificial ants in the algorithm 
represent the stochastic solution construction procedures which make use of (1) the 
dynamic evolution of the pheromone trails that reflect the ants' acquired search ex-
perience; and (2) the heuristic information related to the problem in hand, in order to 
construct solutions.  

Using AI techniques, especially using ant-like agents, provides a potential avenue 
to automate the generation of test threads for scenario-based software testing. How-
ever, the original ACO algorithms as presented in [12] and [13] can not be directly 
used to tackle the problem of generating test threads from the UML artifacts, as the 
standard ACO ants are not designed to tackle the graphs which can be converted from 
the UML diagrams. 

In this paper, we propose to use anti-ant-like agents to automatically generate test 
threads directly from the existing UML activity diagrams. The details of our approach 
are presented in the next section. 

2   Generating Test Threads from the UML Activity Diagrams 

Before presenting the details of our approach, we briefly review the principles under-
lying the representation of the thin-thread tree, the condition tree, and the data-object 
tree, as well their relationship with the UML activity diagrams. 

2.1 The three trees 

The UML use cases are the good sources for the derivation of the software testing 
requirements, because they represent high level functionalities provided by the sys-
tem to the end-users. The use cases are usually not independent. They may have the 
Extend and the Include dependencies, and the sequential dependencies [7, 10] which 
stem from the logic of the supported business workflows. The sequential dependen-
cies between use cases can be represented by activity diagrams for all the actors in the 



system. As the activity diagrams are relatively easy to be interpreted, such a represen-
tation facilitates the identification and visualization of these dependencies viewed by 
the application domain experts. Thin threads can be extracted from the system level 
activity diagrams.  

A thin thread and a use case serve similar functionality, i.e., they both describe 
system scenarios. However, a thin thread contains more information than a use case, 
and thin threads for an application are organized into a tree style which is suitable for 
various analyses such as dependency analysis, risk analysis, traceability analysis, 
coverage analysis, completeness and consistency checking, and test scenario/test case 
generation [1]. Thin-threads that share certain commonalities can be grouped together 
to form a thin-thread group. Such grouping can be recursive, i.e., a collection of 
lower level thin-thread groups that share some commonalities can be further grouped 
to form a higher level thin-thread group. All thin-threads and thin-thread groups can 
be arranged hierarchically to form a thin-thread tree. Furthermore, conditions are 
generally associated with each thin thread or each thin thread group to identify their 
activation constraints [1]. A thin-thread can only be activated if its affiliated condi-
tions are satisfied. The conditions can also be grouped and organized into a tree style.  

On the other hand, the UML activity diagrams can contain data storage objects 
which can be read and/or updated by sub-scenarios. These data objects can affect or 
be affected by the associated conditions. For example, a multi-processing system or 
an interactive system may experience the racing problem in which the execution re-
sult is affected by the execution sequencing of the sub-scenarios, if two or more sub-
scenarios update the same data objects in certain situations. Similar to the conditions, 
the data storage objects can also be classified and organized into a tree style. How-
ever, there is a difference between the classification of the data objects and that of the 
conditions, namely the hierarchy of the data objects closely resembles a normal data 
storage structure in a relational database. The top level of a data object hierarchy 
contains the data objects, and a leaf node only contains part of a data object since 
different sub-scenarios may operate on the different parts of the same data object.  
The operation attributes, namely reading or updating, are assigned to the leaf nodes to 
help identifying the data dependencies between the thin-threads. The data object tree 
was not part of the standard thin-thread based approaches reported in literature [1, 5, 
22]. It was proposed in [3] to extend the thin-threads to capture the important content-
dependent coupling relationships between the thin-threads.  

Consequently, thin-threads, conditions and data objects can all be arranged hierar-
chically to form the thin-thread tree, the condition tree and the data-object tree, re-
spectively. There are complex relationships amongst the three trees. A thin thread is 
composed of a group of sequential sub-scenarios, with each sub-scenario associated 
with one or more conditions in the condition-tree and one or more data object in the 
data-object tree. The thin-threads may share common sub-scenarios, conditions and 
data-objects. 

Next we present the details of the proposed approach which aims at automating the 
generation of the trees. 



2.2 Using anti-ant-like agents to build the three trees 

A directed graph is defined as G = (V, E) where V is a set of vertices of the graph and 
E a set of edges of the graph. A UML activity diagram can be viewed as a directed 
graph where the vertices are the activity nodes, the object nodes, the branch nodes, 
the fork nodes, the join nodes, and the initial node, while the edges are the activity 
edges in the activity diagram. An extended activity diagram, namely an ATM ma-
chine, is shown in Figure 1. This activity diagram contains a data object Account 
which can be accessed by various activity nodes. 
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Figure 1 An ATM Activity Diagram 



An activity graph is a directed, dynamic graph in which the activity edges may 
only become accessible after the evaluation of their guards. It is difficult to apply the 
original ACO algorithms directly to this type of dynamic graphs to generate test 
threads.  

Inspired by ACO algorithms, we consider the problem of sending a group of ant-
like agents to cooperatively search a directed graph G.  The objective of the ant ex-
ploration is to build the three trees as discussed in the previous sub-section. 

The behavior of an artificial ant in our approach is governed by a state machine 
diagram illustrated in Figure 2. An artificial ant at a node in our paradigm can sense 
the pheromone trails on the edges emanating from the current vertex, and leave 
pheromone trails over the edges when it moves between the nodes.  
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Figure 2 Behavior of an Artificial Ant - The State Machine Diagram 

 
Unlike the approach in [3], it is not necessary for the current framework to convert 

a UML activity diagram into an activity hypergraph first and then process the convert 
hypergraph which were two steps that could not be fully automated in [3]. The UML 
activity diagrams, in the form of XMI files exported from common UML tools can be 
directly used to generate the trees in the proposed approach. Graph conversion from 
the activity diagram, if necessary, is done on the fly instead. 

There are two special sets of nodes in the activity diagram which need to pay spe-
cial attention: 

 
• The final nodes in an activity diagram are considered as the poisoned food 

sources for the artificial ants. An artificial ant is killed if it finds the poi-
soned food. 



• A fork node and its associated join node are considered as the two banks of 
a river, every path between the fork-join nodes is considered as a pontoon. 
An artificial ant can not cross the river without building a pontoon bridge1 
over the river first. Every pair of fork/join nodes and all the nodes between 
the pair will be converted on the fly to execution sequences, called Fork-Join 
Bridges, by the artificial ants. The details of Fork-Join Bridges will be dis-
cussed late. 

In our framework, an artificial ant is powered by limited energy. An ant is termi-
nated if it runs out of energy. The main purpose for the introduction of power con-
sumption for the artificial ants is to avoid the situations in which an artificial ant runs 
into a cyclic loop, or in which an ant is stalled in a part of the activity diagram. 

We now present the algorithm for the proposed ant exploration approach: 

Algorithm 
 

The pseudo codes of the proposed algorithm are illustrated as following: 
 
/* Initialization */ 
for every edge (i,j) do 
   Pij = 0; /*Set 0 pheromone level to every edge*/ 
endfor; 
 
/* Exploration of a group of m ants */ 
for k = 1 to m do  
  ENk = Energy; /*Charge every ant with default energy*/ 
 
  i = 0; /*Every ant starts from the initial node*/ 
 
  while ( ENk > 0 ) do 
   

/*Thread reporting*/ 
Report threads to the thread tree;  
 

    Evaluate status at node i; 
 
    if (Found Poison) do 
       Kill ant; 
       Break; 
    endif; 
 

/*Condition reporting*/ 
if (Found Condition) do  
   Report conditions to the condition tree; 
endif; 
 
/*Data Reporting*/ 
if (Access Data) do  

                                                           
1 A type of temporary bridge which is quickly built using floating pontoons for the passage of 

troops. 



   Report data access to the data object tree; 
endif; 

     
/*If arrives at a fork node*/ 
if (Found Fork) do  

       Building Fork-Join Bridge;            
endif; 
 
/*Not every edge is freely accessible*/ 
Get access conditions for emanating edges from ver-

tex i; 
 
    Evaluate pheromone levels on all emanating edges;  
 
    /*Find the destine node d which has the minimum 
pheromone level, random selection if multiple*/ 

Find min Pid;  
 
Take access conditions on edge (i,d); 
 
/*Move to the destine node*/ 
i = d;  
 
/*Each move consumes energy*/ 
ENk = ENk – 1;  

 
/*Update pheromone over the traversed edge*/  
if (is Fork-join Bridge) do 
   Pid = Pid +1/n!; /*n pontoons*/ 
else 
   Pid = Pid + 1;  
endif; 
 

  endwhile; 
   
  if Pij >= 1 for every edge (i,j) do  

Stop; /*Every edge has been traversed*/ 
endif; 

 
endfor; 
 
The above pseudo codes are derived from the state machine diagram in Figure 2 to 

reflect an artificial ant’s behavior in exploring the activity graphs. Similar to ACO, 
pheromone trails on edges are used to guide an artificial ant in selecting its direction 
for next move. However, unlike ACO and the real ants, our artificial ants exhibit 
repulsive behavior as pheromone trails in our approach are used in such a way that an 
ant will favor the unexplored or less-explored edges. This results in effective explora-
tion of the activity diagrams, as the addressed problem here is the generation of vari-
ous test threads which requires effective coverage of all activity edges instead of an 
optimal path achieved by original ACO algorithms.   

Since the artificial ants in our framework exhibit repulsive behavior which is con-
trary to that of the real ants, we may better name our artificial ants as anti-ants. How-



ever, for simplicity, we will still use the name “ants” to call our artificial agents which 
actually exhibit anti-ant behavior. 

The pseudo codes are straightforward to be followed. However, two segments of 
the pseudo codes, namely Building Fork-Join Bridge and Reporting need to be further 
explained. 

Building Fork-Join Bridge 
 
When an artificial ant arrives at a fork river bank, it has to utilize the pontoons be-

tween the two river banks to build a pontoon bridge over the river in order to cross 
the river. Assume that there are n pontoons, and then the procedure to build a fork-
join bridge for an ant is: 

 
1. Set k = 1; 
2. From the remaining pontoons, find the k-th pontoon which has the minimum 

pheromone level on the first edge; randomly select a pontoon if there are mul-
tiple candidates with same minimum pheromone level; 

3. Deposit pheromone level 1/k to the first edge of the k-th pontoon; 
4. If k = n, sequentially connect all pontoons in the respective order to form a 

pontoon bridge; otherwise set k = k + 1 and go to step 2; 
5. Temporarily replace all the inclusive nodes between the fork node and the join 

node in the activity diagram with the fork-join bridge constructed by the cur-
rent ant. 

 
For example, for the fork-join river in the ATM example shown in Figure 1, two 

consecutive ant explorations build two fork-join bridges as illustrated in Figure 3. 
Note that an ant deposits 1/n! pheromone level over each edge which it traverses on 
the fork-join bridge. 

The bridge building procedure ensures that every possible execution sequence 
combination of the paths between the fork node and the join node will be exercised 
by the proposed algorithm, and all corresponding traces will be recorded in the three 
trees. However, the bridge building procedure alone can not guarantee that every 
activity edge in a path between the fork and the join nodes will be visited by at least 
one ant. Therefore, the 1/n! pheromone level deposition is introduced which ensures 
that if there is an unexplored activity edge between the fork and the join nodes, the 
proposed ant exploration algorithm will not stop. Further exploration of other ants 
over the paths between the fork and join nodes will favor those edges which have not 
been fully explored. The number of ants m in the proposed algorithm can be in-
creased to allow more exhaustive exploration. Eventually all activity edges between 
the fork and the join nodes will be visited at least once which serves as one of the 
necessary conditions for the termination of the ant exploration algorithm. 
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Figure 3 Building a Fork-Join Bridge 
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Figure 4 Thread Reporting 



Reporting 
 

For simplicity, we only discuss thread reporting here. Condition reporting and data 
reporting can be tackled in similar ways. 

In the exploration of a UML activity diagram, an ant frequently reports its trace to 
a thin-thread tree. The completed trace of an ant, which is an execution thread, is 
represented as a branch in the thin-thread tree, as illustrated in Figure 4. When next 
ant enters and explores the activity diagram, its trace is also reported to the same thin-
thread tree. However, for compactness, the part of the new ant’s trace which overlaps 
an existing trace is merged with the existing trace to form the trunk, while the differ-
ent part is allowed to branch away from the trunk, as shown in the right hand side of 
Figure 4. 
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Figure 5 The Three Trees for the ATM Example 

 
Exploration a UML activity diagram using multiple ant-like agents will result in 

the automatic generation of three tree type structures, namely the thin-thread tree, the 
associated condition tree, and the associated data object tree. For the ATM example 



in Figure 1, application of the proposed approach results in the three trees which are 
partly shown in Figure 5. The three trees are accordant with the ones reported in [3]. 

 
It is possible that some variations may be adopted for the proposed algorithm: 
 

 Use more sophisticated and complicated pheromone updating rules, or use 
evaporating pheromone deposit.  

However, unlike the original ACO algorithms where convergence to an optimal 
path is desired, the proposed algorithm doesn’t encourage cyclic exploration for the 
artificial ants. In contrary to the original ACO algorithms, the pheromone trails in our 
approach is used to discourage an artificial ants from exploring an edge which has 
already been well explored. We believe that the simple pheromone updating rules 
should serve our purpose well. Adoption of more sophisticated pheromone updating 
rules, or using evaporating pheromone deposit may complicate the algorithm without 
significant improvement. However, further research is required and is being carried 
out to verify this claim. 

 
 Use goal-oriented approach to guide the ants to effectively explore these un-

explored edges. 
A goal-oriented evolutionary approach has been proposed in [18] for optimization 

of state-based test suites for software systems. In the current framework, the artificial 
ants used to explore the activity diagrams are simple memoryless creatures, they can 
not pre-fetch the future pheromone trails, and are unable to back-trace. Further re-
search will be demanded to exploit the possibility of using ant-like simple agents in 
goal-oriented approach for the generation of test threads.  

 
 Deploy ants to randomly assigned initial nodes to start exploration. 

While ants can be deployed to random locations to start their exploration, the 
traces they create may not be meaningful in the sense of test threads. Thus the details 
of this variation will not be discussed further in this paper.  

 
While the proposed algorithm works well for the exploration of UML activity dia-

grams of the ATM example scale, further experiments will be performed to verify the 
efficiency of the proposed algorithm for large scale activity diagrams. Results will be 
reported in sequential reports. 

3   Conclusion 

This paper extends the previous work in generation of test threads for software 
testing. In this paper, we propose to use anti-ant-like agents to automatically generate 
the thin-threads from the UML artifacts. Our approach has the following advantages: 
1) the process to generate the thin-threads is simplified because the UML artifacts are 
directly used; 2) the generation process is fully automated; 3) redundant exploration 
for the test threads is avoided due to the use of the anti-ant-like ants. 
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