
Using Anti-Ant-like Agents to Generate Test Threads
from the UML Diagrams

Huaizhong Li1, and C. Peng Lam1

1 School of Computer and Information Science, Edith Cowan University,
Mt. Lawley, WA 6050, Australia
{h.li,c.lam}@ecu.edu.au

Abstract. The problem of generating the test cases is one of the most important
issues in the software testing research and practice. Test threads, especially the
thin-threads which are the usage scenarios in a software system, are frequently
used to generate test cases for the scenario-based software testing. However,
the derivation of the test threads is usually a manual and labor-intensive task. In
this paper, we propose an automated approach using anti-ant-like agents to di-
rectly generate test threads from the UML artifacts. The generated test threads
can then be used to generate and to prioritize the test cases for scenario-based
software testing.

1 Introduction

Recently, great amount of attentions have been given to effectively using UML,
which is the industrial de-facto standard for modeling object-oriented software sys-
tems, in software testing (see, for example, [9] and the references therein). One of the
focused research topics is using UML artifacts for scenario based testing. Scenarios
represent the sequences of executions in a software system. There are two important
problems which are generally associated with the scenario-based testing techniques,
namely the generation of the test scenarios [1, 3], and the prioritization of the testing
scenarios [1, 4].

Properly generated test scenarios are essential for the scenario-based software test-
ing to achieve the test adequacy and to guarantee the software quality. Test thread
derivation, especially thin-thread derivation is a frequently used approach for the
generation of the test scenarios [1, 3, 5, 15]. Thin-threads, in the forms of thin-thread
trees and associated condition trees, can be derived from the scenarios-based business
model [1, 5] or directly from the UML artifacts [3], and then test scenarios can be
generated from the thin-threads. The generated test threads can also be used to priori-
tize the test cases for scenario-based software testing [4]. Additional data object tree
can be generated to assist in analyzing the content-dependencies which may lead to
couplings between the test scenarios [3]. One main problem with the generation of
thin-threads is that the generation procedures are either manual/labor-intensive [1, 5],
or can not be fully automated [3].

It is well-known that the development of techniques which support the automation

of software testing will result in significant cost savings. Recently, the application of
Artificial Intelligence (AI) techniques in Software Engineering (SE) emerges as an
area of research that brings about the cross-fertilization of ideas across two domains
[8]. It has been identified that one of the SE areas with a more prolific use of AI tech-
niques is software testing [18]. The focus of these techniques involves the applica-
tions of genetic algorithms (GAs), for examples [19] and [21]. Recently, efforts have
been made to apply Ant Colony Optimization (ACO) algorithms to software testing
[11, 20, 21]. However, none of the reported investigations using ACO approaches
addresses the generation of test threads from the UML artifacts for scenario-based
software testing.

ACO simulates the behavior of real ants. The first ACO technique is known as Ant
System [12] and it was applied to the traveling salesman problem. Since then, many
variants of this technique have been produced. ACO can be applied to generate solu-
tions for combinatorial optimization problems. The artificial ants in the algorithm
represent the stochastic solution construction procedures which make use of (1) the
dynamic evolution of the pheromone trails that reflect the ants' acquired search ex-
perience; and (2) the heuristic information related to the problem in hand, in order to
construct solutions.

Using AI techniques, especially using ant-like agents, provides a potential avenue
to automate the generation of test threads for scenario-based software testing. How-
ever, the original ACO algorithms as presented in [12] and [13] can not be directly
used to tackle the problem of generating test threads from the UML artifacts, as the
standard ACO ants are not designed to tackle the graphs which can be converted from
the UML diagrams.

In this paper, we propose to use anti-ant-like agents to automatically generate test
threads directly from the existing UML activity diagrams. The details of our approach
are presented in the next section.

2 Generating Test Threads from the UML Activity Diagrams

Before presenting the details of our approach, we briefly review the principles under-
lying the representation of the thin-thread tree, the condition tree, and the data-object
tree, as well their relationship with the UML activity diagrams.

2.1 The three trees

The UML use cases are the good sources for the derivation of the software testing
requirements, because they represent high level functionalities provided by the sys-
tem to the end-users. The use cases are usually not independent. They may have the
Extend and the Include dependencies, and the sequential dependencies [7, 10] which
stem from the logic of the supported business workflows. The sequential dependen-
cies between use cases can be represented by activity diagrams for all the actors in the

system. As the activity diagrams are relatively easy to be interpreted, such a represen-
tation facilitates the identification and visualization of these dependencies viewed by
the application domain experts. Thin threads can be extracted from the system level
activity diagrams.

A thin thread and a use case serve similar functionality, i.e., they both describe
system scenarios. However, a thin thread contains more information than a use case,
and thin threads for an application are organized into a tree style which is suitable for
various analyses such as dependency analysis, risk analysis, traceability analysis,
coverage analysis, completeness and consistency checking, and test scenario/test case
generation [1]. Thin-threads that share certain commonalities can be grouped together
to form a thin-thread group. Such grouping can be recursive, i.e., a collection of
lower level thin-thread groups that share some commonalities can be further grouped
to form a higher level thin-thread group. All thin-threads and thin-thread groups can
be arranged hierarchically to form a thin-thread tree. Furthermore, conditions are
generally associated with each thin thread or each thin thread group to identify their
activation constraints [1]. A thin-thread can only be activated if its affiliated condi-
tions are satisfied. The conditions can also be grouped and organized into a tree style.

On the other hand, the UML activity diagrams can contain data storage objects
which can be read and/or updated by sub-scenarios. These data objects can affect or
be affected by the associated conditions. For example, a multi-processing system or
an interactive system may experience the racing problem in which the execution re-
sult is affected by the execution sequencing of the sub-scenarios, if two or more sub-
scenarios update the same data objects in certain situations. Similar to the conditions,
the data storage objects can also be classified and organized into a tree style. How-
ever, there is a difference between the classification of the data objects and that of the
conditions, namely the hierarchy of the data objects closely resembles a normal data
storage structure in a relational database. The top level of a data object hierarchy
contains the data objects, and a leaf node only contains part of a data object since
different sub-scenarios may operate on the different parts of the same data object.
The operation attributes, namely reading or updating, are assigned to the leaf nodes to
help identifying the data dependencies between the thin-threads. The data object tree
was not part of the standard thin-thread based approaches reported in literature [1, 5,
22]. It was proposed in [3] to extend the thin-threads to capture the important content-
dependent coupling relationships between the thin-threads.

Consequently, thin-threads, conditions and data objects can all be arranged hierar-
chically to form the thin-thread tree, the condition tree and the data-object tree, re-
spectively. There are complex relationships amongst the three trees. A thin thread is
composed of a group of sequential sub-scenarios, with each sub-scenario associated
with one or more conditions in the condition-tree and one or more data object in the
data-object tree. The thin-threads may share common sub-scenarios, conditions and
data-objects.

Next we present the details of the proposed approach which aims at automating the
generation of the trees.

2.2 Using anti-ant-like agents to build the three trees

A directed graph is defined as G = (V, E) where V is a set of vertices of the graph and
E a set of edges of the graph. A UML activity diagram can be viewed as a directed
graph where the vertices are the activity nodes, the object nodes, the branch nodes,
the fork nodes, the join nodes, and the initial node, while the edges are the activity
edges in the activity diagram. An extended activity diagram, namely an ATM ma-
chine, is shown in Figure 1. This activity diagram contains a data object Account
which can be accessed by various activity nodes.

Input Pin 1

[Pin Error]

[Times <3]

[Times =3]

[Pin OK]

Session 2

[Session = Withdrawl]

Input Number 3

CheckBalance 4

[No]

 [Yes][Times=3]

[Times<3]

Inquity Operation 6

[Session = Inquity]

[Session = Deposit]

Input Number 7

Print Reciept 8 Deposit Operation 9

Withdrawl Operation 5

Select Print
Receipt 10

[Yes]

Print Receipt 11

[No]

[Session = Cancel]

[Press Cancel Button]

CardID&Pin:
Account

Balance:
Account

Figure 1 An ATM Activity Diagram

An activity graph is a directed, dynamic graph in which the activity edges may
only become accessible after the evaluation of their guards. It is difficult to apply the
original ACO algorithms directly to this type of dynamic graphs to generate test
threads.

Inspired by ACO algorithms, we consider the problem of sending a group of ant-
like agents to cooperatively search a directed graph G. The objective of the ant ex-
ploration is to build the three trees as discussed in the previous sub-section.

The behavior of an artificial ant in our approach is governed by a state machine
diagram illustrated in Figure 2. An artificial ant at a node in our paradigm can sense
the pheromone trails on the edges emanating from the current vertex, and leave
pheromone trails over the edges when it moves between the nodes.

Node Status

Condition Reporting Data Object Reporting

Dead

Teminated

Thread Reporting
Found Poison

Out of Energy

Found Condition

Access Data

Direction

Found Fork

Building Fork-Join Bridge

Next Node

O
ther

Report

SelectNext[is Not Fork-join
Bridge]/Move;P=P+1;En = En -1

SelectNext[is Fork-join Bridge]/
Move;P=P+1/n!;En = En -1

Figure 2 Behavior of an Artificial Ant - The State Machine Diagram

Unlike the approach in [3], it is not necessary for the current framework to convert

a UML activity diagram into an activity hypergraph first and then process the convert
hypergraph which were two steps that could not be fully automated in [3]. The UML
activity diagrams, in the form of XMI files exported from common UML tools can be
directly used to generate the trees in the proposed approach. Graph conversion from
the activity diagram, if necessary, is done on the fly instead.

There are two special sets of nodes in the activity diagram which need to pay spe-
cial attention:

• The final nodes in an activity diagram are considered as the poisoned food

sources for the artificial ants. An artificial ant is killed if it finds the poi-
soned food.

• A fork node and its associated join node are considered as the two banks of
a river, every path between the fork-join nodes is considered as a pontoon.
An artificial ant can not cross the river without building a pontoon bridge1
over the river first. Every pair of fork/join nodes and all the nodes between
the pair will be converted on the fly to execution sequences, called Fork-Join
Bridges, by the artificial ants. The details of Fork-Join Bridges will be dis-
cussed late.

In our framework, an artificial ant is powered by limited energy. An ant is termi-
nated if it runs out of energy. The main purpose for the introduction of power con-
sumption for the artificial ants is to avoid the situations in which an artificial ant runs
into a cyclic loop, or in which an ant is stalled in a part of the activity diagram.

We now present the algorithm for the proposed ant exploration approach:

Algorithm

The pseudo codes of the proposed algorithm are illustrated as following:

/* Initialization */
for every edge (i,j) do
 Pij = 0; /*Set 0 pheromone level to every edge*/
endfor;

/* Exploration of a group of m ants */
for k = 1 to m do
 ENk = Energy; /*Charge every ant with default energy*/

 i = 0; /*Every ant starts from the initial node*/

 while (ENk > 0) do

/*Thread reporting*/
Report threads to the thread tree;

 Evaluate status at node i;

 if (Found Poison) do
 Kill ant;
 Break;
 endif;

/*Condition reporting*/
if (Found Condition) do
 Report conditions to the condition tree;
endif;

/*Data Reporting*/
if (Access Data) do

1 A type of temporary bridge which is quickly built using floating pontoons for the passage of

troops.

 Report data access to the data object tree;
endif;

/*If arrives at a fork node*/
if (Found Fork) do

 Building Fork-Join Bridge;
endif;

/*Not every edge is freely accessible*/
Get access conditions for emanating edges from ver-

tex i;

 Evaluate pheromone levels on all emanating edges;

 /*Find the destine node d which has the minimum
pheromone level, random selection if multiple*/

Find min Pid;

Take access conditions on edge (i,d);

/*Move to the destine node*/
i = d;

/*Each move consumes energy*/
ENk = ENk – 1;

/*Update pheromone over the traversed edge*/
if (is Fork-join Bridge) do
 Pid = Pid +1/n!; /*n pontoons*/
else
 Pid = Pid + 1;
endif;

 endwhile;

 if Pij >= 1 for every edge (i,j) do

Stop; /*Every edge has been traversed*/
endif;

endfor;

The above pseudo codes are derived from the state machine diagram in Figure 2 to

reflect an artificial ant’s behavior in exploring the activity graphs. Similar to ACO,
pheromone trails on edges are used to guide an artificial ant in selecting its direction
for next move. However, unlike ACO and the real ants, our artificial ants exhibit
repulsive behavior as pheromone trails in our approach are used in such a way that an
ant will favor the unexplored or less-explored edges. This results in effective explora-
tion of the activity diagrams, as the addressed problem here is the generation of vari-
ous test threads which requires effective coverage of all activity edges instead of an
optimal path achieved by original ACO algorithms.

Since the artificial ants in our framework exhibit repulsive behavior which is con-
trary to that of the real ants, we may better name our artificial ants as anti-ants. How-

ever, for simplicity, we will still use the name “ants” to call our artificial agents which
actually exhibit anti-ant behavior.

The pseudo codes are straightforward to be followed. However, two segments of
the pseudo codes, namely Building Fork-Join Bridge and Reporting need to be further
explained.

Building Fork-Join Bridge

When an artificial ant arrives at a fork river bank, it has to utilize the pontoons be-

tween the two river banks to build a pontoon bridge over the river in order to cross
the river. Assume that there are n pontoons, and then the procedure to build a fork-
join bridge for an ant is:

1. Set k = 1;
2. From the remaining pontoons, find the k-th pontoon which has the minimum

pheromone level on the first edge; randomly select a pontoon if there are mul-
tiple candidates with same minimum pheromone level;

3. Deposit pheromone level 1/k to the first edge of the k-th pontoon;
4. If k = n, sequentially connect all pontoons in the respective order to form a

pontoon bridge; otherwise set k = k + 1 and go to step 2;
5. Temporarily replace all the inclusive nodes between the fork node and the join

node in the activity diagram with the fork-join bridge constructed by the cur-
rent ant.

For example, for the fork-join river in the ATM example shown in Figure 1, two

consecutive ant explorations build two fork-join bridges as illustrated in Figure 3.
Note that an ant deposits 1/n! pheromone level over each edge which it traverses on
the fork-join bridge.

The bridge building procedure ensures that every possible execution sequence
combination of the paths between the fork node and the join node will be exercised
by the proposed algorithm, and all corresponding traces will be recorded in the three
trees. However, the bridge building procedure alone can not guarantee that every
activity edge in a path between the fork and the join nodes will be visited by at least
one ant. Therefore, the 1/n! pheromone level deposition is introduced which ensures
that if there is an unexplored activity edge between the fork and the join nodes, the
proposed ant exploration algorithm will not stop. Further exploration of other ants
over the paths between the fork and join nodes will favor those edges which have not
been fully explored. The number of ants m in the proposed algorithm can be in-
creased to allow more exhaustive exploration. Eventually all activity edges between
the fork and the join nodes will be visited at least once which serves as one of the
necessary conditions for the termination of the ant exploration algorithm.

Input Number 7

Deposit Operation 9

Print Receipt 8

Input Number 7

Print Receipt 8

Deposit Operation 9

Fork-Join Bridge 1

Fork-Join Bridge 2

Input Number 7

Print Receipt 8 Deposit Operation 9

0 0

Input Number 7

Print Receipt 8 Deposit Operation 9

3/2 1

1/2 1/2

Figure 3 Building a Fork-Join Bridge

In put Pi n 1

[P in E rro r]

[T im es <3]

[T im es =3]

[P in OK]

Se ssi on 2

[S es si on = Wi thdr aw l]

I nput Nu mb er 3

Ch ec kB al ance 4

[N o]

 [Y es] [T im es =3]

[T im es <3]

I nqui ty Op er ati on 6

[S es si on = I nqui ty]

[S es si on = De pos it]

I nput Nu mb er 7

Pr in t Re ci ep t 8 De pos it Op er at io n 9

Wi t hdr aw l Op er at io n 5

Se le ct Pr in t
Re ce ip t 10

[Y es]

Pr in t Re ce ip t 11

[N o]

[S es si on = Ca nc el]

[Pre ss Ca nc el Bu tt on]

Ca rdI D&Pi n:
Ac co un t

Ba la nc e:
Ac co un t

TT: ATM (Thin-thread tree)

 TT1:Pin error one time then Eject card (T1)

TT2:CardID and Pin ok

 TT2.1:Eject Card

 TT2.2withdrawl

 TT2.3: Deposit

 TT2.4: Inquiry
.....................

TT2.4.1: Request print a balance reciept
TT2.4.2: Don't Request print a balance reciept

TT3: CardID and Pin ok after one failed Pin

 TT3.1:Eject Card

T T3.2withdrawl

 TT3.3Deposit

 TT3.4: Inquiry

.....................

.....................

TT3.4.1: Request print a balance reciept (T5)

TT3.4.2: Don't Request print a balance reciept

TT4: CardID and Pin Error three times then Card is retained

 TT2.2.1 No enough balance and cancel

 TT2.2.2 No enough balance and enter dollar amount again

 TT2.2.3 balance
TT2.2.3.1: Withdrawal successfully
 and request print a balance reciept
TT2.2.3.2: Withdrawal successfully and
 don't Request print a balance reciept

.....................

 TT3.2.3 balance
TT3.2.3.1: Withdrawal successfully
 and request print a balance reciept

TT3.2.3.2: Withdrawal successfully
 and don't Request print a balance reciept

(T2)

(T4)

(T3)

Thin-Thread Tree
Reporting

Ant 1:

Ant 2:

Figure 4 Thread Reporting

Reporting

For simplicity, we only discuss thread reporting here. Condition reporting and data
reporting can be tackled in similar ways.

In the exploration of a UML activity diagram, an ant frequently reports its trace to
a thin-thread tree. The completed trace of an ant, which is an execution thread, is
represented as a branch in the thin-thread tree, as illustrated in Figure 4. When next
ant enters and explores the activity diagram, its trace is also reported to the same thin-
thread tree. However, for compactness, the part of the new ant’s trace which overlaps
an existing trace is merged with the existing trace to form the trunk, while the differ-
ent part is allowed to branch away from the trunk, as shown in the right hand side of
Figure 4.

C: ATM (Condition tree)

C1: Data condition

C1.1: Data from User interface

C1.1.1: Data from Function of Verify Pin

C1.1.1.1: CardID

C1.1.1.2: Pin

C1.1.2: Data from operation menu

..

C1.1.2.1: Withdrawal (A3)

 C1.1.2.2: Inqurity (A4)

 C1.1.2.3: Deposit

 C1.1.2.4: Cancel

C1.1.3: Data from Withdrawal: dollar amount (A5)

............

C1.1.10: Data from Select print receipt

C1.1.10.1: Yes (Need a print receipt) (A6)

C1.1.10.2: No (Don't need a print receipt)

C2: Operation condition

C2.1: Operation condition from customer's keyboard

C2.1.1: Press "Enter" button (A10)

C2.1.2: Press "Cancel" button (A11)

..

............

............

C1.2: Data from DataBase

C1.1.4: Data from Deposit: dollar amount

..

C1.2.1: Data of customer's personal message for account

............

C1.2.2: Data of balance for account

C1.1.1.1.1: CardID in correct style (A1)
C1.1.1.1.2: CardID in wrong style

C1.1.1.2.1: Pin in correct style (A2)

C1.1.1.2.2: Pin in wrong style

C1.2.1.1: Valid CardID and Pin (A7`)

C1.2.1.2: Invalid CardID and Pin (A8`)

C1.2.2.1: Sufficient account balance (A9`)
C1.2.2.2: Insufficient account balanceDO: ATM (Data-object tree)

DO1: Account

DO1.1: CardID and Pin of account

DO1.1.1: CardID and Pin of one account

DO1.1.1.1: CardID and Pin of one account (Reading operation) (D1)
DO1.1.1.2: CardID and Pin of one account (Updating operation for Pin)

DO1.1.2: Multi CardID of one account (Main Card and Associted Card)

DO1.1.2.1: CardID and Pin of one account for each card (Reading operation) (D2)
..

..

..

DO1.2: Balance of account

DO1.2.1: Balance of the account (Reading operation) (D3)

DO1.2.2: Balance of the account (Updating operation) (D4)

..

..

TT: ATM (Thin-thread tree)

 TT1:Pin error one time then Eject card (T1)

TT2:CardID and Pin ok

 TT2.1:Eject Card

 TT2.2withdrawl

 TT2.3: Deposit

 TT2.4: Inquiry
.....................

TT2.4.1: Request print a balance reciept
TT2.4.2: Don't Request print a balance reciept

TT3: CardID and Pin ok after one failed Pin

 TT3.1:Eject Card

T T3.2withdrawl

 TT3.3Deposit

 TT3.4: Inquiry

.....................

.....................

TT3.4.1: Request print a balance reciept (T5)

TT3.4.2: Don't Request print a balance reciept

TT4: CardID and Pin Error three times then Card is retained

 TT2.2.1 No enough balance and cancel

 TT2.2.2 No enough balance and enter dollar amount again

 TT2.2.3 balance
TT2.2.3.1: Withdrawal successfully
 and request print a balance reciept
TT2.2.3.2: Withdrawal successfully and
 don't Request print a balance reciept

.....................

 TT3.2.3 balance
TT3.2.3.1: Withdrawal successfully
 and request print a balance reciept

TT3.2.3.2: Withdrawal successfully
 and don't Request print a balance reciept

(T2)

(T4)

(T3)

Figure 5 The Three Trees for the ATM Example

Exploration a UML activity diagram using multiple ant-like agents will result in

the automatic generation of three tree type structures, namely the thin-thread tree, the
associated condition tree, and the associated data object tree. For the ATM example

in Figure 1, application of the proposed approach results in the three trees which are
partly shown in Figure 5. The three trees are accordant with the ones reported in [3].

It is possible that some variations may be adopted for the proposed algorithm:

 Use more sophisticated and complicated pheromone updating rules, or use
evaporating pheromone deposit.

However, unlike the original ACO algorithms where convergence to an optimal
path is desired, the proposed algorithm doesn’t encourage cyclic exploration for the
artificial ants. In contrary to the original ACO algorithms, the pheromone trails in our
approach is used to discourage an artificial ants from exploring an edge which has
already been well explored. We believe that the simple pheromone updating rules
should serve our purpose well. Adoption of more sophisticated pheromone updating
rules, or using evaporating pheromone deposit may complicate the algorithm without
significant improvement. However, further research is required and is being carried
out to verify this claim.

 Use goal-oriented approach to guide the ants to effectively explore these un-

explored edges.
A goal-oriented evolutionary approach has been proposed in [18] for optimization

of state-based test suites for software systems. In the current framework, the artificial
ants used to explore the activity diagrams are simple memoryless creatures, they can
not pre-fetch the future pheromone trails, and are unable to back-trace. Further re-
search will be demanded to exploit the possibility of using ant-like simple agents in
goal-oriented approach for the generation of test threads.

 Deploy ants to randomly assigned initial nodes to start exploration.

While ants can be deployed to random locations to start their exploration, the
traces they create may not be meaningful in the sense of test threads. Thus the details
of this variation will not be discussed further in this paper.

While the proposed algorithm works well for the exploration of UML activity dia-

grams of the ATM example scale, further experiments will be performed to verify the
efficiency of the proposed algorithm for large scale activity diagrams. Results will be
reported in sequential reports.

3 Conclusion

This paper extends the previous work in generation of test threads for software
testing. In this paper, we propose to use anti-ant-like agents to automatically generate
the thin-threads from the UML artifacts. Our approach has the following advantages:
1) the process to generate the thin-threads is simplified because the UML artifacts are
directly used; 2) the generation process is fully automated; 3) redundant exploration
for the test threads is avoided due to the use of the anti-ant-like ants.

References

1. Assistant Secretary of Defense for Command, Control, Communications, and Intelligence
(ASD C3I), End-to-End Integration Test Guidebook, 2000.

2. F. Basanieri, A. Bertolino, and E. Marchetti, “CoWTeSt: A Cost Weighed Test Strategy”,
Proc. Escom-Scope 2001, London, 2001.

3. X. Bai, C. P. Lam, and H. Li, “An Approach to generate the Thin-threads from the UML
Diagrams”, Proc. COMPSAC 2004, Hong Kong, 2004.

4. X. Bai, H. Li, and C. P. Lam, “A Risk Analysis Approach to Prioritize UML-Based Soft-
ware Testing”, Proc. SNPD 2004, Beijing, 2004.

5. X. Bai, W. T. Tsai, R. Paul, K. Feng, and L. Yu, “Scenario-Based Business Modeling”,
IEEE Proc. of APAQS, 2001.

6. S. Bennett, S. McRobb and R. Farmer, Object-Oriented Systems Analysis and Design
Using UML (Second Edition), McGraw-Hill Education, 2002.

7. R. V. Binder, Testing Object-Oriented Systems - Models, Patterns, and Tools, Addison-
Wesley, 1999.

8. L. Briand, “On the many ways Software Engineering can benefit from Knowledge Engi-
neering”, Proc. 14th SEKE, Italy, 2002.

9. L. Briand and Y. Labiche, “A UML-Based Approach to System Testing”, Software and
Systems Modeling, 1(1), 2002.

10. A. Cockburn, “Structuring use cases with goals”, http://alistair.cockburn.us/.
11. K. Doerner and W. J. Gutjahr, “Extracting Test Sequences from a Markov Software Usage

Model by ACO”, LNCS, Vol. 2724, pp. 2465-2476, Springer Verlag, 2003.
12. M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a Search Strategy”,

Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.
13. M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a Colony of

Cooperating Agents”, IEEE Transactions on Systems, Man, and Cybernetics-Part B,
26(1), 1996.

14. J. Heumann, “Introduction to Business Modeling Using the Unified Modeling Language
(UML)”, http://www.therationaledge.com/content/mar_01/m_uml_jh.html.

15. J. Horgan, S. London, and M. Lyu, “Achieving Software Quality with Testing Coverage
Measures”, IEEE Computer, 27(9), 1994.

16. C. Kaner, J. Falk, and H. Q. Nguyen, Testing computer software, 2nd Edition, John Wiley
& Sons, 1999.

17. Y. Kim and C. R. Carlson, “Scenario Based Integration Testing for Object-Oriented Soft-
ware Development”, Proceedings of the Eighth Asian Test Symposium, Shanghai, 1999.

18. C. P. Lam, M. C. Robey and H. Li, "Application of AI for Automation of Software Test-
ing", Proc. SNPD03, Germany, 2003.

19. H. Li and C. P. Lam, “Optimization of State-based Test Suites for Software Systems: An
Evolutionary Approach”, International Journal of Computer and Information Science,
5(3), 2004.

20. H. Li and C. P. Lam, “Software Test Data Generation using Ant Colony Optimization”, to
appear in Proc. ICCI 2004, 2004.

21. P. McMinn and M. Holcombe, “The State Problem for Evolutionary Testing”, Proc.
GECCO 2003, 2003.

22. W. T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-To-End Integration Testing
Design”, Proc. COMPSAC'01, Chicago, 2001.

23. E. J. Weyuker, “Testing Component-Based Software: A cautionary Tale”, IEEE Software,
15(5), 1998.

