Detecting Trapdoors in Smart Cards Using
Timing and Power Analysis *

Jung Youp Lee', Seok Won Jung?, and Jongin Lim®

! Graduate School of Information Security,
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea
2 Department of Information Security,
Mokpo National University, ChonNam, Korea

Abstract. For economic reasons, in spite of security problems, the com-
mands of re-initializing the card and writing patch code are widely used
in smart cards. The current software tester has difficulty in detecting
these trapdoor commands by reason that trapdoors are not published
and programmed sophisticatedly. Up to now the effective way to detect
them is to completely reveal and analyze the entire code of the COS with
applications such as the ITSEC. It is, however, very time-consuming and
expensive processes. We propose a new approach of detecting trapdoors
in smart cards using timing and power analysis. By experiments, this
paper shows that this approach is a more practical method than the cur-
rent methods.

Keywords: Smart Card, Trapdoor, Timing Analysis, Power Analysis

1 Background

The smart card has a high level of security, since it could safely store secret keys
and execute cryptographic algorithms. In addition, smart cards are so small and
easy to handle that they are replacing magnetic-stripe cards as bank cards and
credit cards in electronic payment systems.

Since enormous amounts of money flow in a widely-distributed system, the
service provider of an electronic payment system must have a high degree of
confidence in the IC chip manufacturer, the producer of the Chip Operating
System (COS) with applications, and the smart card issuer. The service provider
must be able to be certain that the software in the COS performs the required
financial transactions without any errors and that the software is free of security
leaks, not to mention trapdoors deliberately introduced into the software.

Evaluating and testing smart cards could provide the service provider with
confidence. Evaluations are generally applied to the description documents or

* This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Assessment).

Aiko Pras

the program code with static procedures. In contrast to static methods, tests
are applied to the real smart card in operation with dynamic procedures.

The Trusted Computer System Evaluation Criteria (TCSEC) [1], the Infor-
mation Technique System Evaluation Criteria (ITSEC) [2], and the Common
Criteria (CC) [3] are representative evaluation methods. The TCSEC were cre-
ated in order to establish a catalog of criteria for evaluating the trustworthiness
of software products by the American Department of Defense (DoD) in 1985.
The ITSEC published in 1990 were European criteria based on TCSEC. The
CC were made in order to provide a uniform standard for evaluating the cor-
rectness of a software in 1996. The CC have also been published as international
standard ISO 15408. The basic procedure for evaluating a system is to rate the
mechanisms that it uses to maintain security with regard to the pre-defined basic
threats. For example, the ITSEC have six quality levels from E1 to E6. If the
software satisfies minimum requirements such as informal descriptions of func-
tions, it has the lowest level E1. For the highest level E6, a complete evaluation
is required. For instance, full source code and object code testing are necessary
for level E6.

As well as the software, the hardware could be evaluated by various criteria.
The VISA corporation requires the Chip Hardware Architecture Review for their
smart cards [4]. This is an evaluation of the basic chip, without a COS or an
application. This evaluation identifies features that the COS and applications
must enable properly in order to achieve the security desired.

To test the software of a smart card, the service provider or its agency exam-
ines the input and output data with regard to their relationship to each other, as
defined in the specifications. If the examiner knows the internal data structures
and processes of the COS with applications, the number of possible input values
could be reduced. Besides the functional tests of the COS with applications, the
VISA corporation performs risk testing [4]. This testing verifies that the security
features provided by the IC chip are appropriately implemented by the COS, and
evaluates the protection that a card provides against various documented and
well-known attacks.

The hardware of a smart card is tested by the IC chip manufacturer and by
the card body manufacturer. The card body is verified by mechanical, chemical,
and thermal test regulations of the ISO/IEC 10373. In every fabrication processes
of a smart card, the ATR test and the EEPROM test are performed to check
whether the IC chip has been damaged by being packaged into the module or
by being heated during the embedding process.

In the real smart card fields, the commands of re-initializing the card and
writing patch code are widely used. For economic reasons, the re-initializing
command is intentionally inserted into the COS to reuse incorrectly issued cards
which should be cut into pieces using a pair of scissors. This command clears the
EEPROM of a smart card. Nowadays the patch command is almost always used
at initial stage that a new COS with applications is introduced. This command
is used to correct the errors of the COS or to adapt the minor changes of the
specifications. This command writes patch code into the EEPROM. In many

Aiko Pras

cases, these commands are not published. Such unpublished commands could be
trapdoors. The malicious developer of the COS could easily introduce trapdoors
in the form of patch code that reads all of the EEPROM memory including
the key information. This is a serious risk, especially to the electronic payment
system that uses only the symmetric key. The exposure of the key means a crash
of the system.

By means of the software test of a smart card, the service provider could have
the confidence that the smart card of its system complies with the specifications
and that it operates without errors or security weakness including trapdoors.
However, it is sometimes incorrectly assumed that these tests can discover all
Trojan horses in the software. Although the unsophisticated trapdoors could
be detected, an experienced programmer can easily create trapdoors that are
not detected by current tests. Up to now the effective way to detect them is
to completely reveal and analyze the entire code of the COS with applications.
However, it is very time-consuming and expensive processes. The ITSEC level
E4 which is the lowest level of the source code testing can cost around 300,000
euro. In order to be certified of the level E6, it takes several years and costs
several million euros [5].

We propose a new approach of detecting trapdoors in smart cards using
timing analysis and power analysis. The basic idea is as follows: if a terminal
transmits the commands which are not in the specifications into a smart card,
their response time and power consumption are same. However, the trapdoor
command which is also not in the specifications has the different response time
and the different power consumption as compared with the other commands.
This idea provides a fast and inexpensive method for detecting trapdoors com-
pared to known test methods.

The following section classifies the types of trapdoors in smart cards. Section
3 illustrates the current test methods to detect trapdoors. Section 4 introduces
the timing analysis and the power analysis. Section 5 presents the methods to
detect the defined trapdoors using timing and power analysis, and shows the
practice.

2 Types of Trapdoors in Smart Cards

The smart card has a interface so-called Application Protocol Data Unit (APDU)
that consists of a command APDU and a response APDU to communicate with
the terminal [6]. This tells us that a trapdoor in a smart card also has a APDU
format and that it could be detected by the analysis of the APDU format.

A command APDU, which is sent by the terminal to the card, consists of a
mandatory header and an optional body in Figure 1. The header is composed

Header Body

CLA INS PI P2 [Lc field] [Datafield] [Lefislid]

Fig. 1. Structure of a command APDU

Aiko Pras

of four elements: the class byte (CLA), the instruction byte (INS), and two
parameter bytes (P1 and P2). The body is composed of the length of input data
(Le field), the input data (data field), and the expected length of output data
(Le field).

A response APDU, which is sent by the card in reply to a command APDU,
consists of an optional body and a mandatory trailer in Figure 2. The body is
the output data and the trailer is a status word.

Body Trailer

[Data field] SWT B2

Fig. 2. Structure of a response APDU

Trapdoors could be inserted in a command APDU that is in the published
documents such as the specifications or a manual. This command operates the
defined function as well as the hidden function and it returns the response with
the hidden information. Trapdoors could be a new command APDU that is not
in the published documents. Also, a series of commands could be a trapdoor. If
the commands of this trapdoor executes in order, the last command performs
a hidden function. Otherwise, it performs a normal function. We classify these
trapdoors into three types: steganographic commands, trapdoor commands, and
trapdoor sequences. In the following subsections, we will define the types of
trapdoors in detail.

2.1 Steganographic Commands

Definition 1. A steganographic command is a command defined in the published
documents and implemented in the smart card, which has one or more hidden
functions than defined in the published documents.

Almost all smart card operating systems contain the GET CHALLENGE com-
mand for generating and issuing random numbers [7]. This command could be
modified to a steganographic command. If a smart card generates a 16-byte
random number, The first 8-byte number of the random number is actually gen-
erated by the pseudo-random number generator. The remaining 8-byte number
would then consist of an 8-byte value taken from the EEPROM and XORed
with the first 8-byte random number. An external program could then be used
to read out the entire memory contents, including all of the keys. Incidentally,
this is a good example of a steganographic trapdoor.

2.2 Trapdoor Commands

Definition 2. A trapdoor command is a command that is not defined in the
published documents and is implemented in the smart card.

Aiko Pras

To make a trapdoor in smart cards, the developer of the COS and applications
usually defines a new command rather than modifies an existing command. The
reason is that he could handle the trapdoor as a normal command.

A command APDU consists of CLA, INS, P1-P2, Lc, Data, and Le. Therefore
a trapdoor command could use one or more elements of a command APDU as the
trapdoor awareness data. According to that data, trapdoor commands could be
defined by CLA trapdoor commands, INS trapdoor commands, P1-P2 trapdoor
commands, and so on.

If an experienced programmer inserts a trapdoor command into the COS,
he would use one or more commands before the trapdoor command to block
easy detecting. The successful authentication command, for example, may be
requested before the patch command is applied. Also he would intentionally use
the error status word for the successful trapdoor command to pretend that the
smart card does not support that command.

2.3 Trapdoor Sequences

Definition 3. A trapdoor sequence is a sequence of commands defined in the
published documents and implemented in the smart card, of which the last com-
mand operates as a trapdoor if the commands are executed in predefined order.

Suppose a trapdoor sequence is a sequence of the GET RESPONSE command,
the PUT DATA command, and the GET CHALLENGE command. The GET
CHALLENGE command, which returns a random number in normal state, could
respond to the key information if the above sequence of commands are sent into
a smart card according to the defined order.

Trapdoor sequences are usually defined to avoid the collision with the possible
command sequences of transactions in the specifications.

3 Current Test Methods to Detect Trapdoors

A functional test is commonly used to discover trapdoors in a real smart card
in operation. Figure 3 illustrates the method used to determine the unpublished
commands. A CLA in the APDU is sent into the smart card, being changed from
'00” to 'FF’. As soon as a return code other than ’invalid class’ is received, the
first valid class byte has been determined. Then all possible INSs are sent with
the determined CLA. The unsupported INS returns the status word 'unknown
instruction’, and the supported INS does return the other status word. In a
similar manner, the possible parameters of a command could be determined. If
suitable software is available in the terminal, this method can be used determine
which commands are supported by a smart card in a few minutes.

The reason that this simple search algorithm for CLA, INS, and P1-P2 is
possible is that practically most of command interpreters in smart card operating
systems evaluate received commands by starting with the CLA byte and working
through the following bytes.

Aiko Pras

Start

Class supparted by
Smart Card found
(= CLA

Instruction supported by
Smart Card found
(= INS)

k.

CLA = 00

INZ = Random
P1:= Random
P& = Random

1 R 1 L
Command APDU = Command APDU =
CLA[] INST] CLATLINS]
Pl P2 P1]I P2

Send
command APDU

Receive
response APDU

Receive
response APDU

ves \es

Fig. 3. Basic procedure for determining the commands set of a smart card

However, an experienced programmer can easily create trapdoors that are not
detected by this test as mentioned in Subsection 2.2. If he uses the error status
word 'unknown instruction’ for the successful trapdoor command, there is no
way to detect them by this test. What is worse, this test could not practically
detect a steganographic command or a trapdoor sequence.

4 Timing Analysis and Power Analysis

In the previous section, we show that the current test methods are not sufficient
to detect trapdoors in smart cards. It is well known fact that a timing analysis
and a power analysis are powerful methods to attack the smart card. This paper
explains how these methods could be applied to detect trapdoors effectively in
the next section. We introduce the concept of a timing analysis and a power
analysis in the following subsections.

We suggest that the side channel attacks which are focus to on the crypto-
graphic algorithms in the smart card could be used for detecting trapdoors. It
would be powerful methods as much for the cryptographic algorithms.

Aiko Pras

4.1 Timing Analysis

This subsection briefly describes the timing analysis of [10]. A timing attack
can be mounted if the execution time of the cipher depends on the value of
the key. For example, consider the square-and-multiply algorithm for modular
exponentiation, which is the basis of many public-key cryptosystems. If no special
precautions are taken, the total execution time of the cipher will vary depending
on the key. Hence, it is possible to deduce the key by comparing the cipher
execution times for different keys.

4.2 Power Analysis

This subsection briefly describes the power analysis of [11] and how it can be used
to attack encryption algorithms. Simple Power Analysis (SPA) involves directly
interpreting the power consumption measurement of a device like a smart card.
SPA can yield information about a device’s operation as well as key material.
For example, when an attacker can find out which branch of a jump instruction
is taken in the DES operation, it becomes possible to use such information to
draw conclusions about the secret key because a conditional branch is commonly
used to compute the DES key scheduling.

Differential Power Analysis (DPA) is a statistical approach, where many
traces are collected, and are examined for correlations. A partial guess of a
key could determine whether the value of a particular bit in the outputs is 0 or
1. The value divides the traces into two sets. Then, the averages of the traces for
the two sets are compared. If the guess is incorrect, there will be no correlation
between the two sets. However if the guess is correct, the first set will have a
different bias than the second one. When the averages of the two sets are sub-
tracted, there will be a spike in the difference. In such manner, the entire key
can be derived.

5 Detecting Trapdoors in a Smart Card

Most smart cards support the protocol T=0, half-duplex transmission of asyn-
chronous characters [6]. In the protocol T=0, the COS has to parse the received
INS in order to distinguish the commands that are incoming data transfers to
the smart card and the commands that are outgoing data transfers to the ter-
minal. Therefore, the COS commonly has the command processing steps as the
following Algorithm 1.

Algorithm 1. APDU command processing steps

Step 1. Receive a command APDU header.

Step 2. Parse the command according to INS.

Step 3. Receive a command APDU body if it is the incoming data transfer
command.

Step 4. Process the secure messaging.

Aiko Pras

Tek _ Stopped Single Seq
IRRRERERES dmn

1 Acgs
L L e

Ramom Humber

L . g . Ganeration Lo 4

T Ll T ' FE A
ohi 5OV Ew 2 5oy Ew M2.0ms 250KSA 4 Dpshot 44 Bms
AChl - 30V

Mall didmy 20

Fig. 4. Power consumption of a general GET CHALLENGE command

Tew Stopped Single Sey
B AR

Rangom Number

E - " - Generation 4

s - j/ EEPROM Update il
+ ||rww‘“ww7ww = ww‘wwww‘wwnw

s e b b b T L L L
chl o sov) the 50V Bw M Z0msZS0KSk 4 Dpsit 44 Bms

Mathl 41dmy 20ms

Fig. 5. Power consumption of a trapdoor GET CHALLENGE command

Step 5. Check the input command according to the specifications.
Step 6. Performs the command.
Step 7. Send a response APDU.

If the smart card supports only block transmission protocols such as T=1, type
A, type B [6, 8, 9], the steps may differ from the above. For example, Step 3 could
be merged to step 1. Step 2 and 4 could be swapped. Since most of smart cards
supporting block transmission protocols are implemented T=0 also, without loss
of generality, we assume that the smart cards have T=0 protocol.

For experiments, the sample COS is developed on the Samsung OPENice
i500 smart card development tools. The power consumption graph is the differ-
ence of the voltages over 50 ohms between Vcc of the smart card and Vec of the
terminal measured by the Tektronix TDS 5052 Digital Phosphor Oscilloscope.

Detecting Steganographic Commands

This trapdoor executes an ordinary function and a trapdoor function at the same
time. It should be implemented in Step 6 of Algorithm 1, and it has additional
operations compared with an original command.

Aiko Pras

Let us use an example where a trapdoor GET CHALLENGE command gen-
erates a random number and operates XOR with one byte of the EEPROM
memory. After that, it updates the EEPROM area for the next address to read.

Most smart card ICs have a hardware random number generator, so the power
consumption graph of the GET CHALLENGE command is generally simple like
Figure 4. On the other hand, because the trapdoor GET CHALLNGE command
has additional operations, the power consumption graph differs compared with
the general implementation of the GET CHALLENGE command if the same IC
is used. Figure 5 tells us that it has additional operations that are not known,
so we suspect this as a trapdoor.

Detecting Trapdoor Commands

This trapdoor has one or more new CLA, INS, P1-P2, Lc, Data, or Le. We
illustrate a INS trapdoor command first, which is the representative trapdoor.
In Step 2, the INS of an input command APDU is compared within the switch
clause or the if-else clause. If it is matched, the COS calls the function and

Tels_Btopped Single Seq 1 hags
T T T T T T

Processing Time -

I NS NN N S S WS W N S N
Chi sOv B the 50V Ew M20ms 250KSAE 4 0psiot 4 Bims
AChl s 30V

Fig. 6. Processing time of commands that are not in a command parser

e Stopped Single Seg 1 ko
R B e LR S

Processing Time

e b b L T L L L L
oh1 50% B chz 50V B MZOms 250k36 4 Opsfordd Bms
E)

Fig. 7. Processing time of an INS trapdoor command

Aiko Pras

returns an ordinary status word. Otherwise, the COS returns the status word
’6D00’ (unknown instruction).

The INS trapdoor command can be implemented in Step 2 of Algorithm 1.
Although this trapdoor returns the status word ’6D00’ as Example 1, we could
easily guess that this command of which the processing time is different from
those of other commands would be a trapdoor. In a similar manner like Figure
3, INSs from 00’ to 'FF’ are sent into the smart card. Figure 6 shows that the
processing time of INSs that are not in the command parser and Figure 7 shows
an INS trapdoor command

Because the INS value is between 0 and 255, the full search time of INS trap-
door commands is only about 8 seconds assuming that the processing time of
one command is 30ms as [5].

Example 1. Pseudo-code for command parser and trapdoor function

command_parser ()
{
switch (apdu.ins)
{

case TRAPDOOR:
trapdoor () ;

break;

case READ_BINARY:
read_binary();

break;

case WRITE_BINARY:
if (apdu.lc > 0)

receive_arr(apdu.body, apdu.lc);

write_binary();

break;

// *%%x Abbr. *x*xx//

case GET_CHALLENGE:
get_challenge (&tApdu) ;

break;

// *%%x Abbr. *xx//

default:
send_sw(0x6D00) ;

return;

3

trapdoor ()

{
format_file_system();
send_sw(0x6D00) ;

Aiko Pras

Although an experienced programmer can enforce a delay that the command
parser matches the processing time with a trapdoor command. Since instruc-
tions are different, the power consumption of a trapdoor command would be
different from those of other commands. Figure 8 shows the power consumption
of commands which return the status word '6D00’ with a enforced delay, and
Figure 9 shows the power consumption of a trapdoor.

In Step 5 of Algorithm 1, P1 and P2 are checked whether they comply with the
specifications or not, respectively. Generally P1 is checked first and P2 second.
For example, that the P1-P2 trapdoor command operates as a trapdoor only
when P1 = 0x37 and P2 = 0xBF. Matching P1 causes a small difference of
the processing time because matching P1 enables P2 to be compared. To search
the matching P1, the same method for detecting the INS trapdoor command
is applied. After the full search of P1, P2 could be searched by the same way.

Tek__Stopped Single Seq
T T Ty T

o

rofessing Time

Fig. 8. Power consumption of commands which return the status word ’6D00’ with a

enforced delay

Matht 20.6mY

2ims

Tek__Stopped Single Seq

the SOV

Bw MZOms 125KSk B Opspt4d.8ms
Al 23N

gtessing Time

Mathi 20.6mY

Fig. 9. Power consumption of a trapdoor command

zims

the SOV

Bw MZOms 125k3k B Opspr4dams
A 23N

Aiko Pras

Tek _ Stopped
[NAELBINA. o8 o o e

F E . Curs1 Pos
E . — . - - il s =1 44.704ms
[I Curs? Pos

E 2 . e + - E . = 168.294ms

t: a4Tms

\zD dBzEms
[T ot 157ms
E i I d « 5
’ I Il i I i1 I Pos id [6Z) 1.278ms
2 T T T T T -

—
Processing Time L~

v e b b b Py b by b B e
chi sov B thz so¥ Bw M 4O0pS 125MS/s GODmSHE 44 Oms
BohT ;2%

Fig. 10. Processing time of a P1-P2 trapdoor command when P1 != 0x37

Tek Glapped 1 Acds
[T

[E Curs1 Pos
E - —i e e - : — __4a70ams
r Curs2 Pos

T - 46.224ms

t: adTme

20 46 22
r T At 48zms
[HE + g i
;-8 i i i i } } POS Pid(C2) 1284me
- T T T T

—

D

Processing Time

o v b bern b T Lo B n Lo By
Chi SOV B chz SOV B M 4O0ps 1.25MISA BOONs#t 44 Orms
2%

Fig. 11. Processing time of a P1-P2 trapdoor command when P1 = 0x37

Figures 10 and 11 show the processing time of the P1-P2 trapdoor command
with matching P1 or not.

Detecting other trapdoor commands are the extension of detecting INS trap-
door commands or P1-P2 trapdoor commands.

Detecting Trapdoor Sequences

To implement a trapdoor sequence, the commands in a sequence have to save
the current state for the next command to execute. Suppose that a trapdoor
sequence is a sequence of the GET RESPONSE command, the PUT DATA
command, and the GET CHALLENGE command. The variable CUR_STATE in
RAM of a smart card is for the current state. If the GET RESPONSE command
is executed, the CUR_STATE will be set the GET RESPONSE state as defined
by S1. If the PUT DATA command is executed and the CUR_STATE is S1, the
CUR-STATE will be set the PUT DATA state as defined by S2. If the GET
CHALLENGE command is executed and the CUR_STATE is S2, a trapdoor

Aiko Pras

Tek _ Stopped Single Seq 1 Acus
I L B i

EEE S| L B |

Procesging Time

T T O N T T ST S SRR S S | I .
ch2 50V B M400ps 25MSkE 400nsipt 44 Oms
& £ 30

Math1 29.7mb 400us

Fig. 12. Power consumption of the PUT DATA command if the previous command is
not the GET RESPONSE command

will be executed and the CUR_STATE will be initialized to SO. Any other cases
make the CUR_STATE to SO.

With respect to the PUT DATA command, the CUR_STATE will be set the
next state if the previous command is the GET RESPONSE command, or it will
be initialized. This means that the power consumption difference exists. Figure
12 and 13 show the difference of the power consumption.

The number of commands in most electronic payment systems is 30, more
or less. The number of states is about 10 in one command. In other words, one
command may return one of about 10 status words. To find one chain, a minimum
of two command executions is needed. The full search time of a trapdoor sequence
is estimated only about 90 minutes assuming that the processing time of one
command is 30ms.

Tek _ Stopped Single Seq 1 #sgs
LI e B e

I

I N

1 1t
PN T LI DLARLE B il AT |

PR T T T S S T T I O Y
chz SO Bua M 40Ous 25MSE 400nshat 44.0ms
& £ 30

Math1 28.7my 400us

Fig. 13. Power consumption of the PUT DATA command if the previous command is
the GET RESPONSE command

Aiko Pras

6 Conclusion

In the real field, even though the COS developers often insert trapdoors for
economic reasons, the current analyzing methods for source code of the COS or
the functional test software for smart cards could not detect trapdoors efficiently.

In this paper, trapdoors are classified into steganographic commands, trap-
door commands, and trapdoor sequences, based on the idea that the number
of the smart card trapdoors are finite apart from general software because they
should follow the APDU format. They are implemented with various ways in the
special area of source code according to the basic COS structure.

Side channel attacks which are used to expose secret values of the crypto
algorithms in the smart card could be applied to detect trapdoors in the smart
card. The timing analysis is useful to detect trapdoor commands which are
representative trapdoors in the real smart cards. The power analysis could be
used to detect steganographic commands and trapdoor sequences which are more
difficult to detect than trapdoor commands. We explain that this idea is very
useful to detect trapdoors compared with the current methods.

Furthermore, they also provide the practical and inexpensive methods in the
real smart card world. We want this paper to be the start of detecting trapdoors
for real smart cards using a timing analysis and a power analysis.

References

1. Trusted Computer Systems Evaluation Criteria, US DoD 5200.28-STD, Dec. 1985.

2. Information Technology Security Evaluation Criteria, Version 1.2, Office for Official
Publications of the European Communities, June 1991.

3. Common Criteria for Information Technology Security Criteria, Version 2.1, Aug.
1999.

4. VISA Corporation, Chip Card: Testing and Approval Requirements Version 7.0,
Industry Services, Dec. 2002.

5. W. Rankl and W. Effing, ”Smart Card Handbook,” Third Edition, John Wiley &
Sons, Ltd, 2003, pp.244, pp.544-546, pp.579, pp.589.

6. ISO/IEC 7816-3:1997, Identification cards - Integrated circuit(s) cards with con-
tacts - Part 3: Electronic signals and transmission protocols.

7. ISO/IEC 7816-4:1995, Identification cards - Integrated circuit(s) cards with con-
tacts - Part 4: Interindustry commands for interchange.

8. ISO/IEC 14443-3:2001, Identification cards. Contactless integrated circuit(s) cards.
Proximity cards. Part 3: Initialization and anticollision.

9. ISO/IEC 14443-4:2001, Identification cards. Contactless integrated circuit(s) cards.
Proximity cards. Part 4: Transmission protocol.

10. P. Kocher, ” Timing Attacks on Implementation of Diffie-Hellman, RSA, DSS, and
Other Systems,” CRYPTO 1996, LNCS 1109, Springer-Verlag, 1996, pp.104-113.
11. P. Kocher, J. Jaffe, and B. Jun, ”Differential Power Analysis,” CRYPTO 1999,

LNCS 1666, Springer-Verlag, 1999, pp.388-397.

Aiko Pras

	Front matter
	Chapter 1
	Introduction
	Gedanken Experiments, Requirement Specifications and Confirmation
	References

	Chapter 2
	Introduction
	Preliminaries
	Extended Finite State Machine
	Substitution and Unification
	Normalizing Action Sequences

	The Notion of Invariants
	Forward Invariants
	Backward Invariants

	Extracting Invariant Constraints
	Forward Invariant Constraints
	Backward Invariant Constraints

	An Example: SCP Protocol
	The Simple Connection Protocol
	Defining Invariants
	Finding Invariant Constraints
	Passive Testing Using the Constrained Invariants

	Conclusion
	References

	Chapter 3
	Introduction
	Preliminaries
	Logics: LTL and CTL
	Model: Flow Graph

	Test Coverage
	Direct Dependences
	Indirect Dependences
	The Relationships Among Coverage Criteria

	Test Generation
	Direct Dependences
	Indirect Dependences

	Test Reduction
	Subsumption Graph
	Subsumption Forest

	Conclusions and Future Work

	Chapter 4
	Introduction
	Bug Finding Tools
	Basics
	Analysed Tools

	Projects
	General
	Analysed Projects

	Approach
	General
	Defect Categorisation
	Defect Types

	Analysis
	Bug Finding Tools
	Bug Finding Tools Versus Review
	Bug Finding Tools Versus Testing
	Defect Removal Efficiency

	Discussion
	Related Work
	Conclusion
	Future Work

	Chapter 5
	Motivation
	Functional Testing of Middleware
	Use Case 1: CORBA Functional Testing
	Use Case 2: Web Services

	Framework
	Non-solution
	Java's Virtual Machine
	XMLVM
	Mapping XMLVM to Other Languages

	Conclusions and Outlook

	Chapter 6
	Introduction
	Generating Test Threads from the UML Activity Diagrams
	The Three Trees
	Using Anti-Ant-like Agents to Build the Three Trees

	Conclusion
	References

	Chapter 7
	Introduction
	Formal Preliminaries
	Atomic Input- Inputs Action Refinement
	Trace Refinement
	Atomic Refinement of Transition Systems
	Uiocor for Testing Refined Systems
	Test Case Refinement
	Generation of Mini Test Cases
	Test Case Refinement
	Completeness of Test Case Refinement

	Conclusion
	References

	Chapter 8
	Introduction
	Preliminaries
	System Modeling
	Multiplexer
	Multiplexing Algorithm
	Application
	Conclusion

	Chapter 9
	Introduction
	Model and Methodology
	Preliminaries
	Topologies of Communication and Communicating Systems
	Methodology of Generic Generation Algorithms

	CS: A Generic Model for Testing
	CS as a Specification Model
	CS as a Test Generation Model

	TGSE: A Generic Test Generation Tool
	Case Study: CSMA/CD Protocol
	Conclusion

	Chapter 10
	Introduction
	Preliminaries
	Case 1: Derived Machine of Observable NFSM
	Active Testing Approach
	Passive Testing Approach
	An Example from RIP

	Case 2: Derived Machine of NFSM
	Active Testing Approaches
	Passive Testing Approach
	TCP Congestion Control

	Case 3: Conformance Relation in Observable NFSM
	Case 4: General NFSM
	Conclusion

	Chapter 11
	Introduction
	Preliminaries
	Finite State Machines
	Directed Graphs
	Recognizing States and Verifying Edges
	Defining α'--Sequences
	Checking Sequence Construction: An Existing Approach

	Producing Checking Sequences
	Transition Test Exemption
	Checking Sequence Construction
	Application

	Conclusion

	Chapter 12
	Introduction
	Preliminaries
	Failure of Exact Fault Diagnosis in FSMs
	Conditions for Guaranteed Fault Diagnosis
	Exact Algorithm for Fault Diagnosis
	Step 1: Detection of the Fault
	Step 2: Localization of the Fault

	Conclusion

	Chapter 13
	Introduction
	The Model
	State-Identification Problems on Timed Automata
	The Time-Abstracting Bisimulation Quotient Graph
	Transformation to a Non-deterministic Mealy Machine and Reduction
	Summary and Future Work
	References

	Chapter 14
	Introduction
	Definitions
	Modeling Timed FSM
	Edge Conditions and Actions for New Model

	Modeling Timing Faults
	1-Clock Interval Faults
	n-Clock Interval Fault
	Incorrect Timer Setting Faults

	Multiple Faults
	Multiple Faults of I and V
	Multiple Faults of I and IV
	Multiple Faults of IV and V

	Concluding Remarks

	Chapter 15
	Introduction
	The Testing Framework
	Tool and Case Study
	Summary and Future Work
	References

	Chapter 16
	Introduction
	Related Work
	A Formal Network Security Policy
	Test Case Generation
	Abstract Test Cases
	Test Tuples
	Concrete Test Cases

	An Example
	Conclusion
	Grammars
	General
	Formal Network Policy
	Keyword Definitions
	Network Layout

	Chapter 17
	Introduction
	Preliminaries
	Graphs
	Finite-State Machines

	Problem Statement
	Mathematical Model
	Algorithm for Problem 1
	A Heuristic Solution to Problem 2

	Test Generation for Internet Telephony End System
	Model of the Internet Telephony End System

	Test Generation for LMP
	Introduction to LMP
	Data Link Model of LMP
	Optimal Test Sequence for LMP

	Conclusion

	Chapter 18
	Introduction
	Conformance Testing and Modeling
	Probabilistic Testing Algorithms
	Internal Router in Backbone Area 0
	Area Border Router: Only One Non-backbone Area
	Area Border Router: More than One Non-backbone Area

	Experiments
	Conclusion
	Acknowledgement
	References

	Chapter 19
	Background
	Types of Trapdoors in Smart Cards
	Steganographic Commands
	Trapdoor Commands
	Trapdoor Sequences

	Current Test Methods to Detect Trapdoors
	Timing Analysis and Power Analysis
	Timing Analysis
	Power Analysis

	Detecting Trapdoors in a Smart Card
	Conclusion
	References

	Chapter 20
	Introduction
	Related Work
	Theoretical Background
	The UML 2.0 Testing Profile
	TTCN-3 and Its Meta-model
	Eclipse

	Transformation Approach
	Mapping Rules Between U2TP and TTCN-3 on Meta-model Level

	An Example
	Outlook and Future Work
	References

	Chapter 21
	Introduction
	Related Work
	Testing Concepts in MDA
	Software Development with Executable UML
	Testing in MDA

	TTCN-3 and Its Relation to MDA
	Testing Framework for Platform Independent Models with TTCN-3
	Simulating Executable UML Models
	Towards the Mapping of UML Models into TTCN-3
	Testing Through a MDA Software Development
	Empirical Experiences

	Conclusion and Future Work

	Chapter 22
	Introduction
	The Context of the Experiment
	A Short Overview of RIPng
	A Short Description of TTCN3 Main Components

	TTCN3 Based Test Generation for RIPng
	Approach for TTCN-3 Test Specification
	PCOs Management
	Coding/Decoding, Libraries, etc.
	Test Execution

	Main Issues
	Conclusion

	Chapter 23
	Introduction
	Models
	Input-Outputs Labelled Transition Systems
	Specification
	Mutation

	Robustness Testing Framework
	Robustness Requirements and Satisfiability Relation
	Test Architecture and Test Cases
	Test Cases Execution and Verdicts
	Test Graph
	Test Cases Selection

	Implementation
	Platform Architecture
	Implementation Issues

	Example
	Robustness Test Cases Generation
	Implementation and Test Execution

	Conclusion

	Chapter 24
	Introduction
	Inventory Visibility and Interoperability Problem
	Types of Content-Level Conformance Testing
	Document-Verification Test
	Information-Mapping Test
	Transaction-Behavior Test
	Scenario-Based Test

	Information-Mapping Test
	Overview of the Test Procedure
	Information-Mapping Test Challenges

	Information-Mapping Test Case Generation Method
	Business Case Definition
	Mapping Tables
	Test Cases Generation Procedure

	Experimental Results
	Results from the Input Test
	Results from the Output Test

	Conclusion
	Disclaimer
	References

	Chapter 25
	Introduction
	Model and Notations
	IOLTS Model
	Some Definitions

	Summary of Quiescence-Less Interoperability Relations
	Test Architectures
	Interoperability Relations

	Interoperability Testing Without Quiescence Management: Some Examples
	Quiescence Management
	Quiescence and Suspensive IOLTS
	Projection with Quiescence
	Interaction with Quiescence
	Interoperability Relations with Quiescence Management

	Interoperability Testing with Quiescence Management
	Interaction Between I_{1} and I_{4}
	Interaction Between I_{2} and I_{4}
	Interaction Between I_{3} and I_{4}
	Interaction Between I_{1} and I_{5}
	Synthesis and Main Results

	Conclusion

	Back matter

