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Abstract. For economic reasons, in spite of security problems, the com-
mands of re-initializing the card and writing patch code are widely used
in smart cards. The current software tester has difficulty in detecting
these trapdoor commands by reason that trapdoors are not published
and programmed sophisticatedly. Up to now the effective way to detect
them is to completely reveal and analyze the entire code of the COS with
applications such as the ITSEC. It is, however, very time-consuming and
expensive processes. We propose a new approach of detecting trapdoors
in smart cards using timing and power analysis. By experiments, this
paper shows that this approach is a more practical method than the cur-
rent methods.
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1 Background

The smart card has a high level of security, since it could safely store secret keys
and execute cryptographic algorithms. In addition, smart cards are so small and
easy to handle that they are replacing magnetic-stripe cards as bank cards and
credit cards in electronic payment systems.

Since enormous amounts of money flow in a widely-distributed system, the
service provider of an electronic payment system must have a high degree of
confidence in the IC chip manufacturer, the producer of the Chip Operating
System (COS) with applications, and the smart card issuer. The service provider
must be able to be certain that the software in the COS performs the required
financial transactions without any errors and that the software is free of security
leaks, not to mention trapdoors deliberately introduced into the software.

Evaluating and testing smart cards could provide the service provider with
confidence. Evaluations are generally applied to the description documents or
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the program code with static procedures. In contrast to static methods, tests
are applied to the real smart card in operation with dynamic procedures.

The Trusted Computer System Evaluation Criteria (TCSEC) [1], the Infor-
mation Technique System Evaluation Criteria (ITSEC) [2], and the Common
Criteria (CC) [3] are representative evaluation methods. The TCSEC were cre-
ated in order to establish a catalog of criteria for evaluating the trustworthiness
of software products by the American Department of Defense (DoD) in 1985.
The ITSEC published in 1990 were European criteria based on TCSEC. The
CC were made in order to provide a uniform standard for evaluating the cor-
rectness of a software in 1996. The CC have also been published as international
standard ISO 15408. The basic procedure for evaluating a system is to rate the
mechanisms that it uses to maintain security with regard to the pre-defined basic
threats. For example, the ITSEC have six quality levels from E1 to E6. If the
software satisfies minimum requirements such as informal descriptions of func-
tions, it has the lowest level E1. For the highest level E6, a complete evaluation
is required. For instance, full source code and object code testing are necessary
for level E6.

As well as the software, the hardware could be evaluated by various criteria.
The VISA corporation requires the Chip Hardware Architecture Review for their
smart cards [4]. This is an evaluation of the basic chip, without a COS or an
application. This evaluation identifies features that the COS and applications
must enable properly in order to achieve the security desired.

To test the software of a smart card, the service provider or its agency exam-
ines the input and output data with regard to their relationship to each other, as
defined in the specifications. If the examiner knows the internal data structures
and processes of the COS with applications, the number of possible input values
could be reduced. Besides the functional tests of the COS with applications, the
VISA corporation performs risk testing [4]. This testing verifies that the security
features provided by the IC chip are appropriately implemented by the COS, and
evaluates the protection that a card provides against various documented and
well-known attacks.

The hardware of a smart card is tested by the IC chip manufacturer and by
the card body manufacturer. The card body is verified by mechanical, chemical,
and thermal test regulations of the ISO/IEC 10373. In every fabrication processes
of a smart card, the ATR test and the EEPROM test are performed to check
whether the IC chip has been damaged by being packaged into the module or
by being heated during the embedding process.

In the real smart card fields, the commands of re-initializing the card and
writing patch code are widely used. For economic reasons, the re-initializing
command is intentionally inserted into the COS to reuse incorrectly issued cards
which should be cut into pieces using a pair of scissors. This command clears the
EEPROM of a smart card. Nowadays the patch command is almost always used
at initial stage that a new COS with applications is introduced. This command
is used to correct the errors of the COS or to adapt the minor changes of the
specifications. This command writes patch code into the EEPROM. In many
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cases, these commands are not published. Such unpublished commands could be
trapdoors. The malicious developer of the COS could easily introduce trapdoors
in the form of patch code that reads all of the EEPROM memory including
the key information. This is a serious risk, especially to the electronic payment
system that uses only the symmetric key. The exposure of the key means a crash
of the system.

By means of the software test of a smart card, the service provider could have
the confidence that the smart card of its system complies with the specifications
and that it operates without errors or security weakness including trapdoors.
However, it is sometimes incorrectly assumed that these tests can discover all
Trojan horses in the software. Although the unsophisticated trapdoors could
be detected, an experienced programmer can easily create trapdoors that are
not detected by current tests. Up to now the effective way to detect them is
to completely reveal and analyze the entire code of the COS with applications.
However, it is very time-consuming and expensive processes. The ITSEC level
E4 which is the lowest level of the source code testing can cost around 300,000
euro. In order to be certified of the level E6, it takes several years and costs
several million euros [5].

We propose a new approach of detecting trapdoors in smart cards using
timing analysis and power analysis. The basic idea is as follows: if a terminal
transmits the commands which are not in the specifications into a smart card,
their response time and power consumption are same. However, the trapdoor
command which is also not in the specifications has the different response time
and the different power consumption as compared with the other commands.
This idea provides a fast and inexpensive method for detecting trapdoors com-
pared to known test methods.

The following section classifies the types of trapdoors in smart cards. Section
3 illustrates the current test methods to detect trapdoors. Section 4 introduces
the timing analysis and the power analysis. Section 5 presents the methods to
detect the defined trapdoors using timing and power analysis, and shows the
practice.

2 Types of Trapdoors in Smart Cards

The smart card has a interface so-called Application Protocol Data Unit (APDU)
that consists of a command APDU and a response APDU to communicate with
the terminal [6]. This tells us that a trapdoor in a smart card also has a APDU
format and that it could be detected by the analysis of the APDU format.

A command APDU, which is sent by the terminal to the card, consists of a
mandatory header and an optional body in Figure 1. The header is composed

Header Body

CLA INS PI P2 [Lc field] [Datafield] [Lefislid]

Fig. 1. Structure of a command APDU
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of four elements: the class byte (CLA), the instruction byte (INS), and two
parameter bytes (P1 and P2). The body is composed of the length of input data
(Le field), the input data (data field), and the expected length of output data
(Le field).

A response APDU, which is sent by the card in reply to a command APDU,
consists of an optional body and a mandatory trailer in Figure 2. The body is
the output data and the trailer is a status word.

Body Trailer

[Data field] SWT B2

Fig. 2. Structure of a response APDU

Trapdoors could be inserted in a command APDU that is in the published
documents such as the specifications or a manual. This command operates the
defined function as well as the hidden function and it returns the response with
the hidden information. Trapdoors could be a new command APDU that is not
in the published documents. Also, a series of commands could be a trapdoor. If
the commands of this trapdoor executes in order, the last command performs
a hidden function. Otherwise, it performs a normal function. We classify these
trapdoors into three types: steganographic commands, trapdoor commands, and
trapdoor sequences. In the following subsections, we will define the types of
trapdoors in detail.

2.1 Steganographic Commands

Definition 1. A steganographic command is a command defined in the published
documents and implemented in the smart card, which has one or more hidden
functions than defined in the published documents.

Almost all smart card operating systems contain the GET CHALLENGE com-
mand for generating and issuing random numbers [7]. This command could be
modified to a steganographic command. If a smart card generates a 16-byte
random number, The first 8-byte number of the random number is actually gen-
erated by the pseudo-random number generator. The remaining 8-byte number
would then consist of an 8-byte value taken from the EEPROM and XORed
with the first 8-byte random number. An external program could then be used
to read out the entire memory contents, including all of the keys. Incidentally,
this is a good example of a steganographic trapdoor.

2.2 Trapdoor Commands

Definition 2. A trapdoor command is a command that is not defined in the
published documents and is implemented in the smart card.
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To make a trapdoor in smart cards, the developer of the COS and applications
usually defines a new command rather than modifies an existing command. The
reason is that he could handle the trapdoor as a normal command.

A command APDU consists of CLA, INS, P1-P2, Lc, Data, and Le. Therefore
a trapdoor command could use one or more elements of a command APDU as the
trapdoor awareness data. According to that data, trapdoor commands could be
defined by CLA trapdoor commands, INS trapdoor commands, P1-P2 trapdoor
commands, and so on.

If an experienced programmer inserts a trapdoor command into the COS,
he would use one or more commands before the trapdoor command to block
easy detecting. The successful authentication command, for example, may be
requested before the patch command is applied. Also he would intentionally use
the error status word for the successful trapdoor command to pretend that the
smart card does not support that command.

2.3 Trapdoor Sequences

Definition 3. A trapdoor sequence is a sequence of commands defined in the
published documents and implemented in the smart card, of which the last com-
mand operates as a trapdoor if the commands are executed in predefined order.

Suppose a trapdoor sequence is a sequence of the GET RESPONSE command,
the PUT DATA command, and the GET CHALLENGE command. The GET
CHALLENGE command, which returns a random number in normal state, could
respond to the key information if the above sequence of commands are sent into
a smart card according to the defined order.

Trapdoor sequences are usually defined to avoid the collision with the possible
command sequences of transactions in the specifications.

3 Current Test Methods to Detect Trapdoors

A functional test is commonly used to discover trapdoors in a real smart card
in operation. Figure 3 illustrates the method used to determine the unpublished
commands. A CLA in the APDU is sent into the smart card, being changed from
'00” to 'FF’. As soon as a return code other than ’invalid class’ is received, the
first valid class byte has been determined. Then all possible INSs are sent with
the determined CLA. The unsupported INS returns the status word 'unknown
instruction’, and the supported INS does return the other status word. In a
similar manner, the possible parameters of a command could be determined. If
suitable software is available in the terminal, this method can be used determine
which commands are supported by a smart card in a few minutes.

The reason that this simple search algorithm for CLA, INS, and P1-P2 is
possible is that practically most of command interpreters in smart card operating
systems evaluate received commands by starting with the CLA byte and working
through the following bytes.
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Fig. 3. Basic procedure for determining the commands set of a smart card

However, an experienced programmer can easily create trapdoors that are not
detected by this test as mentioned in Subsection 2.2. If he uses the error status
word 'unknown instruction’ for the successful trapdoor command, there is no
way to detect them by this test. What is worse, this test could not practically
detect a steganographic command or a trapdoor sequence.

4 Timing Analysis and Power Analysis

In the previous section, we show that the current test methods are not sufficient
to detect trapdoors in smart cards. It is well known fact that a timing analysis
and a power analysis are powerful methods to attack the smart card. This paper
explains how these methods could be applied to detect trapdoors effectively in
the next section. We introduce the concept of a timing analysis and a power
analysis in the following subsections.

We suggest that the side channel attacks which are focus to on the crypto-
graphic algorithms in the smart card could be used for detecting trapdoors. It
would be powerful methods as much for the cryptographic algorithms.
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4.1 Timing Analysis

This subsection briefly describes the timing analysis of [10]. A timing attack
can be mounted if the execution time of the cipher depends on the value of
the key. For example, consider the square-and-multiply algorithm for modular
exponentiation, which is the basis of many public-key cryptosystems. If no special
precautions are taken, the total execution time of the cipher will vary depending
on the key. Hence, it is possible to deduce the key by comparing the cipher
execution times for different keys.

4.2 Power Analysis

This subsection briefly describes the power analysis of [11] and how it can be used
to attack encryption algorithms. Simple Power Analysis (SPA) involves directly
interpreting the power consumption measurement of a device like a smart card.
SPA can yield information about a device’s operation as well as key material.
For example, when an attacker can find out which branch of a jump instruction
is taken in the DES operation, it becomes possible to use such information to
draw conclusions about the secret key because a conditional branch is commonly
used to compute the DES key scheduling.

Differential Power Analysis (DPA) is a statistical approach, where many
traces are collected, and are examined for correlations. A partial guess of a
key could determine whether the value of a particular bit in the outputs is 0 or
1. The value divides the traces into two sets. Then, the averages of the traces for
the two sets are compared. If the guess is incorrect, there will be no correlation
between the two sets. However if the guess is correct, the first set will have a
different bias than the second one. When the averages of the two sets are sub-
tracted, there will be a spike in the difference. In such manner, the entire key
can be derived.

5 Detecting Trapdoors in a Smart Card

Most smart cards support the protocol T=0, half-duplex transmission of asyn-
chronous characters [6]. In the protocol T=0, the COS has to parse the received
INS in order to distinguish the commands that are incoming data transfers to
the smart card and the commands that are outgoing data transfers to the ter-
minal. Therefore, the COS commonly has the command processing steps as the
following Algorithm 1.

Algorithm 1. APDU command processing steps

Step 1. Receive a command APDU header.

Step 2. Parse the command according to INS.

Step 3. Receive a command APDU body if it is the incoming data transfer
command.

Step 4. Process the secure messaging.
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Fig. 5. Power consumption of a trapdoor GET CHALLENGE command

Step 5. Check the input command according to the specifications.
Step 6. Performs the command.
Step 7. Send a response APDU.

If the smart card supports only block transmission protocols such as T=1, type
A, type B [6, 8, 9], the steps may differ from the above. For example, Step 3 could
be merged to step 1. Step 2 and 4 could be swapped. Since most of smart cards
supporting block transmission protocols are implemented T=0 also, without loss
of generality, we assume that the smart cards have T=0 protocol.

For experiments, the sample COS is developed on the Samsung OPENice
i500 smart card development tools. The power consumption graph is the differ-
ence of the voltages over 50 ohms between Vcc of the smart card and Vec of the
terminal measured by the Tektronix TDS 5052 Digital Phosphor Oscilloscope.

Detecting Steganographic Commands

This trapdoor executes an ordinary function and a trapdoor function at the same
time. It should be implemented in Step 6 of Algorithm 1, and it has additional
operations compared with an original command.
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Let us use an example where a trapdoor GET CHALLENGE command gen-
erates a random number and operates XOR with one byte of the EEPROM
memory. After that, it updates the EEPROM area for the next address to read.

Most smart card ICs have a hardware random number generator, so the power
consumption graph of the GET CHALLENGE command is generally simple like
Figure 4. On the other hand, because the trapdoor GET CHALLNGE command
has additional operations, the power consumption graph differs compared with
the general implementation of the GET CHALLENGE command if the same IC
is used. Figure 5 tells us that it has additional operations that are not known,
so we suspect this as a trapdoor.

Detecting Trapdoor Commands

This trapdoor has one or more new CLA, INS, P1-P2, Lc, Data, or Le. We
illustrate a INS trapdoor command first, which is the representative trapdoor.
In Step 2, the INS of an input command APDU is compared within the switch
clause or the if-else clause. If it is matched, the COS calls the function and
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Fig. 6. Processing time of commands that are not in a command parser
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Fig. 7. Processing time of an INS trapdoor command
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returns an ordinary status word. Otherwise, the COS returns the status word
’6D00’ (unknown instruction).

The INS trapdoor command can be implemented in Step 2 of Algorithm 1.
Although this trapdoor returns the status word ’6D00’ as Example 1, we could
easily guess that this command of which the processing time is different from
those of other commands would be a trapdoor. In a similar manner like Figure
3, INSs from 00’ to 'FF’ are sent into the smart card. Figure 6 shows that the
processing time of INSs that are not in the command parser and Figure 7 shows
an INS trapdoor command

Because the INS value is between 0 and 255, the full search time of INS trap-
door commands is only about 8 seconds assuming that the processing time of
one command is 30ms as [5].

Example 1. Pseudo-code for command parser and trapdoor function

command_parser ()
{
switch (apdu.ins)
{

case TRAPDOOR:
trapdoor () ;

break;

case READ_BINARY:
read_binary();

break;

case WRITE_BINARY:
if (apdu.lc > 0)

receive_arr(apdu.body, apdu.lc);

write_binary();

break;

// *%%x Abbr. *x*xx//

case GET_CHALLENGE:
get_challenge (&tApdu) ;

break;

// *%%x Abbr. *xx//

default:
send_sw(0x6D00) ;

return;

3

trapdoor ()

{
format_file_system();
send_sw(0x6D00) ;
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Although an experienced programmer can enforce a delay that the command
parser matches the processing time with a trapdoor command. Since instruc-
tions are different, the power consumption of a trapdoor command would be
different from those of other commands. Figure 8 shows the power consumption
of commands which return the status word '6D00’ with a enforced delay, and
Figure 9 shows the power consumption of a trapdoor.

In Step 5 of Algorithm 1, P1 and P2 are checked whether they comply with the
specifications or not, respectively. Generally P1 is checked first and P2 second.
For example, that the P1-P2 trapdoor command operates as a trapdoor only
when P1 = 0x37 and P2 = 0xBF. Matching P1 causes a small difference of
the processing time because matching P1 enables P2 to be compared. To search
the matching P1, the same method for detecting the INS trapdoor command
is applied. After the full search of P1, P2 could be searched by the same way.
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Fig. 8. Power consumption of commands which return the status word ’6D00’ with a
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Figures 10 and 11 show the processing time of the P1-P2 trapdoor command
with matching P1 or not.

Detecting other trapdoor commands are the extension of detecting INS trap-
door commands or P1-P2 trapdoor commands.

Detecting Trapdoor Sequences

To implement a trapdoor sequence, the commands in a sequence have to save
the current state for the next command to execute. Suppose that a trapdoor
sequence is a sequence of the GET RESPONSE command, the PUT DATA
command, and the GET CHALLENGE command. The variable CUR_STATE in
RAM of a smart card is for the current state. If the GET RESPONSE command
is executed, the CUR_STATE will be set the GET RESPONSE state as defined
by S1. If the PUT DATA command is executed and the CUR_STATE is S1, the
CUR-STATE will be set the PUT DATA state as defined by S2. If the GET
CHALLENGE command is executed and the CUR_STATE is S2, a trapdoor
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Fig. 12. Power consumption of the PUT DATA command if the previous command is
not the GET RESPONSE command

will be executed and the CUR_STATE will be initialized to SO. Any other cases
make the CUR_STATE to SO.

With respect to the PUT DATA command, the CUR_STATE will be set the
next state if the previous command is the GET RESPONSE command, or it will
be initialized. This means that the power consumption difference exists. Figure
12 and 13 show the difference of the power consumption.

The number of commands in most electronic payment systems is 30, more
or less. The number of states is about 10 in one command. In other words, one
command may return one of about 10 status words. To find one chain, a minimum
of two command executions is needed. The full search time of a trapdoor sequence
is estimated only about 90 minutes assuming that the processing time of one
command is 30ms.
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6 Conclusion

In the real field, even though the COS developers often insert trapdoors for
economic reasons, the current analyzing methods for source code of the COS or
the functional test software for smart cards could not detect trapdoors efficiently.

In this paper, trapdoors are classified into steganographic commands, trap-
door commands, and trapdoor sequences, based on the idea that the number
of the smart card trapdoors are finite apart from general software because they
should follow the APDU format. They are implemented with various ways in the
special area of source code according to the basic COS structure.

Side channel attacks which are used to expose secret values of the crypto
algorithms in the smart card could be applied to detect trapdoors in the smart
card. The timing analysis is useful to detect trapdoor commands which are
representative trapdoors in the real smart cards. The power analysis could be
used to detect steganographic commands and trapdoor sequences which are more
difficult to detect than trapdoor commands. We explain that this idea is very
useful to detect trapdoors compared with the current methods.

Furthermore, they also provide the practical and inexpensive methods in the
real smart card world. We want this paper to be the start of detecting trapdoors
for real smart cards using a timing analysis and a power analysis.
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