State Identification Problems
for Timed Automata*

Moez Krichen and Stavros Tripakis

Verimag
Centre Equation, 2, avenue de Vignate, 38610 Gieres, France
krichen@imag.fr, tripakis@Qimag.fr

Abstract. A well-established theory exists for testing finite state ma-
chines. One fundamental class of problems handled by this theory is state
identification: we are given a machine with known state space and tran-
sition relation, but unknown initial state, and we are asked to find tests
which identify the initial or final state of the machine. In this paper, we
study state identification in the context of timed automata which con-
trary to, say, Mealy or Moore machines, is a suitable model for real-time
systems. We are interested in digital-clock tests which have a finite clock
precision and are thus implementable. We develop a general technique,
based on time-abstracting bisimulation, which reduces the problem to
the case of non-deterministic finite-state Mealy machines. We illustrate
our technique on a toy example.

1 Introduction

Testing is a fundamental step in any development process. It consists in applying
a set of experiments to a system, with multiple aims, from obtaining some piece of
unknown information to checking correctness or measuring performance. These
different aims give rise to different classes of testing problems, for instance,
conformance testing or performance testing.

A particularly interesting class of testing problems, pioneered in the sem-
inal 1956 paper of Moore [9], is state identification. We are given a machine
with known state-transition diagram but unknown initial state. We are asked to
perform an experiment in order to, either find the unknown initial state (distin-
guishing experiments), or verify that the machine is indeed in an assumed-to-be
state (state-verification experiments), or identify the final state, reached at the
end of the experiment (homing experiments), or lead the machine to a given
state (synchronizing experiments), etc.

An extensive theory is available on state identification problems for finite-
state machine models such as Mealy or Moore machines (see [8] for an excellent
survey). These models are well-suited for some applications (e.g., synchronous
circuits) but not for others. In particular, the assumption that inputs and out-
puts are synchronous makes these models unsuitable when modeling real-time

* Work partially supported by CNRS STIC project “CORTOS” and by IST Network
of Excellence “ARTIST2”.

systems, where outputs are produced with variable delays governed by complex
timing constraints.

In this paper, we study state identification (in particular, distinguishing and
homing) problems in the context of timed automata [2]. The latter have been
recognized as a useful model for real-time systems. Although some work has been
done for this model on problems of conformance testing (e.g., see references in [7])
we are not aware of any previous work on problems of state identification in a
real-time setting.

Since timed automata (TA) are based on a dense-time semantics, the first
choice to make when dealing with testing on such a model is to define the
observation capabilities of the tester, in particular in what concerns time. Two
types of testers can thus be defined: analog-clock testers which can observe real-
time precisely; digital-clock testers which can only observe the “ticks” of a digital
clock (i.e., a counter). Caring about the implementability of our approach, we
consider digital-clock testers in this paper. Indeed, analog-clock testers rely on
an infinite-precision clock thus are difficult, if not impossible, to implement.

Assuming digital-clock testers has an additional benefit. It opens up the pos-
sibility for reducing the problem from the timed to the untimed case. However,
carrying out this idea is less obvious than one may think. We summarize the
main steps of the procedure in the sequel. The details are given in the main
body of the paper.

The first thing to do is to compute the product A||Tick of the TA under test
A with Tick, which is a TA modeling the digital clock of the tester. Tick emits
the special output tick and does not synchronize with A except in time. Since the
tester does not have access to any other timing information except the number
of ticks, it becomes an “untimed controller” of the product TA, call it A||Tick.

Thus, in principle, it seems possible at this point to reduce the problem to
a problem of “untimed” testing by working on some kind of time-abstracting
graph of A||Tick. One choice is the region graph [2] but this is obviously to be
avoided if we want our method to be tractable. An alternative is to use the
forward reachability graph used in TA model-checking tools such as Kronos [4].
Unfortunately, this graph does not have the necessary properties for testing
purposes. In particular, it is not pre-stable, that is, if S; = S, is a transition in
the abstract graph then there might be (concrete) states in the abstract state Sy
which have no a-transition in some state in S5. To see why this is problematic,
suppose a is an input: if the tester issues a in the abstract state S; then the
abstract system will move to Sy; however, the concrete system is not guaranteed
to do so. Our choice is, then, to use the time-abstracting bisimulation (TAB)
quotient graph [11]. This graph has the same properties as the region graph (in
particular, pre-stability) and is typically much smaller than the latter. Thus, it
presents a good compromise between property preservation and size.

Once we have generated the TAB quotient graph of A||Tick, call it G, we have
a finite-state model which can be treated algorithmically. However, G is not a
Mealy machine: it is a labeled transition system (LTS) the transitions of which
are labeled with input or output actions, ticks, or 7 labels. The latter correspond

to either unobservable actions of A or time-elapsing transitions abstracted by the
bisimulation. Notice that we make no assumption on A (or Tick), in particular, it
can be non-deterministic and partially observable. The reason is that we have to
confront non-determinism anyway, even if A is deterministic: two distinct output
sequences may appear the same to the tester because of its digital clock.

The last step consists in transforming G into a non-deterministic Mealy ma-
chine M, on which state-identification problems can be solved using existing
techniques [1]. This is an original, to our knowledge, transformation technique
which is general enough to be used for any finite LTS provided it satisfies some
properties on boundedness of number of outputs (see below). Thus, the tech-
nique can be useful in an “untimed” context to reduce testing problems from
asynchronous LTS models to synchronous Mealy machines.

In a nutshell, the transformation is as follows. For every pair of nodes vy, vy
of G, we compute the language L,, ,, of vertebrae linking v; and ve. A vertebra
is a finite word ending with a tick symbol and containing a single tick. Ly, .,
is a regular language. We then compute Lgbvz, the projection of L, ,, into
output vertebrae, that is, vertebrae containing only outputs and tick. Using the
hypothesis that A is bounded output (i.e., can only emit a bounded number
of outputs in a bounded amount of time) we can show that LUOM2 is a finite
language. For each o € LUOM,Q, we compute Lf)l_’%g, the projected language

of input vertebrae corresponding to o. Finally, for each such o, we construct

.- . L . .
a transition in M of the form vy Liq v9, Where L is an appropriate regular

language derived from L} a0

Intuitively, an input vertebra like a - b - tick corresponds to a basic command
of the tester which is to issue input a followed by b and then wait until the
next tick before it proceeds. An output vertebra like ¢ - tick corresponds to what
the tester observes after executing the input vertebra. Notice that the lengths
of the two need not be the same, although both end with a unique tick, since,
according to the interpretation above, tick can be seen both as an input and

output. vy Lig v9 can be seen as a symbolic transition: L is the input symbol
and o is the output symbol. To exercise this transition, a tester chooses some
input vertebra in L and then may observe the output vertebra o. Notice that M
is non-deterministic, thus, the same input can also result to another output o’.
The correctness of the method lies on the fact that input and output vertebrae
end with their unique tick symbols. Thus, there is no danger that concatenating
vertebrae may result in ambiguity for the tester. In particular, if o1, 09 are two
vertebrae such that o; # o9 then for any vertebrae o, 0%, 01 - 0] # 02 - 7).

The rest of this paper is organized as follows. In Section 2 we recall our model
of timed automata with input, output and unobservable actions. In Section 3 we
define the various state-identification problems. In Section 4 we recall the time-
abstracting quotient graph and identify its properties of interest for our purposes.
In Section 5 we show how to transform this graph to a non-deterministic Mealy
machine and reduce the problems from the timed to the untimed case. Section 6
summarizes the paper and gives some directions for future work.

2 The model

The basic model is timed automata with inputs and outputs (TAIO) as defined
in [7]. These are timed automata with deadlines to capture urgency [10, 3] and
edges labeled by an input action in a finite set Acty, = {a, b, - -}, an output action
in a finite set Actoyt = {v,w, -} or an unobservable action T ¢ Acti, U Actout.

Let R be the set of non-negative reals. Given a finite set of actions Act, the
set (Act UR)* of all finite real-time sequences over Act will be denoted RT(Act).
The length of a sequence p is denoted |p|. € € RT(Act) is the empty sequence.
Given Act’ C Act and p € RT(Act), Pav (p) denotes the projection of p to Act’,
obtained by “erasing” from p all actions not in Act’ and all delays. For example,
if Act = {a,b}, Act’' = {a} and p = a1b2a3, then Pacv(p) = aa. Paur(p)
denotes the projection of p to Act’ UR, obtained by “erasing” from p all actions
not in Act’ (but not delays). For example, Pacvur(p) = a3a3. The time spent
in a sequence p, denoted time(p) is the sum of all delays in p, for example,
time(e) = 0 and time(a150.5) = 1.5.

A timed automaton over Act is a tuple (Q, X, Act, E) where Q is a finite set
of locations; X is a finite set of clocks; E is a finite set of edges. Each edge is a
tuple (q,q’,¢,r,d,a), where ¢,q" € Q are the source and destination locations;
1 is the guard, a conjunction of constraints of the form x#c, where x € X, ¢
is an integer constant and # € {<,<,=,>,>}; r C X is the set of clocks to
be reset; d € {lazy, delayable, eager} is the deadline; and a € Act is the action.
Intuitively, a lazy deadline imposes no urgency on the transition; delayable means
the transition, once enabled, must be taken before it becomes disabled; eager
means the transition must be taken as soon as it becomes enabled. We will not
allow eager edges with guards of the form z > c.

A TA A defines an infinite labeled transition system (LTS) the states of
which are pairs s = (q,v) € Q x RX, where ¢ € Q is a location and v : X — R
is a clock wvaluation. Given state s = (¢,v) and clock x, we write z(s) to denote
the value of x at s, i.e., v(x). 0 is the valuation assigning 0 to every clock of A.
S 4 is the set of all states. There are two types of transitions, discrete and timed.
Discrete transitions are of the form s = (¢,v) — s’ = (¢/,v’), where a € Act and
there is an edge e = (q,¢’, ¥, r, d,a), such that v satisfies) and v’ is obtained by
resetting to zero all clocks in r and leaving the others unchanged. We say that
e is enabled at s and write s |= e (or s =). Timed transitions are of the form
(q,v) N (q,v+1t), where t € R;t > 0 and there is no edge (q,¢"”,v,r, d,a), such
that: either d = delayable and there exist 0 < ¢; < to < ¢ such that v+t | ¢
and v + to £ 9; or d = eager and there exists 0 < ¢; < t such that v+ ¢; E .
We use notation such as s —, s %, ..., to denote that there exists s’ such that
s % s, there is no such ', and so on. This notation naturally extends to timed
sequences. For example, s alb, s’ if there exist s1, so such that s L5 4 S9 LA s’

A timed automaton with inputs and outputs (TAIO) is a timed automaton
over Act, = ActU{7}. A TAIO is called observable if none of its edges is labeled
by 7. A TAIO A is called input-complete if it can accept any input at any state:
Vs € Sa.Va € Actin.s —. It is called deterministic if Vs,s',s” € Sa.Va €

Act,.5s 5 ' Ns 5 5" = s’ = s". Tt is called non-blocking if
Vs € Sa.Vt € R.3p € RT(Actou U {7}).time(p) =t A s 5. (1)

The non-blocking property states that at any state, A can let time pass forever,
even if it does not receive any input. This is a sanity property which ensures
that a TAIO does not “force” its environment to provide an input by blocking
time.

A is called output-bounded if there is a bound on the number of outputs A
can produce in a bounded amount of time (say, one time unit). Formally:

In.Vs € Ss.¥p € RT(Act,). (s & Atime(p) = 1) = |Pace,, ()] < 0. (2)

r=1
eager'
simple!
z:=0

lick?
@G —@)
1

click?
<1

Tr =
eager
double!

X = 0
[
click?
r<l1

Fig. 1. An example of a TAIO: the simple- and double-click mouse.

An example of a TAIO is shown in Figure 1. This TAIO has three locations
(g1, g2 and g3), one input (click), two outputs (simple and double) and one clock
(z). It models a mouse which produces a double-click when the button is pressed
twice (or more) in one time unit, a simple-click otherwise. We will use this
automaton as a running example in the rest of the paper. We annotate actions
with ? and ! to denote inputs and outputs, respectively. Unless otherwise noted,
deadlines are lazy.

3 State-identification problems on timed automata

We consider a TAIO A which is non-blocking and output-bounded (but possibly
non-deterministic, partially-observable or non input-complete) and the current
state of which is unknown. We wish to perform an input/output experiment

from which we can deduce either the initial state (the state A was occupying at
the beginning of the experiment — the distinguishing problem) or the final state
(the state A is occupying at the end of the experiment — the homing problem).

An input/output experiment consists in applying inputs on A and observing
the generated outputs. The experiment may be preset or adaptive [5].! In a preset
experiment the input sequence the tester applies is totally known in advance
(before the experiment starts). In an adaptive experiment the tester is allowed to
decide which inputs to apply depending on the outputs observed so far. Clearly,
adaptive experiments are more general. While a preset experiment can simply
be modeled as an input sequence, an adaptive experiment needs to be modeled
as a decision tree (e.g., see Figure 3).2

In our case, the tester is “timed”: it observes not only the outputs of the
machine under test but also the time when these outputs occur. In practice,
it is not possible to observe time in an infinitely-precise way, due to the fact
that the tester has access only to a digital clock (i.e., a discrete counter updated
by some physical process). In this paper, we make the assumption that the
clock of the tester can be modeled by a timed automaton called Tick. Examples
of Tick automata are given in Figure 2. Tick is a TAIO with a single action
tick & Actin U Actous U {7} and no inputs. Tick must be non-blocking and ensure
that tick always eventually occurs. Our method works for any such Tick model.

tick! tick! tick! y=10,y:=0
y=1 9sy<1l 9§y§10¢ eager
eager delayable O——O0——0O
y:=0 y:=0 y=10,y:=0 tick!
eager O0<y<l1
perfectly periodic Tick Tick with skew Tick with jitter

Fig. 2. Possible tester clock models.

The initial uncertainty of the tester is modeled by a set of states Sy C Sa4.
In other words, we assume that A is initially in some state in Sy. Notice that
So may equal S4, which means we have no knowledge of the initial state. We
are also given m pairwise disjoint subsets of S4, C1,...,Cy,. In the case of the
distinguishing problem, C4,...,C,, form a partition of Sy (thus, So = U, Cs).
This partition models our requirements from the tester: we want the tester to

1 Adaptive experiments are called branching experiments in [9].

% In the literature a distinction is made between simple and multiple experiments [9,
5]. A multiple experiment can be executed multiple times and the assumption is
that the machine is always at the same state at the beginning of each execution: this
essentially means there is a special “reset” button which brings the machine back
to the same (unknown) initial state at the beginning of each experiment. We only
consider simple experiments in this paper, since they assume less power on the tester
side.

tell us, at the end of the experiment, in which of the m subsets A was at the
beginning of the experiment. In the case of the homing problem, C1, ..., C,, form
a partition of S (thus, Syx = (U, C;). Here, we want the tester to tell us in
which of the m subsets A is at the end of the experiment. For example, we
might associate one set C; with each location ¢; of A, meaning we want to know
the final location.

A vertebra is an element of Vert = (Acti, UActou)* - {tick}. An input-vertebra
(respectively, output-vertebra) is an element of Vert;, = (Act;,)* - {tick} (respec-
tively, Vertoy = (Actou)™ - {tick}). At each vertebra corresponds a unique input-
vertebra and a unique output-vertebra which can be obtained by projection. For
instance, a? - v!- b7 - v! - w! - tick is a vertebra with corresponding input-vertebra
a? - b? - tick and output-vertebra v! - v! - w! - tick.

A digital preset experiment (PX for short) is a finite sequence 7 € (Vert;,)*,
for example

T =a-tick-b-c-tick.

This experiment is to be interpreted as follows:

Issue input a; wait until the next clock tick occurs; issue input b, then
input ¢; wait until the next clock tick occurs; collect the observed output.

This interpretation assumes that the tester has enough time to issue the entire
sequence of input actions appearing between two successive ticks before the next
tick is received. However, this is not a restrictive assumption: as we make no
assumption on input-completeness on A, assumptions on A’s environment can
be modeled directly within A. In particular, timing constraints on the tester, such
as how much time it takes to issue an input can be modeled this way. As we shall
see later, the tester is not allowed to issue an input which may not be accepted
by A, thus, must obey the modeled timing restrictions.

A digital adaptive experiment (AX for short) is defined as a finite decision
tree like the ones shown in Figure 3. Each internal node of the tree is labeled
with an input-vertebra. Each edge is labeled with an output-vertebra: the labels
of two edges emanating from the same internal node must be distinct. Each leaf
is labeled with an element from {C1, ..., C;,}. The AX to the left of the figure is
to be interpreted as follows:

Issue input a, issue input b, wait until the next tick and collect the
observed output sequence. If the latter equals v - w - tick then stop the
experiment and declare that the result of the experiment is C. Otherwise
(i.e., v - tick is observed), issue input a twice, wait until the next tick and
collect the observed output sequence. If the latter equals v - tick then the
result of the experiment is C. Otherwise (i.e., v- v - tick is observed) the
result is Cy.3

Notice that we allow decisions to be taken in an AX only after ticks. Indeed,
this is the only choice that makes sense implementation-wise, because this is

3 Depending on whether we are dealing with the distinguishing problem or the homing
problem, the result of the experiment is interpreted differently, see below.

Fig. 3. Two digital experiments: adaptive (left) and preset (right).

the point where the inputs and outputs of the tester synchronize. Suppose we
allowed the AX to make a decision after every input it issues. This would give
a tree where an internal node could be labeled, say, by a € Actj,. How would
such an experiment be interpreted? It is not legal to interpret it as: “Issue input
a and observe the output. If the latter is b then ... else ...”. This is because the
output cannot always be observed immediately after an input is given, but only
after some time. Indeed, for some inputs, there might be no output at all until
the next tick. Thus, it is natural to interpret the above experiment as: “Issue
input a and wait for the next output. If the latter is ...”. But waiting for the next
output is equivalent to waiting for the next tick and then observing the output,
since the tester does not know how much it has to wait. This is precisely the
same as labeling the internal node by a - tick, which brings us to our case where
nodes are labeled with input-vertebrae.

Another thing to point out on AX is the fact that the branches from an
internal node do not cover all possible outputs. Indeed, they cannot, since the
AX needs to be finite and the number of output-vertebrae is infinite. However,
as we shall see, for an output-bounded TAIO, the above number turns out to be
finite. We shall use this hypothesis in the following sections. In terms of execution
of an AX, if the tester observes an output sequence which is not in the set of
possible outputs in the current node of the decision tree, then the tester declares
the system under test or the tester’s clock as non-conforming to their respective
models.

Notice that a PX is a special type of an AX, where the inputs given do not
depend on the outputs observed during the experiment. Thus, an AX T is a PX
if all leaves of T are at the same depth and all internal nodes of T' which are at
the same depth are labeled with the same input-vertebra. For example, the AX
to the right of Figure 3 is preset.

Before giving the definitions of distinguishing and homing sequences, we need
to make the link between the possible observable input- and output-vertebrae
and the real-time traces of the model. For that, we consider At = A||Tick the
product of A and Tick. A timed-vertebra is an element of Vertgr = RT(Act) -
{tick}, for example, p = a-0.4-v -7 -0.6 - tick. Let Acti™® = Act;, U {tick} and

in

At — Actqe U {tick}. To each p € (Vertgr)* correspond the unique sequences
T = Py (p) € (Vertin)* and 0 = Py (p) € (Vertour)*. For example, p given
above matches 7 = a - tick and o = v - tick. Intuitively, if p matches 7 and o then
p is a possible behavior of At for which the latter can produce o when “fed”
with 7.

For some set of states S C S and an input-vertebra sequence 7 € (Vert;,)*
we say that 7 is accepted by S if Vs € S-3p € (Vertgr)* -5 2 AT = Ppgiac(p).
The set of output-vertebra sequences that can be observed starting from some
state in S, due to the execution of 7 is outputs(S,n) = {0 € (Vertoy)* |3s €
S-3p € Vertgr -5 5 Am = Ppyiec(p) Ao = Ppci(p) }. Moreover for some output-

*

vertebra sequence o € (Verty,)*, we introduce the two following sets of states
init(S,m,0) = {s € S|3p € Vertgr - 5 & A = PACtTt;ck(p) N0 = Ppegix(p)} and
suce(S,m, o) = {s' € Sa|Fs € S-3p € Vertgr -5 > 8 At = Ppgis(p) Ao =
Ppeeiee(p) }- Intuitively, init(S, m, o) corresponds to the subset of states of S from

which it is possible to observe o after applying 7 and succ(S, 7, o) the subset of
states of S4 to which it is possible to move after applying m and observing o.

Definition 1 (Valid experiments). Let T be an AX, A a TAIO and Sy C S4.
T is said to be valid w.r.t. A and Sy if for each node u of T it is possible to
assign a set of states S, C S4 such that the following hold:

— for r, the root of T', we have S, = Sp;
— for each internal node u of T, if 7 is the input-vertebra label of u, then:

e 7 is accepted by Sy;

e for each o € outputs(S,,), there exists an outgoing edge from u labeled
with o; furthermore, u has as many outgoing edges as the number of
elements of outputs(Sy, 7);

e if u % o' is an edge of T then S, = succ(S,,,). O

Validity guarantees that, at each step of its execution, the input provided by
the experiment is accepted by the current state of the machine, no matter what
this state is. Validity also ensures that any output the machine may produce is
taken into account in the experiment.

Let T be an AX. For each leaf u of T, m, denotes the unique sequence of
input-vertebrae obtained by concatenating the labels of the internal nodes on
the path from the root of T' to w. Similarly, o, denotes the unique sequence of
output-vertebrae obtained by concatenating the labels of the edges on this path.
Finally, C,, denotes the label of u (i.e., C,, € {C1,...,Cr }).

Definition 2 (Distinguishing and homing experiments). An experiment
T is distinguishing (respectively, homing) for A w.r.t. Tick, So and {C1,...,Cp,}
iff T'is valid w.r.t. A and Sy and for any leaf u of T we have: succ(So, 7y, 04) C Cy
(respectively, init(So, Ty, 0y) C Cy). O

We use abbreviations DAX, DPX, HAX and HPX for distinguishing or hom-
ing, adaptive or preset experiments.

The objective of this paper is to develop algorithms which, given A, Tick, Sy
and {C1,...,Cy,}, check whether there exists a DPX, HPX, DAX, or HAX and
if so construct one. It can be easily shown that for any type of experiment, a
solution does not always exist. This is no surprise, since A is generally partially
observable and non-deterministic. But also because the tester only has limited
observation capabilities regarding time (i.e., a digital-clock). Notice that even
in the case of finite Mealy machines, non-determinism implies that solutions
do not always exist for any of these experiments [1]. On the other hand, in
the case of deterministic Mealy machines, a homing (preset) experiment always
exists, whereas distinguishing experiments may or may not exist [9, 8]. Also note
that there are cases where an adaptive experiment exists whereas no preset
experiment exists.

4 The time-abstracting bisimulation quotient graph

The first step toward solving the state-identification problems defined in the
previous section is to generate the quotient graph G of the product A with
respect to the time-abstracting bisimulation (TAB). Due to space limitations, we
will not define what a TAB is, nor show how to construct G. These topics are
presented in detail in [11]. Here, we only recall the basic properties of G which
are relevant for the purposes of this paper. Readers not familiar with TABs may
think of G as the region graph of Atk Indeed, the latter is in fact a TAB quotient
graph, but not the coarsest possible in general.

G is a finite graph. The edges of G are labeled either with some a € Act;, U
Actou: U {tick, 7} (corresponding to the discrete transitions of A%), or with e
(corresponding to the passage of time). For our purposes, both 7 and e transitions
model events which are unobservable to the tester. Thus, we rename all € transi-
tions into 7 transitions. From now on, we assume that G has been transformed
in that way. That is, the set of labels of G is X' = Acti, U Actou U {tick, 7}.

Every node v of G corresponds to a set of states of A% and consequently to
a set of states of A, S,. We assume that G respects all sets Sp, Cy, ..., Cyp,. This
means that either S, C Sy or S,NSy = 0 and similarly for every C;. Constructing
G in order to respect such subsets of the state space is not a problem (see [11]
for details).

Finite paths of G define sequences of symbols which are in X*. In particular,
a discrete-vertebra is an element of Vertgise = (X\ {tick})*-{tick}. As in the TAIO
case, we make the link between these discrete-vertebrae and the corresponding
observable input- and output-vertebrae. For p € (Vertgisc)*, m € (Vertin)* and
o € (Vertoy)*, we say that p matches m (resp. o) if the projection of p to Acttick
(resp. ActlSF) equals 7 (resp. o).

The sanity properties of A and Tick induce similar properties on G. G is
non-blocking in the sense that for any node v of G there exists a node v’ of
G and a sequence p € Vertgisc such that v L v s a possible path in G and
p matches the input-vertebrae tick (i.e., if no input is given, time will elapse).
An equally important property is that G is also output-bounded in the sense

that the output-vertebrae that G can produce are of bounded length. In other
words, there exists n such that for any discrete-vertebra p of G, the length of
the output-vertebra corresponding to p is at most n.

1

tick T
g1, x=0Ay=1
2 i 3
T T
—y—o0 | a1 3
double! . * =Y = r=0A0<y<1
ouble!
4

R . double!
click? . | : 1 click?
simple! | |simple! 5

a2,
r=0A0<y<1
click? T T Nk?
6 7 8 9

T T 4
93,z =y =0 92,0 <z =y <1 >

C q2,0<7—'<y<1i> ﬂnzoA0<y<1i>

o S
click? click? click?
T Click? T T T
10 :
of
0<aez<1lAy=1

11 12 13
g3, 0 <z =y <1
- click?
tick T

17

T

e

click?

‘ g2,z =y =1 ‘ g3,0<az<y<1

14 T itick 15 16

a2,
0<ae<1Ay=0

a3,
O<ae<lAy=1

18 \Ltlck 19 \LT \Ltlck 20
T

q2,c =1Ay =0

‘ qz3,r =y =1 ‘

a3,
72,0 <y <@ <1 0O<z<1lAy=0

T T
21 J/ i 22

a2,
z=1A0<y<1

T

93, 0<y<z<1

click?
-
23

a3,
z=1A0<y<1

Fig. 4. A time-abstracting bisimulation quotient graph.

The graph G shown in Figure 4 is the TAB quotient graph of the product
of the TAIO of Figure 1 and the left-most Tick automaton of Figure 2. 4 The
nodes of G are numbered from 1 to 23. G is made up of three subblocks:

— The cycle made by nodes 1,2 and 3 models the behavior of the system
when no stimuli are received from the external environment (i.e., only time
elapses).

— The subgraph of G induced by nodes 2,4,6,7,10,11,14,15 and 18 models
the behavior of the system when a first click and the tick actions happen
simultaneously.

4 Notice that since the automaton of Figure 1 is not input-complete, click? actions are
not allowed at every node of the quotient graph.

— The second subgraph of G induced by the rest of the nodes models the
behavior of the system when the first click and the tick actions happen at
different times.

G is not a Mealy machine, thus, existing methods for solving state identifi-
cation problems [8] do not apply. Indeed, in Mealy machines inputs and outputs
are synchronous whereas in G they are inherently asynchronous: an input may
result in some output later in time, or even not at all; an output may be emitted
without any explicit input but simply with the passage of time; a single input
may produce more than one outputs or more than one inputs may be neces-
sary to produce an output; and so on. This motivates the next section, which
proposes a transformation of G to a Mealy machine M capturing all necessary
information in order to solve the problems of the previous section. Notice that
M is a non-deterministic machine, that is, a given input may result in more
that one outputs and/or lead to more that one states. This is to be expected, as
mentioned above. Still, input and output symbols in M are synchronous, which
allows us to use existing methods on non-deterministic such machines [1].

5 Transformation to a non-deterministic Mealy machine
and reduction

As explained in Section 4 the main objective of the transformation is to remove
the asynchronism between inputs and outputs in G. To do this, we observe
that the basic external stimuli in G are input-vertebrae. Thus, it should suffice
to consider the way in which G behaves w.r.t. elements in Vert;,. For this we
need to identify the response of G w.r.t. any possible input-vertebra which is
“accepted” by the current considered node. An input-vertebra 7 is accepted by
node v if there exists a discrete-vertebra p such that v %5 and p matches .
Consequently, a first idea is to transform G into a Mealy machine M with
the same set of nodes as G and label the edges of M with pairs (7, o) € Vert, x
Vertou. Formalizing this, we get that for any two nodes v, v’ of G and any pair

(7, 0) € Verti, x Vertoy, we add an edge v kg v’ in M iff there exists p € Vertgisc
such that

v % v is a path of G and p matches both 7 and o.

For instance, the Mealy machine deduced from the graph shown in Figure 4 has
an edge from node 2 to node 18 labeled with click - click - tick/tick and another
edge from 2 to 15 labeled with click - tick/tick.

The problem with the above definition is that some nodes of M may have
an infinite number of outgoing edges, since the number of paths v 2 v is a-
priori unbounded. For instance, in the preceding example, we need to draw an
edge from node 2 to node 18 for each input-vertebrae which is in click - click -
click® - tick. Observe, however, that any of these input-vertebrae produces the
same output-vertebra, namely, tick. Thus, we can remedy the above problem by
grouping all input-vertebrae together and representing them symbolically in a

ick
single transition. More precisely, we will only add a single edge 2 L1 18, where

L is the regular language click - click - click™ - tick.
The method we propose consists of the following steps:

Step 1 We identify the nodes of G with an incoming edge labeled with tick. These
nodes are called tick-nodes. The latter are these nodes which can be reached
by an input-vertebra. In Figure 4, the tick-nodes are drawn with double
rectangles.

Step 2 For every node v and every tick-node vk of G, we compute the language
Ly vy containing all p € Vertgie such that v % vhek. Ly, is a regular
language since it is induced by a subgraph of G.

Step 3 For each v and vy, we compute LS, =~ = {Pacticc(p) | p € Lu,uguts the

U, Utick
O

U, Vtick

projection of L, ,,, to the set of outputs and tick actions. L is a set of

o

VU, Utick

output-vertebrae. Since GG is output-bounded, L is a finite set.

Step 4 For each o € Lvo,vucw we compute Li,”tickya' = {n | 3p € Ly vy, such that p

matches both 7 and o}, the set of input-vertebrae the execution of which
may generate o. L] can be defined equivalently as

U, Vtick,0

I -1
Lv,vtick,a = PActi‘rifk(P (J) N LU,Utick)

where P~1(-) denotes the inverse projection function. Since all the opera-
tions in the right-hand side of the above formula preserve regular languages,
Li’vtick’g is a regular language.

After computing L{)’vﬁck,g, we add in M a new edge from v to vk labeled

with L /o,

U, Vtick

At this point, we have obtained a finite, non-deterministic Mealy machine
which has the same nodes as G and the edges of which are labeled with pairs
(L,0) where L is a regular language of input-vertebrae (called the language-
symbol of the edge) and o is an output-vertebra. Unfortunately, we are still not
done. The problem is that language-symbols must be disjoint across the entire
set of edges of M. Only if this holds we have the right to consider two different
(and disjoint) language-symbols L; and Lg as different input symbols in M.5
The example shown in Figure 5 illustrates the problem. If we consider L; and
Lo as different input symbols then we do not find a homing preset experiment
for this machine: L is not a HPX because L, is not accepted at state 2; similarly
for Lo. However, a HPX exists, namely, a - a - tick. In order to be able to detect
this, we need to “split” L into L} and L} and to update the edges as shown in
the figure.

In the general case, this transformation is done as follows:

Step 5 We collect the language-symbols that appear on the edges of the machine
M so far constructed. Let Lq, ..., Ly be the list of these language-symbols.
Then we compute L, ..., LY, the coarsest partition of L; U Ly U ...U Ly

5 Notice that for the output symbols of M there is no such issue: two output symbols
o1 and o3 are the same iff the output-vertebrae o1 and o2 are identical.

(L] ={a* - tick} \ {a - a - tick})/v - tick
(L1 = {a” - tick}) /o - tick |

5/v - tic i
G) (@ . <1/> L, /v - tick (2\

(L2 ={a-a-tick})/w - tick (LY = Ly = {a - a - tick}) /w - tick

Fig. 5. Why language-symbols must be disjoint.

which respects each L;. Thus, L), are pairwise disjoint and each L; is “split”
into a number of L}, namely:

/ /
Li=Lj u---uLj.

Li/o / L./fl/g / L;'j,/o.
Then, we replace each edge v — v’ by the edgesv — v/, .., v =

!/
, v’

Step 5 completes the transformation. Figure 6 shows the result of the trans-
formation technique applied up to Step 4 to our running example (Step 5 is
omitted because it results in a graph too complex to be readable). In the figure,
the tick-nodes are drawn with double circles. The rest of the nodes are drawn
with rectangles. In order not to overload the figure, we group together some
nodes which are equivalent in the sense that no input sequence can distinguish
them (nodes 19 and 21 for example). We also duplicate the nodes 15 and 18. The
list of (non-disjoint) input language-symbols for this machine are: A = tick, B =
click - tick, C' = click - click™ - tick, D = click - click - click® - tick, E = click™ - tick.
The corresponding disjoint input language-symbols are: A’ = tick (= A), B’ =
click - tick (= B), C’" = click - click - click® - tick (= D). The output symbols are:
X =tick, Y = simple - tick, Z = double - tick.

Once we have transformed G into M we can reduce the problem of finding a
digital-clock experiment for A to the problem of finding the corresponding (un-
timed) experiment for M. We omit the definitions of untimed preset/adaptive
homing/distinguishing experiments for non-deterministic Mealy machines, as
they can be found in [1].° The following proposition gives the main result of
this work.

Proposition 3. A has a DPX (resp., HPX, DAX, HAX) iff M has a DPX
(resp., HPX, DAX, HAX).

Checking whether M has a given type of experiment can be done using the
algorithms of [1]. These algorithms permit not only to check existence but also

5 There are slight differences in the framework considered in the above paper, namely,
the machines considered there are input-complete and homing experiments are not
studied. However, extending the definitions and algorithms to cover these cases is
straightforward.

N,

Fig. 6. The simple- and double-click mouse example transformed to a Mealy machine.

to construct an experiment in case it exists. The algorithms are based on the
synthesis of strategies in games with incomplete information. The game is played
between the tester who provides the inputs and the system under test who
provides the outputs. The strategy of the system corresponds to resolving its
non-determinism. The strategy of the tester corresponds to choosing the inputs.
The tester has incomplete information because it only observes the output, not
the current state of the game. Finding preset experiments corresponds to finding
a blindfold strategy for the tester, that is, a strategy which is totally defined in
advance. Finding preset and adaptive experiments is shown in the above paper
to be PSPACE-complete and EXPTIME-complete problems, respectively.

It remains to show how to construct an experiment for A given an experiment
for M. We explain this in the case of preset homing experiments. The idea
carries to other types of experiments as well. A HPX for M is a finite sequence
of language-symbols L - Lo - ... - L,,, where each L; is a regular language of
input-vertebrae. For each i we choose arbitrarily an input-vertebra m; € L; (e.g.,
we may choose a m; of minimal length). We claim that 7 = 7y - - - 7, is a HPX
for A. This is based on the following. First, the fact that different language-
symbols in M are disjoint. Thus, when issuing a certain input-vertebra 7;, there
is no ambiguity as to which language-symbol in M this m; corresponds to. In
our example above, it will be the language-symbol L;. Second, the fact that all
output-vertebrae end with a tick symbol. This ensures that when concatenating
output-vertebrae to form the final output sequence given to the tester, the latter
will have no ambiguity in interpreting the result. In particular, if o1, 09 are two
vertebrae such that oy # o then for any vertebrae o}, 05, 0101 # 02-04. Thus,
if the output sequences are different at the level of M they will also differ at the
level of A.

6 Summary and future work

We presented a method for solving state-identification problems for timed au-
tomata by generating their time-abstracting bisimulation quotient graph and
then transforming the latter into a non-deterministic Mealy machine on which
the same problems can be solved. Although we only studied distinguishing and
homing experiments in this paper, the method should adapt easily to state-
verification and synchronizing experiments as well. In the short term, we plan
to identify upper and lower complexity bounds on the problems studied in this
paper and experiment with a prototype implementation. One direction for fu-
ture work is to consider analog-clock experiments. Apart from their theoretical
interest, such experiments could also be useful in limiting state-explosion, in
particular in cases where the constants involved in the Tick automaton are sig-
nificantly smaller than those in the automaton under test. Still, a solid theory for
implementation of analog-clock devices is lacking, thus should also be topic of
future research. Another direction would be to remove, if possible, the bounded-
output hypothesis used in this paper. Since most realistic systems meet this
hypothesis, removing it is probably only of theoretical interest. However, it gives

rise to an interesting question, namely, studying testing problems in the context
of generalized Mealy machines or sequential transducers. Finally, another inter-
esting direction is to consider related problems such as machine identification
and learning. Some work in this direction has recently been reported in [6].

References

1.

10.

11.

R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nonde-
terministic and probabilistic machines. In 27th ACM Symposium on Theory of
Computing (STOC’95), pages 363-372, 1995.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In
Compositionality, volume 1536 of LNCS. Springer, 1998.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Sys-
tems 111, Verification and Control, volume 1066 of LNCS, pages 208—219. Springer-
Verlag, 1996.

A. Gill. State-identification experiments in finite automata. Information and Con-
trol, 4:132-154, 1961.

O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
In FORMATS-FTRTFT’04, volume 3253 of LNCS. Springer, 2004.

M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In 11th International SPIN Workshop on Model Checking of Software (SPIN’04),
volume 2989 of LNCS. Springer, 2004.

D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. Proceedings of the IEEE, 84:1090-1126, 1996.

E.F. Moore. Gedanken-experiments on sequential machines. In Automata Studies,
number 34. Princeton University Press, 1956.

J. Sifakis and S. Yovine. Compositional specification of timed systems. In 13th An-
nual Symposium on Theoretical Aspects of Computer Science, STACS’96, volume
1046 of LNCS. Spinger-Verlag, 1996.

S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Formal Methods in System Design, 18(1):25-68, January 2001.

