
Passive Testing - A Constrained Invariant Checking
Approach

Behrouz Tork Ladani1, Baptiste Alcalde2 and Ana Cavalli2

1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran
ladani@eng.ui.ac.ir

2 Institute National des Telecommunications GET-INT, Evry, France
{ana.cavalli, baptiste.alcalde}@int-evry.fr

Abstract. Passive testing of a network protocol is the process of detecting
faults in the protocol implementation by passively observing its input/output
behaviors (execution trace) without interrupting the normal network operations.
In observing the trace, we can focus on the most expected relevant properties of
the protocol specification by defining some invariants on the specification and
checking them on the trace. While intuitive extraction of the invariants from the
protocol requirements with respect to the control portion of the protocol system
is relatively simple, taking the data portion into account is difficult. In this pa-
per we propose algorithms for checking the correctness of given invariants on
the specification and extracting the required constraints on the variables (data
portion). Once we generate the constraints for a given invariant, we can check if
the execution trace is confirmed by the specification with respect to the invari-
ant and its constraints. We show the applicability of the algorithm on a case
study: the simple connection protocol (SCP).

Keywords: passive testing, invariants, invariant checking, constraint solving, SCP

1 Introduction

Testing network protocol implementations, to assure that they work as their specifica-

tion, is of high importance. Instead of conventional active testing, there are proposi-

tions to use passive testing for network protocol systems which means observing the

input/output behavior of the implementation (i.e. execution trace) without interfering

its normal behavior ([1],[2]). The naive approach to passive testing is to record the

execution trace and try to find its faults by comparing it with the specification ([3],

[4], [5]). Other approaches try to extract the critical properties of the specification in

the form of some invariants and then try to observe them on the implementation ([6],

[7]).

2

Most of passive testing methods are focused on the control parts of the system under test

without considering the data parts, so it is sufficient for them to use finite state machines

(FSMs) as the specification method. To take the data part of the protocols into account,

extended finite state machines (EFSMs) are used to specify the system. EFSM uses pa-

rameterized input/output signals including variable parameters to encode data as well as

predicates and actions to control the firing of the transitions by manipulating the rele-

vant data. There are some methods proposed to perform passive testing using EFSM

([5], [8], [9]). These methods are based on exploring constraints of the variables and

comparing the whole specification with the implementation regarding the constraints in

a backward or forward manner (i.e. the naive approach).

In this paper we represent a method to perform passive testing based on the invariants

on the EFSM. In our approach, first we have to extract the invariants intuitively from

the protocol specification requirements regarding only the control portion of the pro-

tocols. After that, to take the data portion into account, we consider the invariant pa-

rameters as some variables. We present two algorithms for finding the corresponding

constraints over the variables of the invariants automatically. The algorithms use the

unification method [10] for checking the correctness of the given invariants over the

EFSM and finding the constraints over its variables. Having the invariants and their

corresponding constraints in hand, we can check the execution trace with the invari-

ants using pattern matching methods.

It should be noted that finding suitable control-driven invariants, especially with the

help of an expert is relatively simple; also there are some methods to extract a limited

set of invariants from an EFSM automatically [7]. We use the notion of invariant in-

troduced in [11] with little changes in the definitions to extract the control driven in-

variants intuitively.

The rest of the paper is organized as follows: in section 2 some preliminary concepts

needed in the rest of the paper are described. In section 3 the notion of forward and

backward invariants are described. In section 4, our algorithms for checking invari-

ants on a given EFSM and extracting corresponding constraints are presented. Section

5 reports some experiments of the algorithms on the Simple Connection Protocol

(SCP) to show the applicability of the method in detecting subtle errors in some given

traces of the protocol. In section 6 we conclude the paper.

2 Preliminaries

2.1 Extended Finite State Machine

We use Extended Finite State Machines (EFSMs) to specify the network protocols.

Definition 1. An Extended Finite State Machine (EFSM) M is a 6-tuple M=(S, I, O, x,

T, s0) where S is a finite set of states, I and O are the finite sets of input and output pa-

rametric symbols respectively, x is a vector denoting a finite set of variables, T is the

finite set of transitions, and s0 is the initial state.

Each transition t ∈ T is a tuple (s, s′, i, o, P, A) where s, s′ ∈ S are the initial and final

states of the transition respectively, i ∈ I, o ∈ O are the input and output symbols

(possibly with parameters) respectively, P is the predicate (a Boolean expression), and

A is the sequence of actions.

Definition 2. Let M=(S, I, O, x, T, s0) be an EFSM, the sequence i1/o1, … in/on is a

path in M if for any 1 ≤ j ≤ n , ij ∈ I , oj ∈ O, and there exist n transitions t1 … tn ∈ T

and n+1 states s,s1, …, sn-1,s′ ∈ S such that t1 = (s,s1,i1, o1), tn = (sn-1,s′,in, on) and for

any 1<j<n we have tj = (sj-1,sj,ij, oj).

2.2 Substitution and unification

Our algorithms use the unification method, so we borrow some definitions from the

context of logic programming.

Definition 3. A substitution θ is a set of bindings, each of the form V/T, such that V

is a distinct variable and T is a term. θ is called a renaming if it maps each variable to

a new fresh variable.

Applying a binding V/T to an expression E, replaces each free occurrence of V in E

by T. Applying a substitution θ on an expression E denoted by Eθ applies all the bind-

ings in θ to E simultaneously and independently.

Definition 4. Let θ = {V1/T1,...., Vm/Tm } and α = {U1/S1 ,...., Un/Sn } be substitutions.

The composition of θ and α, denoted by θoα is defined as:

θoα = {V1 / T1 α ,...., Vm / Tm α } U {Uk / Sk | Uk ∉ {V1 , … , Vm}}

4

Definition 5. A unifier of two simple expressions E and F is a substitution θ such that

Eθ = Fθ. If two simple expressions have a unifier, they are said to be unifiable; we also

say that E is unified with F by the unifier θ. A most general unifier, abbreviated as mgu,

of two simple expressions E and F is a unifier θ that is more general than any unifier of

E and F. As an example two expressions P(X,f(X)) and P(b,f(a)) are not unifiable, while

the most general unifier of the expressions P(X,f(a)) and P(b, f(Y)) is {X/b, Y/a}.

2.3 Normalizing action sequences

We need in our algorithms to track the changes in the variable values made by the action

sequences in each transition, so we define a special normal action sequence and present an

algorithm to normalize a given action sequence. In normalizing an action sequence of a

transition, a special renaming substitution is produced which we name the normalizer sub-

stitution of that action. The normalizer substitution is then used to propagate the changes

of the variable values in a transition to predicates and actions of the successive transitions.

Definition 6. Let x be the set of variables in an EFSM, also let A=(l1:=r1, … ln:=rn) be

an action sequence of size n in a transition in the EFSM, in which li∈x and ri is an ex-

pression for 1≤i≤n. Also suppose that Rk={V∈x |V is used in expressions r1,r2, … ,rk}

for 1≤k≤n. A is a normal action sequence if lj∉Rj for 1≤j≤ n.

The algorithm depicted in figure 1 change a given action sequence to a normalized one

and returns its corresponding normalizer substitution. The algorithm renames the new ap-

pearances of the variables whose values are changed in an action sequence. The normal-

izer substitution of the action is in fact the set of variable renaming substitutions per-

formed in the above process.

3 The notion of invariants

In this section we represent the notion of invariants on EFSM as introduced in [11] with little

changes in the definitions. An invariant represents a specific property (which should be al-

ways true) on an EFSM which is in fact a statement about causal relationships between in-

put/output pairs in the EFSM.

Fig. 1. Normalizing an action sequence

Regarding the way of expressing the temporal relationships of the input/outputs in an EFSM,

two types of invariants are introduced. We call them forward and backward invariants. Note

that to define the invariants we only consider the control parts of the protocol so we do not

speak about the values of the variables in input or output parameters. In the next section we

represent algorithms to find corresponding constraints on the variables of a given invariant

that makes it correct on the EFSM.

3.1 Forward invariants

A forward invariant is used to express properties in the EFSM such as “each time the im-

plementation performs a specific execution trace like i1/o1, …, in-1/on-1 , in , the next ob-

served output belongs to a specific set of output symbols”. Based on this definition, we

can assume that a forward invariant contains three elements: A preamble I/O sequence, a

preamble input and a test output set. Intuitively a forward invariant is correct if for all

paths in the EFSM matching with the preamble I/O sequence, and followed by an I/O pair

containing an input equal to the preamble input, then the corresponding output essentially

belongs to the test output set.

Definition 7. Let M=(S, I, O, x, Tr, sin) be an EFSM. We say that the F(PIO, PI,

TOS) is a forward invariant for M if the following conditions are respected :

INPUT: An action sequence A=(l1 := r1, … ln := rn) in the EFSM
 M= M=(S, I, O, x, Tr, sin)

OUTPUT: A normalizer substitution θ
SIDE EFFECT: Action sequence A is changed to a normal one
Begin

θ := ∅;
for i:=1 to n do begin

 R := { V∈ x | V is used in expressions r1, … , ri }
if li ∈ R then begin

l′i := new V; /* a new variable name */
θ := θ ∪ { li/ l′i};
 li := l′i;
for j :=i+1 to n do begin

lj := lj θ; rj := rj θ;
end;

 end;
 end;
End;

6

1. PIO is the preamble I/O sequence which is defined according to the following
EBNF:

PIO ::= a/z, PIO | *,PIO | ε
In which a ∈ I ∪ {?}, z ∈ O ∪ {?}and ε is the null sequence.

2. PI ∈ I is the preamble input and TOS ⊆ O is the test output set.
3. Each time that the sequence PIO is matched with any path in the EFSM, and it is

followed by any transition with input PI, then we get essentially an output belonging
to TOS.

Note that we deal with the wildcard ? as the standard one in pattern matching, while

modify the usual meaning of the symbol *. The symbol * replaces any sequence of

input/outputs not containing any pair with input equal to PI.

3.2 Backward invariants

Using a backward invariant we can express more subtle properties such as “each time

a specific output is produced by the implementation, then we must have that a specific

trace had been produced before”. So a backward invariant contains three elements: A

preamble output set, a test input and a test I/O sequence. Intuitively a backward in-

variant is correct if any transition in the EFSM in which its output symbol belongs to

the preamble output set, have an input equal to test input and essentially preceded by

a path matching with the test I/O sequence.

Definition 8. Let M=(S, I, O, x, Tr, sin) be an EFSM. We say that the B(TIO, TI,

POS) is a backward invariant for M if the following conditions are respected :

1. TIO is the test I/O sequence which is defined according to the following EBNF:
TIO ::= a/z, TIO | *,TIO | ε

in which a ∈ I ∪ {?}, z ∈ O ∪ {?} and ε is the null sequence.

2. TI ∈ I ∪ {?} is the test input and POS ⊆ O is the test output set.
3. All transitions of M with an output symbol belonging to POS must essentially have

an input symbol equal to TI and proceed by a path matching with TIO.

Let us remark that, in contrast with forward invariants (for the case of preamble input sym-

bol), we do not force the test input symbol here to be an input action (it can be also the wild-

card character “?”). Furthermore, our matching method is modified such that the symbol *

replaces any sequence of input/outputs not containing any pair with input equal to TI.

4 Extracting invariant constraints

To use an invariant for passive testing, it is needed to assure at first about the correctness

of the invariant on the specification. While checking invariants on a FSM simply returns a

Boolean value showing the correctness or fail of the invariant, checking an invariant on an

EFSM either returns simply a false Boolean value showing that the invariant is incorrect

on the EFSM or returns a set of constraints on the variables of the invariant showing

that the correctness of the invariant depends on the set of constraints. For passively

testing the implementation, it is sufficient to match the execution trace with the in-

variant while its constraints regarding the value of the variables in the trace don’t con-

flict. In this section we represent algorithms for checking forward and backward in-

variants on an EFSM and extracting their corresponding constraint set. The constraint

extraction process is done once and off-line.

4.1 Forward invariant constraints

To check a given forward invariant on an EFSM, first we have to find the paths in the

EFSM which are unifiable with the preamble part of the invariant. After that we should

check if the invariant test set is reachable using all the unified paths or not, and if it is

reachable, then what is the constraint set to make it true. The constraint set is in fact

constructed during the unification of the preamble part with the paths in the EFSM.

Definition 9. Let ρ = i1/o1,…,in/on be an input sequence of size n and M=(S, I, O, x, Tr,

sin) be an EFSM, we define Un as the set of forward matchers of ρ containing quadru-

ples (s,θ,C,δ) in which s is a state belongs to S, θ and δ are substitutions and C is a set of

constraints (conjoined predicates) which is constructed inductively as follows:

− The initial forward matcher set is equal to U0=S×{∅}×{∅}×{∅}
− If t=(s,s’,a,z,P,A)∈Tr is a transition in M, and Uj-1 contains a forward matcher quad-

ruple (s,θ,C,δ) such that (a/z)δ is unifiable with (i/o), then Uj contains quadruples
(s’,θ’,C’,δ’) in which θ’= θomgu((a/z)δ, (i/o)) , C’=C∪(P∧normalized (A))δ, and
δ’ is the normalizer of A.

Using the above definition we can describe our algorithm for checking the correctness

of a given forward invariant on an EFSM and extracting its necessary constraints.

8

Let F(PIO, PI, TOS) be a forward invariant in which PIO is of size n. Suppose that Un

is the forward matcher set of PIO. If Un is empty then the invariant is incorrect, else

we check that for any transition labeled by the input PI , we receive an output unifi-

able with one of the items in the TOS. If there is no possible transitions, then the in-

variant is incorrect, else for each forward matcher quadruple (s,θ,C,δ) in Un , if C is

empty then the invariant is true, else the invariant is true constraint to Cθ. The set of

constraints Cθ can be simplified using the existing constraint simplification algo-

rithms. The algorithm is depicted more formally and detailed in figure 2.

The algorithm deals with invariants containing the wildcard character *. Also we con-

sider that both i=? and o=? hold. We have used some auxiliary functions: head(I) re-

turns the first i/o couple of the sequence I and tail(I) removes the first i/o couple from I.

the Boolean function path(s, s’, i) returns true if there exist a path a1/z1, … ar/zr from s to s’

and for any 1 ≤ j ≤ r we have aj ≠ i. Also the function simplified(C) returns the simplified ver-

sion of the constraint set C. In fact this function solves the constraints such that the most con-

straining predicates on a single variable are remained. We don’t enter in the details of this

function. There are some well known methods to do this in the literature [12].

4.2 Backward invariant constraints

To check a given backward invariant on an EFSM, first we have to find the set of

transitions in the EFSM which have outputs unifiable with elements of the preamble

output set in the invariant. After that, we should check whether the paths in the EFSM

which are ended by the discussed outputs are unifiable with the test input and test I/O

sequence in the invariant or not. And, if they are unifiable, what are the constraints on

the variables of the invariant. The constraint set is in fact constructed during the unifi-

cation of the test I/O sequence with the paths in the EFSM. We traverse the paths in

the EFSM in a backward fashion to do the unification and extract the constraints.

Definition 10. Let ρ = i1/o1,…,in/on be an input sequence of size n and M=(S, I, O, x, Tr,

sin) be an EFSM, we define V0 as the set of backward matchers of ρ containing quadru-

ples (s,θ,C,δ) in which s is a state belongs to S, θ and δ are substitutions and C is a set of

constraints (conjoined predicates) which is constructed inductively as follows:

Fig. 2. Algorithm for checking forward invariants and finding its corresponding constraints

− The initial backward matcher set is equal to Vn=S×{∅}×{∅}×{∅}
− If t=(s, s’, a, z, P, A)∈Tr is a transition in M, and Vj+1 contains a backward matcher

quadruple q=(s’,θ,C,δ) such that (a/z)δ is unifiable with (ij/oj), then Vj contains
quadruples q’=(s,θ’,C’,δ’) in which θ’= θomgu((a/z)δ, (ij/oj)), δ’ is the normalizer
of A and C’ = Cδ' ∪ (P ∧ normalized (A)). Delete the quadruple q from Vj+1.

Input: M=(S, I, O, x, Tr, sin), I=F(PIO,PI,OTS)
Output: true/false or a set of constraints. Satisfaction of each constraint is sufficient to sat-
isfy the invariant.

Begin

 /* PIO Matching: Finding the paths in the EFSM which are unifiable with the PIO */
 I' :=PIO; U :=S ×{∅}×{∅}×{∅};

while I'≠ ε and U≠∅ do begin
first = head(I'); I'=tail(I');
if first ≠ * then begin /* first = i/o */

 T:=Tr; U':= ∅;
while T≠ ∅ do begin

 choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};

if (s,θ,C,δ) ∈ U and unifiable((a/z)δ , i/o) then begin
θ’:=θomgu((a/z)δ, i/o); C’:=C ∪ (P∧ normalized(A))δ;
δ’:=normalizer(A); U' := U'∪ {(s’,θ’, C’,δ’)};

end
end

 U=U’;
end
else begin /* first= * */
 while head(I')=* do I':=tail(I');
 first:= head(I'); /* first=i/o */
 U := { (s,θ,C,δ)) | s∈ S, ∃ (s,θ,C,δ) ∈ U, p=path(s',s,i) };
end

end

 /* TOS checking: Checking if TOS is reachable using the unified path or not and if so
 what is its constraints*/
 if U=∅ then return(false);
 else begin

tf := false; T:= Tr; CS:= ∅ ;
while T≠ ∅ do begin
 choose t∈ T; T := T-{t}; /* t=(s,s',a,z) */

if (s,θ,C,δ) ∈ U and unifiable(aδ, in) then begin
θ’ := θomgu(aδ, in);
if O o∈ O • (zδ)θ’ = oθ’ then return(false);
tf:=true; CS :=CS ∪ simplified(C ∪ (P∧ normalized(A))δ);

end
end

end
if not tf then return false;
if CS = ∅ then return true else return (CS);

End

10

Using the above definition we can describe our algorithm for checking the correctness

of a given backward invariant on an EFSM and extracting its necessary constraints.

Let B(TIO, TI, POS) be a backward invariant. For all elements om∈POS (1≤m≤ |POS|

in which |POS| is the cardinality of POS) we concatenate the pair TI/om to the TIO to

generate a set of input/output sequences like ρm = "TIO, TI/om". Let the size of ρm be

n. For each ρm (1≤ m ≤ |POS|) we try to find its backward matcher set. If after con-

structing Vj (0< j ≤ n) in each iteration, Vj is empty or Vj+1 is not empty, then the in-

variant is incorrect, else for each quadruple of the V0, if C is empty, then the invariant

is true without any condition, else the invariant is true constraint to simplified Cθ. The

algorithm is depicted more formally and detailed in figure 3. Auxiliary functions used

are the same as described for the forward invariant checking algorithm.

5 An example: SCP protocol

In this section we present the processing of the method we discussed in this paper for

passively testing an implementation of the Simple Connection Protocol (SCP) to show

the applicability of the method. SCP has the advantage of including most difficulties

of passive testing in a protocol specification, and then is able to figure out the appli-

cability of the algorithm on bigger protocols.

5.1 The Simple Connection Protocol

SCP allows us to connect an entity called upper layer to an entity called lower layer.

The upper layer performs a dialogue with SCP to fix the quality of service desirable

for the future connection. Once the negotiation is finished, SCP dialogues with the

lower layer to ask for the establishment of a connection satisfying the previously ne-

gotiated quality of service. The lower layer accepts or refuses this connection request.

If it accepts the connection, SCP informs the upper layer that connection was estab-

lished and the upper layer can start to transit data towards the lower layer via SCP.

Once the transmission of the data finished, the upper layer sends a message to close

the connection. On the other hand, if the lower layer refuses the connection, the sys-

tem allows SCP to make three requests before informing the upper layer that the con-

nection attempts all failed. If the upper layer wishes again to be connected to the

lower layer, it is necessary to restart the QoS negotiation with SCP from beginning.

Figure 4 shows the interactions of the SCP with its upper and lower layers.

Fig. 3. Algorithm for checking backward invariants and finding its corresponding constraints

Input: M=(S, I, O, x, Tr, sin), I=B(TIO,TI,POS)
Output: true/false or a set of constraints. Satisfaction of each constraint is sufficient to
 satisfy the invariant.
Begin
 /* POS Matching: Finding states in the EFSM which are unifiable with elements of the POS */
 T :=Tr; V :=S ×{∅}×{∅}×{∅}; error:=false;

while T≠ ∅ and not error do begin
 choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};
if ∃ o∈POS • unifiable((a/z)δ , (TI/o)) then begin

θ:=mgu(a/z, PI/o); δ:=normalizer(A);
C:=P∧ normalized(A); V := V∪ {(s,θ, C,δ)};

end else error :=true;
end;

 if V=∅ then error :=true;

 /* TIO matching: Checking if the TIO is matched with all paths ending to the states found in
 previous step or not and if so what is the constraint set */
 I’ := reverse(TIO);
 while not empty(I’) and not error do begin

V’ := ∅; first :=head(I’); I’:=tail(I’);
if first ≠ * then begin /* first = i/o */

 T:=Tr;
while T ≠ ∅ do begin

choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};

if (s’,θ,C,δ) ∈ V and unifiable((a/z)δ , i/o) then begin
θ’:=θomgu((a/z)δ, (i/o)); δ’:=normalizer(A);

 C’:=Cδ’ ∪ (P∧ normalized(A)); V' := V'∪ {(s,θ’, C’,δ’)};
 V=V-{(s’,θ,C,δ)};
 end else error := True;

end
end else begin /* first =* */

 while head(I') = * do I' := tail'(I'); /* skip a seq. of *'s */
first := head(I'); /* first = i/o */
V’:={ (s,θ,C,δ) | s∈S, ∀ (s’,θ,C,δ)∈ V • path(s, s', o)};

end
if V≠ ∅ then error:= true else V:= V’;

end;
if error then return (false);

 CS:= ∅;
while V ≠ ∅ do begin

choose v∈ V; /* v= (s,θ,C,δ) */
 V:=V-{v}; CS:= CS ∪ simplify(C);
 end;
 if CS=∅ then return(true) else return(CS);
End;

12

5.2 Defining invariants

Let consider the EFSM specification of the Simple Connection Protocol depicted in

figure 5. We suppose that the values of TryCount, ReqQos, FinQos, CONreq.qos, and

accept.qos are defined in the interval [0;3]. Suppose that we want to passively test an

implementation of the SCP regarding the following properties of the specification

which are described using the invariants:

• I1 = B (< refuse/connect(x) > , (refuse) , { CONcnf(-) }), means that SCP fail
to connect the two layers (CONcnf(-)) only if the lower layer refused the con-
nection twice before (refuse/connect(x), refuse/).

• I2 = F (< CONreq(x)/connect(y) > , (accept(w)) , { CONcnf(+,z) }) , means
that if SCP accepts to connect with the upper layer at his requested QoS (CON-
req(x)/connect(y)) and the lower layer accept it at a given QoS, then a connec-
tion must be realized between the two layers.

• I3 = F (<> , (accept(x)) , { CONcnf(+,y) }) , means that if the lower layer accept
the connection (accept(x)), this connection must be realized (CONcnf(+,y)).

• I4 = B (<> , (accept(x)) , { CONcnf(+,y) }) , means that a connection is real-
ized (CONcnf(+,x)), only if the lower layer accepted it before (accept(y)).

Note that I1 and I4 are forward invariants while I2 and I3 are backward invariants. In defini-

tion of the above invariants we have used a control driven approach i.e. in this stage, pa-

rameters of the signals are not important so we have used some variables instead of them.

5.3 Finding invariant constraints

Now, we apply our method on the invariants to find their corresponding constraints. Table 1

shows the trace of the algorithms. For each forward (backward) invariant, the value of the in-

termediate forward (backward) matcher set i.e. U (i.e. V) and the ultimate constraint sets CS

over the variables of the invariants have been shown. (See the algorithms in figures 2 and 3).

Fig. 4. Interactions of the SCP with its upper and lower layers

Upper layer

Simple Connection Protocol

Lower Layer

abort

ResetDataCONcnf(+,FinQos)
or CONcnf(-)

NONsupport(ReqQos)CONreq(qos)

data(FinQos)accept(qos)
or refuse

connect(ReqQos)

Fig. 5. EFSM specification of SCP

Applying the algorithms reveal that all the invariants are correct regarding the control part of

the specification, but regarding the data part of the specification the invariants are true condition

to some constraints which have been produced by the algorithms. For invariant I1, there is no

constraint over the variable of the invariant, so it should be matched by execution traces with

any value for the variable x. For the other invariants, only such execution traces are matched

with the invariants that the value of their input/output parameters does not cause any conflict

with the corresponding constraints of the intended invariant.

5.4 Passive testing using the constrained invariants

Now suppose that the following execution traces are generated by a faulty implemen-

tation of the SCP:

• Trace1 = CONreq(1) / connect(1) , refuse / CONcnf(-)
• Trace2 = CONreq(1) / connect(0) , accept(1) / CONcnf(+, 0).

S1

S2

S3

S4

TryCount := 0
ReqQos := 0
FinQos := 0

I/O : CONreq(qos) / NONsupport(ReqQos)
P: CONreq.qos >1
A: ReqQos := CONreq.qos

I/O : CONreq(qos) / connect(ReqQos)
P: CONreq.qos <=1
A: ReqQos := CONreq.qos

I/O : refuse / connect(ReqQos)
P: TryCount != 2
A: TryCount := TryCount + 1

I/O : accept(qos) / CONcnf (+, FinQos)
P: -
A: FinQos := min(accept.qos, ReqQos)

I/O : Data / data (FinQos)
P: -
A: -

I/O : refuse/CONcnf(-)
P: TryCount = 2
A: -

I/O : Reset/abort
P: -
A: -

14

Table 1. Using algorithms to extract required constraints for the example invariants

Invariant U1(or V1) U2 (orV2) Constraint set
(CS)

I1

(Back-
ward)

V1 = { (s3, θ1, C1, δ1) }
θ1 = ∅
C1 = { TryCount = 2 }
δ1 = ∅

V2 = { (s3, θ2, C2, δ2) }
θ2 = { ReqQos/x }
δ2 = { TryCount/y }
C2=C1δ2∪
{TryCount!=2,y=TryCount +1}=
{y=2,TryCount!=2,y=TryCount +1}
 = { TryCount =1}

CS_I1= C2θ2=
{TryCount=2}

I2

(For-
ward)

U1 = { (s3, θ1, C1, δ1) }
θ1 = { CONreq.qos/x, ReqQos/y }
C1 = { CONreq.qos <=1,
 ReqQos = CONreq.qos }
δ1 = ∅

U2 = { (s4, θ2, C2, δ2) }
θ2=θ1o{accept.qos/w, FinQos/z }

={CONreq.qos/x, ReqQos/y,
 accept.qos/w, FinQos/z }
C2=C1∪{CONreq.qos=
 min(accept.qos, ReqQos) }δ1
 ={CONreq.qos <=1,
 ReqQos=CONreq.qos,
 FinQos=min(accept.qos,

ReqQos)}
δ2 = ∅

CS_I2=C2θ2=
{x<=1, y=x,
 z=min(w, y)}

I3

(For-
ward)

U1 = { (s3, θ1, C1, δ1) }
θ1 = { accept.qos/x, FinQos/y }
C1 = { y=min(x, ReqQos) }
δ1 = ∅

CS_I3=C1θ1=
{y=min(x, Re-
qQos)}

I4

(Back-
ward)

V1 = { (s4, θ1, C1, δ1) }
θ1 = { accept.qos/x, FinQos/y }
C1 = { y=min(x, ReqQos) }
δ1 = ∅

CS_I4=C1θ1=
{y=min(x, Re-
qQos)}

We know that a transition error has occurred in the first trace because the specifica-

tion forces two loops on state s3 before eventual transition to s1, corresponding to the

three requests SCP must do before failing the connection. In this trace, the connection

is said to be failed on first try. For the second trace, there is an output error because

the first I/O couple should be CONreq(1)/connect(1). We can imagine that the trace

comes from an implementation in which the action on the transition from s2 to s3 is

ReqQos:=CONreq.qos –1 and then such a trace is produced. This error has for conse-

quence to connect the upper and lower layers with a QoS equals to 0 when it could be

(normally) equal to 1.

Tables 2 and 3 show the invariants used in the checking of the first and the second

trace respectively. We try to identify the constraints with the values of the variables

extracted from the traces:

• Trace1: Since the analysis found CONcnf(-) in the trace and failed looking for
the couple refuse/connect(x), then the trace is erroneous regarding the invariant

I1. Note that the found error is control driven, so it is not needed to look at the
constraints at all.

• Trace2: There are three invariants which are candidate for this trace. Matching
the trace with the invariants shows that there is not any control driven error, so
we use constraints and the value of the variables in the trace to decide about the
possibility of data driven errors:

CS-I2 ∪ {x=1, y=0, w=1, z=0}={x<=1, y=x, z=min(w, y)} ∪ { x=1, y=0, w=1, z=0 }

= { 1=<1, 0=1, 0=min(1, 0) }

1=<1 is true, 0=1 is false and 0=min(1, 0) is true, so the invariant I2 is false on Trace2.

CS-I3 ∪ {x=1, y=0}={y=min(x, ReqQos)}∪{x=1, y=0} = { 0=min(1, ReqQos) }

0 is the minimum of 1 and ReqQos only if ReqQos is equal to 0, so the invariant I3 is

true on the trace Trace2 if ReqQos=0.

CS-I4 ∪{x=1, y=0}={y=min(x, ReqQos)} ∪ { x=1, y=0 } = { 0=min(1, ReqQos) }

0 is the minimum of 1 and ReqQos only if ReqQos is equal to 0 so the invariant I4 is

true on the trace Trace2 if ReqQos=0.

As we found an inconsistency in the checking of the invariant I2 with the trace Trace2

we conclude that the trace T2 is false. Checking the other invariants on the trace is not

necessary but figure here as an example of variable simplification.

Table 2. Using invariant I1 to check the execution trace Trace1

 Trace1 CONreq(1) connect(1) Refuse CONcnf(-)

I1 Refuse connect(x) Refuse CONcnf(-)

Table 3. Using invariants I2, I3 and I4 to check the execution trace Trace2

Trace2 CONreq(1) connect(0) Accept(1) CONcnf(+,0)

I2 CONreq(x) connect(y) Accept(w) CONcnf(+,z)

I3 Accept(x) CONcnf(+,y)

I4 Accept(x) CONcnf(+,y)

6 Conclusions

Passive testing methods for network protocols can be classified into naïve and invari-

ant based approaches. In the naïve approach the implementation trace which is re-

16

corded during the execution of the protocol under test is compared with total of the

specification in a forward or backward manner. This is where, in the invariant based

approach only critical properties of the specification (i.e. invariants) which are ex-

tracted by an expert are compared with the implementation trace. By using invariant

based approach, not only a lot of extra processing is reduced, but also we can focus on

the critical properties of the program under test.

Passive testing methods can be compared from another aspect. Some methods are lim-

ited to testing only control driven aspects of the implementation, i.e. the order of oc-

currences of the input/output signals, while other methods are capable of testing both

control driven and data driven aspects of the implementation i.e. the values of the sig-

nal's parameters. For testing control driven aspects it is sufficient to use FSM for

specification, while for data driven aspects it is needed to use EFSM.

In this paper we presented a new method for passive testing of both control driven and

data driven aspects of the network protocols using an invariant based approach. The

intended properties of the specification are expressed using some control driven in-

variants given by an expert. After that, using the given algorithms, the invariants are

checked on the specification off-line. Also to take the data driven aspects into ac-

count, for the correct invariants, some constraints over the variables of the invariants

are extracted. For passively testing the implementation traces, it is sufficient to com-

pare, on-line, the trace with the invariants regarding the constraints using pattern

matching. A trace is correct while it is matched with the invariant and the invariant's

constraints are not conflicting regarding the values of the signal's parameters.

To show the applicability of the presented method, passive testing of the Simple Con-

nection Protocol (SCP) using the presented method was illustrated.

References
1. R. Lai, “A survey of communication protocol testing”, Journal of Systems and Software

62(1): 21-46 (2002).
2. D. Lee, and M. Yannakakis, “Principles and methods of testing finite state machines---A

survey”, Proc. IEEE 84, 8, (1996), 1089--1123.
3. D. Lee, A. N. Netravali, K. Sabnani, B. Sugla, A. John, “Passive testing and applications

to network management”, IEEE International Conference on Network protocols,
ICNP’97, pages 113-122. IEEE Computer Society Press, 1997

4. R. E. Miller and K. A. Arisha, "On Fault Location in Networks by Passive Testing",
IPCCC 2000, Pheonix, AZ, Feb. 2000.

5. M. Tabourier and A. Cavalli, “Passive Testing and application to the GSM-MAP
Protocol”, in Journal of Information and Software Technology 41(11) (15 Sept. 1999),
Pages 813-821, Elsevier, 1999.

6. J. A. Arnedo, A. Cavalli and M. Nunez, “Fast Testing of Critical Properties through
Passive Testing”, LNCS, vol. 2644/2003, Pages 295-310, Springer, 2003.

7. A. Cavalli, C. Gervy and S. Prokopenko, “New Approaches for Passive Testing Using an
Extended Finite State Machine Specification”, in Journal of Information and Software
Technology, 45:837-852, Elsevier, 2003.

8. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, "A Formal Approach for
Passive Testing of Protocol Data Portions", Proc. ICNP'2002.

9. B. Alcalde, A. Cavalli, D. Khuu, D. Chen, D. Lee, “Network Protocol System Passive
Testing for Fault Management - a Backward Checking Approach”, in the Proceedings of
the 24th IFIP WG 6.1, International Conference on Formal Techniques for Networked
and Distributed Systems, FORTE 2004, 27-30 September, 2004, Madrid, Spain.

10. F. Baader, W. Snyder, “Unification Theory, Handbook of Automated Reasoning”, Alan
Robinson, Andrei Voronkov, eds., Vol. 1, Chapter 8, 446–533.

11. E.Bayse, A. Cavalli, M. Nunez and F. Zaidi, “A Passive Testing Approach based on
Invariants: Application to the WAP”, To be published in journal of Computer Network,
2004.

12. K. Marriott and P. J. Stuckey, “Programming with Constraints: An Introduction”, Book,
The MIT Press, 1998.

