
An Expressive and Implementable Formal
Framework for Testing Real-Time Systems?

Moez Krichen and Stavros Tripakis

Verimag
Centre Equation, 2, avenue de Vignate, 38610 Gières, France

krichen@imag.fr, tripakis@imag.fr

Abstract. We propose a new framework for black-box conformance
testing of real-time systems, based on the model of timed automata. The
framework is expressive: it can fully handle partially-observable, non-
deterministic timed automata. It also allows the user to define, through
appropriate modeling, assumptions on the environment of the system
under test (SUT) as well as on the interface between the tester and
the SUT. The framework is implementable: tests can be implemented as
finite-state machines accessing a finite-precision digital clock. We pro-
pose, for this framework, a set of test-generation algorithms with respect
to different coverage criteria. We have implemented these algorithms in
a prototype tool called TTG. Experimental results obtained by apply-
ing TTG on the Bounded Retransmission Protocol show that only a
few tests suffice to cover thousands of reachable symbolic states in the
specification.

1 Introduction

Our work targets black-box conformance testing for real-time systems. By “black
box” we mean that the tester has no knowledge nor access in the internals of
the system under test (SUT), thus, can only rely on its observable input/output
behavior. We follow a formal, model-based testing approach, in the sense that we
assume a formal specification is available and conformance is also defined in a
formal way.

Real-time systems operate in an environment with strict timing constraints.
Examples of such systems are many: embedded systems (e.g., automotive, avionic
and robotic controllers, mobile phones), communication protocols, multimedia
systems, and so on. When testing real-time systems, one must pay attention
to two important facts. First, it is not sufficient to check whether the system
under test (SUT) produces the correct outputs; it must also be checked that the
timing of the outputs is correct. Second, the timing of the inputs determines
which outputs will be produced as well as the timing of these outputs.

Many formal testing frameworks use models such as (extended) Mealy ma-
chines (e.g., see [11, 14, 16]) or labeled transition systems (e.g., see [18, 8, 13]).
? Work partially supported by CNRS STIC project “CORTOS” and by IST Network

of Excellence “ARTIST2”.

These models are not well-suited for real-time systems. In Mealy machines, in-
puts and outputs are synchronous, which is a reasonable assumption when mod-
eling synchronous hardware, but not when outputs are produced with variable
delays, governed by complex timing constraints. In labeled transition systems
(LTSs) inputs and outputs are asynchronous. However, there is no explicit mod-
eling of time. In some cases [18], the notion of quiescence is used: timeouts are
modeled by special δ actions which can be interpreted as “no output will be
observed”. This is problematic, because timeouts need to be instantiated with
concrete values upon testing (e.g., “if nothing happens for 10 seconds, output
FAIL”). However, there is no systematic way to derive the timeout values (in-
deed, durations are not expressed in the specification). Thus, one must rely on
empirical, ad-hoc methods.

We advocate an explicit specification of timing assumptions and requirements
for testing real-time systems. For this, we need a specification model which
explicitly talks about time. We opt for the model of timed automata (TA) [1].
TA have been established during the past decade as a suitable model for real-
time systems. With respect to existing testing methods based on TA (see [12]
and references therein) our framework presents two major contributions.

First, the framework is expressive: it can handle the full class of partially-
observable, non-deterministic TA. In existing works, only subclasses of the TA
model are considered. For example, [17, 9] consider TA with “isolated” and “ur-
gent” outputs, which means that for each input sequence there is a unique output
emitted at a precise point in time. A simple specification such as “when input
a is received, output b must be emitted within at most 10 time units” cannot be
expressed in this model. Other works use event-recording automata [15] or TA
with restricted clock resets [10] or guards [5].

Second, our framework is implementable: the tests we generate can be ex-
ecuted by an automatic tester which uses a digital clock of finite precision. In
most existing works the tester is implicitly assumed to have access to an infinite-
precision clock, allowing, for instance, to distinguish between an event observed
at time 1 or at time 1+ε, for ε arbitrarily close to 0. An exception is the work [5]
where a digitization of the TA semantics is used to model the tester clock. Our
approach is more general in the sense that the digital-clock model is not “hard-
wired” in the test generation algorithm. Rather, it is provided explicitly by the
user as a Tick automaton (see Section 2). Tick automata can model not only
fixed-step digitization but also skewed or diverging clocks, or any other sam-
pling and interfacing mechanism the tester might use to observe and control the
SUT.

In this paper we describe our framework from a methodological point of
view (Section 2). We give special emphasis on modeling expressiveness and show
through examples that the framework is rich enough to capture assumptions on
the environment of the SUT, event-based or variable-based interfaces between
the SUT and the tester, delays introduced by such interfaces, digital-clock sam-
pling, and so on. Such explicit modeling is important for two reasons. First, it
provides the user of the framework with full control on the assumptions made

on the testing infrastructure and how these affect the generated tests. Second,
it avoids the need for special algorithms (e.g., digitization [5]) in order to treat
the above features: the latter simply become part of an extended specification
model. Indeed, our test generation method uses standard symbolic reachability
techniques available in most TA model-checking tools. Also note that symbolic
reachability techniques scale much better than testing techniques based on the
region graph [7, 17].

The framework is accompanied by a prototype tool called TTG (Timed Test
Generator), built on top of the IF tool-suite [3]. To control the explosion of
the potential number of tests, we have implemented in TTG a set of test selec-
tion techniques, among which a set of test generation algorithms with respect
to various coverage criteria, such as state, location, action or selected-variable
coverage. To illustrate the practical interest of our approach, we have used TTG
to generate tests for the well-known Bounded Retransmission Protocol (BRP).
The results are described in Section 3 and show that a few tests suffice to cover
thousands of reachable symbolic states.

2 The testing framework

In this section we present the essential features of our testing framework. For
more details, the reader is referred to [12]. We also illustrate some methodologi-
cal aspects of our framework, especially modeling issues regarding environment
assumptions and interface conditions between the tester and the SUT.

The model: timed automata with inputs, outputs and unobservable
actions To model the specification, we use timed automata (TA) [1]. As the
TA model is well-known, we only give a brief overview here. We also present
a “pure” TA model without discrete variables and omit discussion on how to
compose TA. In practice, these features are essential for ease and clarity of
modeling: they are indeed part of our tool, see Section 3.

Let R be the set of non-negative reals. Given a set of actions Σ, the set
(Σ∪R)∗ of all finite real-time sequences overΣ will be denoted RT(Σ). ε ∈ RT(Σ)
is the empty sequence. Given Σ′ ⊆ Σ and ρ ∈ RT(Σ), ΠΣ′(ρ) denotes the
projection of ρ to Σ′, obtained by “erasing” from ρ all actions not in Σ′. For
example, if Σ = {a, b}, Σ′ = {a} and ρ = a 1 b 2 a 3, then ΠΣ′(ρ) = a 3 a 3. The
time spent in a sequence ρ, denoted time(ρ) is the sum of all delays in ρ, for
example, time(ε) = 0 and time(a 1 b 0.5) = 1.5.

A timed automaton over Σ is a tuple (Q, q0, X,Σ,E) where Q is a set of
locations; q0 ∈ Q is the initial location;X is a set of clocks; E is a set of edges. Each
edge is a tuple (q, q′, ψ, r , d , a), where q, q′ ∈ Q are the source and destination
locations; ψ is the guard, a conjunction of constraints of the form x#c, where
x ∈ X, c is an integer constant and # ∈ {<,≤,=,≥, >}; r ⊆ X is the set
of clocks to be reset; d ∈ {lazy, delayable, eager} is the deadline (lazy deadlines
impose no urgency, delayable means that once enabled the transition must be
taken before it becomes disabled and eager means the transition must be taken

as soon as it becomes enabled); and a ∈ Σ is the action. We will not allow eager
edges with guards of the form x > c.

A TA A defines a labeled transition system (LTS). Its states are pairs s =
(q, v), where q ∈ Q and v : X → R is a clock valuation. 0 is the valuation
assigning 0 to every clock of A. SA is the set of all states and sA

0 = (q0,0) is the
initial state. There are two types of transitions. Discrete transitions of the form
(q, v) a→ (q′, v′), where a ∈ Σ and there is an edge (q, q′, ψ, r , d , a), such that
v satisfies ψ and v′ is obtained by resetting to zero all clocks in r and leaving
the others unchanged. Timed transitions of the form (q, v) t→ (q, v + t), where
t ∈ R, t > 0 and there is no edge (q, q′′, ψ, r , d , a), such that: either d = delayable
and there exist 0 ≤ t1 < t2 ≤ t such that v+t1 |= ψ and v+t2 6|= ψ; or d = eager

and v |= ψ. We use notation such as s a→, s 6 a→, ..., to denote that there exists
s′ such that s a→ s′, there is no such s′, and so on. This notation naturally
extends to timed sequences. For example, s a1b→ s′ if there exist s1, s2 such that
s

a→ s1
1→ s2

b→ s′. A state s ∈ SA is reachable if there exists ρ ∈ RT(Σ) such
that sA

0
ρ→ s. The set of reachable states of A is denoted Reach(A).

In the rest of the paper, we assume given a set of actions Σ, partitioned in
two disjoint sets: a set of input actions Σin and a set of output actions Σout. We
also assume there is an unobservable action τ 6∈ Σ. Let Στ = Σ ∪ {τ}.

A timed automaton with inputs and outputs (TAIO) is a timed automaton
over Στ . A TAIO is called observable if none of its edges is labeled by τ . A
TAIO A is called input-complete if it can accept any input at any state: ∀s ∈
Reach(A) .∀a ∈ Σin . s

a→. It is called deterministic if ∀s, s′, s′′ ∈ Reach(A) .∀a ∈
Στ . s

a→ s′ ∧ s a→ s′′ ⇒ s′ = s′′. It is called non-blocking if ∀s ∈ Reach(A) .∀t ∈
R .∃ρ ∈ RT(Σout ∪ {τ}) . time(ρ) = t ∧ s ρ→. The non-blocking property states
that at any state, A can let time pass forever, even if it does not receive any
input. This is a sanity property which ensures that a TAIO does not “force” its
environment to provide an input by blocking time. The set of observable timed
traces of A is defined to be Traces(A) = {ΠΣ(ρ) | ρ ∈ RT(Στ) ∧ sA

0
ρ→}.

Specifications, implementations and conformance We assume that the
specification of the system to be tested is given as a non-blocking TAIO AS .
We assume that the SUT, also called implementation, can be modeled as a non-
blocking, input-complete TAIO AI . Notice that we do not assume that AI is
known, simply that it exists. The assumption of AS and AI being non-blocking
is natural, since in reality time cannot be blocked. The assumption of AI being
input-complete is also reasonable, since a system usually accepts all inputs at
any time, possibly ignoring them or issuing an error message when the input is
not valid. Notice that we do not assume, as is often done, that the specification
AS is input-complete. This is because AS needs to be able to model assumptions
on the environment, i.e., restrictions on the inputs, as we show below.

We also do not assume that AS is deterministic. In fact, AS may contain un-
observable actions. Partially-observable or non-deterministic models often arise
in practice. For instance, when specifications are built of many components (Fig-

ure 1), internal communication among these components is not observable to the
tester (in fact it may simply be an artifact of modeling). This is indeed true in
the case of the communication protocol we treat in Section 3. Non-determinism
may also result when abstractions are applied to the model in order to reduce
its size.

The timed input-output conformance re-

-
�

-

6

-

- -

-

Fig. 1. A specification with in-
ternal (unobservable) actions.

lation, denoted tioco, requires that after any
observable sequence specified in AS , every
possible observable output of AI (including
delays) is also a possible output of AS . tioco
is inspired from its “untimed” counterpart,
ioco [18]. The key idea is that time delays,
along with output actions, are considered to
be observable events. More precisely, define
A after σ as the set of all states of A that
can be reached by some timed sequence ρ
whose projection to observable actions is σ
and let out(S) be the set of all observable

events (output actions or delays) that can occur when the automaton is at some
state in S. Formally, A after σ = {s ∈ SA | ∃ρ ∈ RT(Στ) . sA

0
ρ→ s ∧ ΠΣ(ρ) = σ},

out(S) =
⋃

s∈S out(s), out(s) = {a ∈ Σout | s
a→} ∪ elapse(s) and elapse(s) =

{t > 0 | ∃ρ ∈ RT({τ}) . time(ρ) = t ∧ s ρ→}.
Then, AI conforms to AS , denoted AI tioco AS , if

∀σ ∈ Traces(AS) . out(AI after σ) ⊆ out(AS after σ). (1)

Figure 2 shows an example of a specification Spec1, which could be expressed
in English as follows: “after the first a received, the system must output b no
earlier than 2 and no later than 8 time units”.1 Thus, this specification requires
that the output b is not emitted neither too early nor too late. Implementa-
tions Impl1 and Impl2 conform to Spec1. Impl1 produces b exactly 5 time units
after reception of a. Impl2 produces b sometime in the interval [4, 5]. Implemen-
tations Impl3 and Impl4 do not conform to Spec1. Impl3 may produce a b after
1 time unit, which is too early. Impl4 fails to produce a b at all. Formally, let-
ting σ = a 1, we have out(σ(Impl3)) = (0, 4] ∪ {b} and out(σ(Impl4)) = (0,∞),
whereas out(σ(Spec1)) = (0, 7]. The last example shows that “doing nothing”
is not an option for the SUT, since doing nothing is equivalent to letting time
pass, resulting in a tester timeout when the deadline for producing an output is
reached. This example also illustrates how our framework handles timeouts in a
seamless way, without the need of modeling artifacts such as quiescence [18].

1 Unless otherwise mentioned, deadlines of output edges are delayable and deadlines of
input edges are lazy. In order not to overload the figures, we do not always draw input-
complete automata. We assume that implementations ignore the missing inputs (this
can be modeled by adding self-loop edges covering these inputs).

e
e

e
e
e

e
e
e

e
e
e

e
e
e

?

?

?

?

?

?

?

?

?

?

?

?

?

?

a?

Impl4

a? x := 0

b!

Impl1

a? x := 0

b!

Spec1

a? x := 0

b!

Impl2

a? x := 0

b!

Impl3

2 ≤ x ≤ 8 x = 5 4 ≤ x ≤ 5 1 ≤ x ≤ 5

Fig. 2. Examples of specification and implementations.

Modeling assumptions on the environment Often, the SUT is supposed
to operate correctly only in a particular environment, not in any environment.
This brings up the issue of how to incorporate assumptions on the environment
when building a model of specification. Figure 3 shows how this can be done. The
specification can be modeled compositionally, in two parts: one part modeling the
environment (assumptions) and another part the nominal behavior of the SUT in
this environment (requirements). In this case, the interactions between the two
components are not unobservable, but are exported as inputs and outputs of the
global specification. A simple example of such a situation is shown in Figure 3.
The specification expresses schedulability of an aperiodic task in a typical real-
time operating system: “assuming the minimal inter-arrival time of task A is
20 time units, the task must be executed within 10 time units”. Notice that
environment assumptions generally make the specification non-input-complete.
In the above example, the second arrive input cannot be accepted until at least
20 time units have elapsed since the first arrive.

requirements
(on the SUT)

assumptions
(on the environment)

?
- -6

e e
e e

- -

- - �

- -�

y := 0 y ≥ 20
y := 0

x := 0
arrive?

arrive? arrive?

finish!
x ≤ 10arrive? finish!

Fig. 3. Specification including assumptions on the environment: generic scheme (left)
and example of a task scheduler (right).

Modeling input/output variables The TA model we have presented uses the
notion of input/output actions, implying an event-based interface between the
tester and the SUT. In practice, many systems communicate with the external
world using input/output variables. We now show how to model such situations
in our framework.

There are basically two possibilities to specify real-time requirements related
to variables. One is to refer to variable updates and the other to refer to value
durations. The first can be modeled in our framework using an action for each
update. The second can be modeled using a “begin” action for the point in
time where a variable changes its value to the value that is of interest and an
“end” action for the moment where the variable changes to a different value.
For example, assume x is an input variable and y an output variable. Consider
the requirement “y will be updated at most 10 time units after x is updated”.
Notice that x is updated by the environment (or the tester) while y is updated
by the SUT. Thus, updatex can be introduced as an input action and updatey as
an output action. The specification can be modeled as a TA similar to the one
for Spec1 of Figure 2, with a replaced by updatex and b replaced by updatey.

This simplistic way of modeling supposes that updates are immediately per-
ceived (by the SUT or by the tester) when they occur. This is obviously not
always true. For instance, a sampling controller typically reads its inputs only
periodically (but may write the outputs as soon as they are ready). In this case,
it could be that the specification only requires that the output be produced at
most 10 time units after the input is sampled by the controller, not after it is up-
dated by the environment. This situation can also be modeled in our framework
by explicitly adding automata modeling the sampling (either at the SUT side,
or at the tester side, or both). In fact, we will add such an automaton, called
the Tick automaton in order to generate digital-clock tests (see below). The Tick
automaton models in some sense sampling at the tester side. A similar automa-
ton can be used to model sampling at the SUT side, with the difference that the
tick event would in this case be an input event. More elaborate interfaces (e.g.,
event handlers with buffering, and so on) can also be modeled, as long as they
can be expressed as (extended) timed automata.

Modeling interfacing delays As a last example of modeling methodology,
we show how to model interfacing delays between the tester and the SUT. This
can again be done by composing the specification with “delay automata”, as
shown in Figure 4. A simple input delay automaton is shown to the right of the
figure. Input action a is the original action whereas at is the output command of
the tester. This automaton models the assumption that the tester output may
experience a delay of at most 2 time units until it is perceived by the SUT.
Notice that this automaton does not allow a new input to be produced while
the previous one is still in “transit”. For this, a more complicated automaton is
necessary, which buffers input events. The point is that, as mentioned above, such
elaborate interfaces can all be modeled explicitly. Thus, the user has full control
on how the assumptions made on the tester equipment affect the generated tests.

e e- -
�

a?
z ≤ 2

z := 0
at?

6 ?

6 ?

specification

input
delay

output
delay

a? b!

at? bt! automaton
simple input-delay

Fig. 4. Specification composed with interface-delay automata.

Digital-clock test generation The conformance relation tioco is “ideal” in
the sense that it captures non-conformance of a SUT at an infinite-precision
time-measuring level. For instance, if the guard 1 ≤ x ≤ 5 of SUT Impl3 of
Figure 2 was replaced by 1.9 ≤ x ≤ 5 then Impl3 would still be non-conforming.
In fact, the same would be true if the guard was replaced by 2−ε ≤ x ≤ 5, for any
ε > 0. It is reasonable to define tioco in such an “ideal” way, since we do not want
conformance to depend on implementation details such as tester equipment. On
the other hand, the tester’s time-observation capabilities are limited in practice:
testers only dispose of a finite-precision digital clock (a counter) and cannot
distinguish among observations which elude their clock precision. Our framework
takes this limitation into account. First, we allow the user to explicitly model the
assumptions on the tester’s digital clock. Second, we generate tests with respect
to this model.

Note that generating digital-clock tests does not mean that we discretize
time: the specification still has a continuous-time semantics. It is the tester
which “samples” this semantics with a digital clock. Also note that the tests we
generate are both sound and precise with respect to tioco. Intuitively, soundness
means that if the tester announces “fail” then the SUT is indeed non-conforming
w.r.t. tioco. The test is precise in the sense that the tester announces “fail” as
soon as possible: as soon as the observations the tester disposes of permit to
conclude that the SUT is non-conforming, the tester will announce “fail”. It
may, however, be the case that the observations do not permit such a conclusion
to be made: this situation occurs, for instance, when a faulty behavior gives the
same digital-clock observation as a non-faulty behavior.

The tester’s digital clock is modeled as a Tick automaton, which is a special
TAIO with a single output action tick. Three possible Tick automata are shown
in Figure 5. The first models a perfectly periodic clock with period equal to 10
time units: in this case, the n-th tick occurs precisely at time 10n. The second
automaton models a clock with “skew”: in this case, the n-th tick may occur
anywhere in the interval [9n, 11n]. The third automaton models a clock with
“jitter”: in this case, the n-th tick may occur anywhere in the interval [10n −
1, 10n + 1]. Notice that this automaton contains unobservable transitions (the
ones with deadline eager).

?
6

?

Tick automaton.

tick!

Specification

ΣoutΣin

e-?x := 0
eager
x = 10

tick!

perfectly periodic Tick

ee e

e

-� -�
?

-?

eager
x = 10, x := 0

tick!
0 < x ≤ 1

Tick with jitter:
9 ≤ x ≤ 10

tick!

x = 10, x := 0
eager

x := 0
delayable
9 ≤ x ≤ 11

tick!

Tick with skew

Fig. 5. Extending the specification with a tester clock model and possible such models.

Once a Tick automaton is chosen, it is composed with the specification au-
tomaton AS as shown in Figure 5. This yields a new TAIO, denoted ATick

S , which
has as inputs the inputs of AS and as outputs the outputs of AS plus the new
output tick. Notice that AS and Tick do not synchronize on any discrete transi-
tions, they only synchronize in time (time elapses at the same rate for both).

Test generation is done based on the extended

?
Z

ZZ~?
�

��=

?
�

�	
@

@R

b?
c?

tick?

a!

a!

b?, c? tick?

PASS FAIL

FAIL PASS

Fig. 6. A digital-clock test
represented as a finite tree.

specification, ATick
S .2 A test is represented as a

finite tree like the one shown in Figure 6 and is
generated using an algorithm similar to the one
presented in [18]. Nodes of the tree are either
input nodes (where the tester issues an input
to the SUT) or output nodes (where the tester
awaits for an output from the SUT or for the
next tick of its own clock). Leaves are marked
“pass” or “fail” indicating conformance or not.
Each node of the tree corresponds to a set of
states of ATick

S . Such sets are generally dense due
to the continuous state-space of the clocks. The

sets are represented symbolically using simple constraints on clocks. For instance,
the constraint 1 ≤ x ≤ 2∧ x = y represents the fact that clock x has some value
within [1, 2] and clock y is equal to x. The constraints are implemented using
a matrix data structure called DBM (difference bound matrix) [2, 6]. Comput-
ing successor nodes is also done symbolically, using a bounded-time reachability
analysis for timed automata, as shown in [19, 12].

Test selection with respect to coverage criteria At each point during test
generation, the generation algorithm has a number of choices to make: stop the
test or continue, wait for an output or issue an input, which of the possible inputs,
2 The extended specification may also include other automata to model environment

assumptions, interface delays, etc., as shown previously.

etc. There are different ways to resolve these choices. For instance: interactively
(the user guides the test generation), randomly (the algorithm takes decisions at
random), exhaustively (generate all possible tests, up to a given depth provided
by the user), or guided by some coverage criterion. Our tool implements all these
choices.3 We briefly elaborate on the last one.

At the moment, we consider simple coverage criteria such as state, location
or edge coverage, aiming to cover, respectively, all reachable states, locations or
edges of the specification. The state and location criteria are based on the fact
that each node of a digital test tree corresponds to a set of states (thus also
a set of locations) of the specification. Therefore, each such node “covers” the
corresponding set. The edge criterion is similarly based on the fact that each
edge of the test tree corresponds to a set of transitions (thus also a set of edges)
of the specification.

We also consider simple variations of the above criteria. For instance, in-
put/output action coverage seeks to cover reachable input/output actions of the
specification. In a context of extended TA such as those used by our tool, we can
also define partial state coverage, with respect to a subset of the variables mak-
ing up the state space. It should be noted that some of these criteria subsume
others. For instance, achieving state coverage implies location coverage, partial
state coverage and action coverage.

We now briefly describe the test-generation algorithm w.r.t. a coverage cri-
terion. The algorithm starts by choosing at random a point p in the space to be
covered (e.g., a location for location coverage, a symbolic state for state cover-
age, etc.). Then a reachability algorithm is run on the product ATick

S in order to
find a discrete path reaching the point p to be covered. Note that, since we con-
sider coverage only for reachable states (or locations, or actions, etc.) the point
is reachable, thus, a path exists. Also note that this path is labeled only with
observable (input or output) actions. Once the path is found, it is extended into
a test tree: this is done by completing all nodes in the path whose outgoing edge
is labeled with an output action or tick, by the remaining outputs. This is the
first generated test which covers not only p but other points as well (e.g., all lo-
cations encountered in the test tree). The algorithm proceeds by choosing a new
uncovered point and repeating the above process, until all points are covered.
This algorithm has been implemented in our tool TTG, described below.

3 Tool and case study

The TTG tool We have built a prototype test-generation tool, called TTG
(Timed Test Generator), on top of the IF environment [3]. The IF modeling
language allows to specify systems consisting of many processes communicating
through message passing or shared variables and includes features such as hi-
erarchy, priorities, dynamic creation and complex data types. The IF tool-suite

3 Another way to select tests is using a test purpose. This approach is taken, for
instance, in the TGV tool [8].

includes a simulator, a model checker and a connection to the untimed test gen-
erator TGV [8]. TTG is implemented independently from TGV. TTG is written
in C++ and uses the basic libraries of IF for parsing and symbolic reachability
of timed automata with deadlines.

TTG test generator

Specification
(.if file)

Tick automaton
(.if file) test cases

(.if files)

I/O actions file

user options

Fig. 7. The TTG tool.

TTG takes as inputs the specification and Tick automata, written in IF
language, as well as a set of user options specifying the test-generation mode.
There are four modes: interactive (user-guided); random; exhaustive up to a
user-defined depth; or coverage with respect to a criterion among state, location,
action or partial state. TTG generates an executable which will perform the test
generation when run. The executable takes additional options (e.g., depth) and
generates one or more tests, depending on the chosen mode. The tests are output
in IF language.

Case study: the Bounded Retransmission Protocol The Bounded Re-
transmission Protocol (BRP) is a protocol for transmitting files over an unre-
liable (lossy) medium. The architecture of the protocol is shown in Figure 8.
The protocol is implemented by the Transmitter and the Receiver. The users
of the protocol are the Sending and Receiving clients. The medium is modeled
by the Forward and Backward channels. Upon receiving a file from the Sending
client (action put), the Transmitter fragments the file into packets and sends
each packet to the Receiver (action send), awaiting an acknowledgment for each
packet sent (action ack). If a timeout occurs without receiving an acknowledg-
ment, the Transmitter resends the packet, up to a maximum number of retrials.
At the end, if the file is transmitted successfully the Transmitter does not output
anything to the Sending client. Otherwise, the Transmitter responds either with
“abort” (action T abort) if the packet that failed was a “middle” one, or with
“don’t know” (action dk) if the packet was the first or last one (in this case
the file may or may not be received at the other end). In case of success, the
Receiving client receives the file (action get). In case the Receiver does not hear
from the Transmitter for some time, it outputs R abort to the Receiving client.

Transmitter

Sending client

Backward channel

Receiving client

Forward channel

Receiver
-

� �

?

6

-

6 66

send

ack

put T abort
send

ack

get R abortdk

Fig. 8. The BRP specification and interfaces

Here, we use the BRP model developed in [4]. The model has been initially
developed in SDL, then automatically translated in IF. The model is shown in
Figure 9.4 States in red (labeled “decision ...”) are transient states, meaning that
time does not elapse and the automaton moves through these states without be-
ing interrupted by other concurrent automata. The Transmitter has two clocks,
“t repeat” and “t abort”, and the Receiver one clock, “r abort”.5 The keyword
“when” preceeds a clock guard and “provided” precedes a guard on discrete vari-
ables. Keyword “task” is for assignments. The model is parameterized by five
parameters: p, the number of packets in a file; max retry, the maximum num-
ber of retries in sending a packet (after timeout); dt repeat, the timeout delay;
dt abort, the time the Transmitter waits before outputting T abort; dr abort, the
time the Receiver waits before outputting R abort. The values used in our case
study are:

p = 2, max retry = 4, dt repeat = 2, dt abort = 15, dr abort = 13.

For testing, we view the four components enclosed in dashed square in Fig-
ure 8 as the BRP specification. The Sending and Receiving clients play the role
of the environment, but they are not explicitly modeled, i.e., no assumptions
are made on the environment. The interface of the SUT with its environment is
captured by actions put (input) and get, dk, T abort, R abort (outputs).

Using TTG, we generate tests for the perfectly periodic Tick automaton with
clock period equal to 1, with respect to various coverage criteria. The results are
shown in Table 1. The criteria used are: (reachable) configurations, locations,
actions, and the values of the five discrete variables of the model, namely, m,
b, c, i, j. A configuration corresponds to an entire symbolic state and includes
a vector of locations and values of variables for each automaton, plus a DBM
4 The automata have been drawn automatically using the if2eps tool by Marius

Bozga. The model of BRP that we use in this paper can be found in the IF web
page: http://www-verimag.imag.fr/∼async/IF/ under “examples”.

5 The clocks are reset to a negative value and count upwards. This is not an essential
difference with the TA model presented earlier.

main

start

[1] task b := false;

idle

[1] deadline lazy;
 input put(p);
 task j := 0;

 task m := first;
 task i := 1;

[2] input ack(void);

send

[1] output sdt(m, b) via ({tr}0);
set t_repeat := - (0 + dt_repeat);

[2] input ack(void);

wait_ack

[1] input ack(c);
[2] when t_repeat=0;

 reset t_repeat;

decision_13

[1] provided ((c = b) = true);
 task b := not b;
 reset t_repeat;

[2] provided ((c = b) = false);

decision_14

[1] provided ((i < max_retry) = true);
 task i := (i + 1);

[2] provided ((i < max_retry) = false);

decision_18

[1] provided (m = first);
 task j := 1;

 task m := middle;
 task i := 1;

[2] provided (m = middle); [3] provided (m = last);

decision_20

[1] provided ((m = middle) = true);
 output T_abort();

 set t_abort := - (0 + dt_abort);

[2] provided ((m = middle) = false);
 output dk();

 set t_abort := - (0 + dt_abort);

decision_23

[1] provided ((j < p) = true);
 task j := (j + 1);

 task i := 1;

[2] provided ((j < p) = false);
 task m := last;

 task i := 1;

wait_abort

[1] when t_abort=0;
 reset t_abort;

[2] input ack(void);

main

start

[1] task p := 0;

idle

[1] input sdt(m, c);
[2] when r_abort=0;
 output R_abort();

 reset r_abort;

decision_4

[1] provided (((b = c) or (m = first)) = true);
 output ack(c) via ({rt}0);

 set r_abort := - (0 + dr_abort);
 task b := not c;

[2] provided (((b = c) or (m = first)) = false);
 output ack(b) via ({rt}0);

decision_11

[1] provided (m = first);
 task p := 0;

[2] provided (m = middle);
 task p := (p + 1);

[3] provided (m = last);
 output get(p);
 reset r_abort;

Fig. 9. Transmitter (up) and Receiver (down).

representing symbolically the set of clock states. Thus, this criterion is the same
as state coverage discussed in Section 2.

Column “size” shows the number of elements to be covered. Thus, there
are 14687 reachable configurations in total6, there are 4 global locations (we do
not count transient locations) and 6 actions (the 5 input/output actions plus
tick). Variables b and c are booleans (they encode the alternating bit for the
Transmitter and Receiver, respectively). Variable m takes three possible values
(beginning, middle or end of file). Variable i takes four possible values, from 1
to max retry. Variable j takes three possible values, from 0 to p. Column “time”
shows the time in seconds taken by TTG to generate a test suite with respect
to the corresponding coverage criterion. Column “# of tests” shows the number
of tests in the suite. Notice that the configuration criterion requires 24 tests
whereas all other criteria can be covered with just one test. Column “depth”
shows the depth of the generated tests (i.e., the length of the longest path from
the root to a leaf). For the configuration criterion, the depth varies between 6
and 53. The rest of the columns show the percentage of coverage of the other
criteria by the test suite generated for the given criterion. For example, the test
covering the four global locations also covers 3105 configurations, which amounts
to approximately 21% of the total number of configurations.

criterion size time # of depth coverage of other criteria
used (sec) tests config. locations actions m b c i j

config. 14687 400 24 6 - 53 100%

locations 4 37 1 12 21% 100% 100% 100% 100% 100% 25% 100%

actions 7 76 1 43 36% 100% 100% 100% 100% 100% 25% 100%

m 3 17 1 2 1% 75% 50% 100% 100% 100% 25% 100%

b 2 16 1 2 1% 75% 50% 100% 100% 100% 25% 100%

c 2 17 1 2 1% 75% 50% 100% 100% 100% 25% 100%

i 4 35 1 9 20% 75% 50% 100% 100% 100% 100% 100%

j 3 16 1 2 1% 75% 50% 100% 100% 100% 25% 100%

Table 1. Test generation results for the BRP case study

Perhaps the most interesting finding from the above experiments is that a
relatively small number of tests suffices to cover all reachable configurations of
the specification (in fact, we cover the states of the product automaton ATick

S). It
is worth comparing this number to the number of tests generated with the “ex-
haustive up to given depth” option. As shown in Table 2, the size of exhaustive
test suite grows too large even for relatively small depths. The table also shows
the percentage of the above criteria covered by the exhaustive test suite. It can
be seen that even though the number of tests is large, only a small percentage

6 The forward and backward channels are modeled by lossy FIFO buffers. These buffers
remain bounded because reception of messages are eager.

of coverage is achieved: for instance, 18% configuration coverage for 371 tests at
depth 6.

depth time # of coverage of other criteria
(sec) tests config. locations actions m b c i j

1 17 2 0.2% 75% 33% 100% 100% 100% 25% 100%

2 17 3 2% 75% 50% 100% 100% 100% 50% 100%

3 22 5 5% 75% 50% 100% 100% 100% 50% 100%

4 39 11 8% 75% 50% 100% 100% 100% 75% 100%

5 168 41 14% 75% 50% 100% 100% 100% 75% 100%

6 1677 371 18% 75% 50% 100% 100% 100% 100% 100%

Table 2. Exhaustive test suites for the BRP case study

Sometimes not only the number of tests but also their size is important. By
looking at our test generation algorithm, where a test is obtained by completing
a path, we can say that the size of a test is essentially its depth. As one can see
from Table 1 the largest test depth is 53. This can be explained as follows. In our
implementation we use the following heuristic to choose which configuration to
cover next: we pick a configuration which is “far” from the initial one, that is, at a
large depth. The expectation is to cover as many configurations as possible with
every new test. Thus, this heuristic tends to favor the generation of fewer but
“longer” tests. Obviously, a different approach is to favor “shorter” (but perhaps
more) tests. This can be done by changing the heuristic to pick configurations
which are “close” to the initial one.

A test generated by TTG for the configuration coverage option is shown in
Figure 10.

4 Summary and future work

We have proposed a testing framework for real-time systems based on partially-
observable, non-deterministic timed-automata specifications and on digital-clock
tests. To our knowledge, this is the first framework that can fully handle such
specifications and such tests. We showed that, through appropriate modeling, as-
sumptions on the environment and the interface between the tester and SUT can
be captured in the framework in a seamless way, without need for extra notions
or algorithms. We also reported on a recent implementation of a test generation
algorithm with respect to coverage criteria and experimental results obtained
for the Bounded Retransmission Protocol. These results show that a few tests
suffice to cover thousands of reachable symbolic states of the specification. We
are currently studying alternative notions of coverage and methods to generate
minimal test suites (without redundant tests). We are also examining how to
adapt other testing problems than conformance, for instance, fault detection or
state identification [14], to the timed setting.

main

loc_0

[1] output put();

loc_1

[1] input R_abort();

[2] input get();

[3] input T_abort();

[4] input dk();

[5] input TICK();

FAILPASS

loc_2

[1] input R_abort();

[2] input get();

[3] input T_abort();

[4] input dk();[5] input TICK();

loc_3

[1] input TICK();

[2] input R_abort();

[3] input T_abort();

[4] input dk();[5] input get();

loc_4

[1] output put();

loc_5

[1] input TICK(); [2] input R_abort(); [3] input T_abort(); [4] input dk();[5] input get();

Fig. 10. A test generated by TTG for the BRP case study

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time
Petri nets. IFIP Congress Series, 9:41–46, 1983.

3. M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: a
validation environment for timed asynchronous systems. In Proc. CAV’00, volume
1855 of LNCS. Springer, 2000.

4. M. Bozga, S. Graf, A. Kerbrat, L. Mounier, I. Ober, and D. Vincent. SDL for
Real-Time: What is Missing? In Proceedings of SAM’00: 2nd Workshop on SDL
and MSC (Grenoble, France), pages 108–122. IMAG, June 2000.

5. R. Cardell-Oliver. Conformance tests for real-time systems with timed automata
specifications. Formal Aspects of Computing, 12(5):350–371, 2000.

6. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, vol-
ume 407 of LNCS, pages 197–212. Springer–Verlag, 1989.

7. A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test cases gen-
eration based on state characterization technique. In RTSS’98. IEEE, 1998.

8. J.C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification
techniques for the generation of test suites. In CAV’96, volume 1102 of LNCS.
Springer, 1996.

9. A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-optimal real-
time test case generation using UPPAAL. In FATES’03, 2003.

10. A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondetermin-
istic real-time systems. In FATES’03, 2003.

11. Z. Kohavi. Switching and finite automata theory, 2nd ed. McGraw-Hill, 1978.
12. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.

In 11th International SPIN Workshop on Model Checking of Software (SPIN’04),
volume 2989 of LNCS. Springer, 2004.

13. V. Kuliamin, A. Petrenko, N. Pakoulin, A. Kossatchev, and I. Bourdonov. Inte-
gration of functional and timed testing of real-time and concurrent systems. In
Ershov Memorial Conference, volume 2890 of LNCS. Springer, 2003.

14. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. Proceedings of the IEEE, 84:1090–1126, 1996.

15. B. Nielsen and A. Skou. Automated test generation from timed automata. In
TACAS’01. LNCS 2031, Springer, 2001.

16. A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in EFSM testing.
IEEE Trans. Software Eng., 30(1), 2004.

17. J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing timed automata. The-
oretical Computer Science, 254, 2001.

18. J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten and
S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Concurrency Theory,
volume 1664 of LNCS, pages 46–65. Springer-Verlag, 1999.

19. S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in Real
Time and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS. Springer,
2002.

