
Some lessons from an experiment using TTCN-3

for the RIPng testing

Annie Floch1, Frédéric Roudaut1, Ariel Sabiguero1,2, and César Viho1

1 IRISA
Campus de Beaulieu

35042 Rennes CEDEX, France
{afloch,froudaut,asabigue,viho}@irisa.fr,

http://www.irisa.fr/armor
2 Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República

J. Herrera y Reissig 565, Montevideo, Uruguay
asabigue@fing.edu.uy

http://www.fing.edu.uy/inco

Abstract. This paper presents an experiment in using TTCN-3 for de-
veloping conformance test suite for the RIPng protocol. Main issues that
any new TTCN-3 user may deal with are highlighted. Some methodolog-
ical constraints imposed by TTCN-3 development process are exposed.
Provided solutions are presented together with main features that have
to be included in TTCN-3 based tools to ease test development.

Keywords: Conformance testing, TTCN-3, RIPng, IPv6

1 Introduction

The European community, through the European Telecommunications Stan-
dards Institute (ETSI), promotes the use of the TTCN-3 language for testing
purposes [1, 2]. Several leading communication protocols and standards followed
the ETSI IEC/OSI 9646 recommendations for testing, both on methodology and
tools. TTCN-3 has been designed to provide a well suited environment for any
kind of testing activity [3–6], from abstract test suites specification to executable
test suites [7, 8]. As it is a new language, there is not enough maturity regarding
its usage and environments that are supposed to ease TTCN-3 usage.

In the Internet community in general, TTCN-3 is not widely adopted. More-
over, it is even unfavorably criticized. This is mainly due to the confusion with
it’s predecessor TTCN-2, which was considered too formal and inadequate for
Internet related protocol testing. TTCN-2 was considered a rigid language and
difficult to generate tests for new protocols. This ’bad reputation’ applies for
testing the new protocols developed for the new version of the Internet proto-
col, called IPv6. Indeed, most of the existing test suites are developed using
IPv6 dedicated languages and tools. The most famous one is the v6eval tool-
box (http://www.tahi.org/) developed by the Japanese TAHI project. In this

context, it is difficult to convince people to use TTCN-3 without showing real
executable test suites for at least a simple IPv6 related protocol.

The objective of the present work is to gain experience using the general
purpose TTCN-3 language and tools while addressing an IPv6 specific test con-
formance problem. The protocol selected for testing was RIPng protocol [9],
presented later in section 2.1. The RIPng routing protocol has the advantage
of being relatively simple (at least compared to other IPv6 related routing pro-
tocols), while an important and widely deployed protocol in small to medium
organizations. This work also aims at proving to the Internet community that
TTCN-3 is ready to be used for testing, covering all steps from abstract test
suites (ATS) specification to executable test suites (ETS). It was also important
identifying main issues when testing with TTCN-3 and providing solutions that
may help simplifying future test generation.

The methodology behind this work was restricted in scope as the goal was to
to be able to obtain ETS to be executed against real implementations during the
IPv6 interoperability event3 organized by the ETSI/PlugTests Service in October
2004. Thus, we followed a straightforward approach due to time constraints:
some decisions were based on time-to-executable-test parameters. On the other
hand, one may notice that this kind of requirements also corresponds to the
real Internet community context of having ETS as soon as the need of testing is
identified.

Amongst all available TTCN-3 tools, the choice was made in favor of a free
of charge toolkit for academic research purpose. Indeed, due to the youngness of
TTCN-3 and our small knowledge in using this new language, it was important
to use a tool which allows libraries source code modifications if needed.

As a result of this work, a RIPng conformance ATS/ETS based on TTCN-3
is now available. These tests have been ran against real implementations during
the last IPv6 ETSI-PlugTests interoperability event. Test results were considered
interesting by participants.

Doing this work and following the approach indicated above, we face main
issues that any new TTCN-3 user may deal with. As other results, these main
issues have been highlighted. Solutions that we provided are explained. Some
ideas that may help in easing test development using TTCN-3 are proposed.

The paper is structured as follow. At first, Section 2 explains the context of
the work. A short description of the RIPng protocol is given followed by main
components that have to be developed when using TTCN-3 for testing. Section 3
outlines different steps to obtain TTCN-3 based test suites for the RIPng proto-
col. Problems encountered during the test development phase and provided so-
lutions are also presented. Section 4 presents some results gathered and lessons
learned from this first experiment in using TTCN-3 for RIPng testing. Some
ideas that may help in easing other similar effort are presented. The conclusion
of this paper is summarized in Section 5, and future work is suggested.

3 An interoperability event is a session of about one week where real implementations
are tested against several test suites provided by test generation companies and
laboratories.

2 The context of the experiment

We have been involved for years developing IPv6 conformance tests suites. The
tool used is v6eval, developed by TAHI project (http://www.tahi.org/). In
such line of research, we are working now to produce test suites for several IPv6
routing protocols.

One important reason behind the present work for us is to find provider-
independent tools and languages for defining test suites. TTCN-3 is presented
as a modern standardized abstract language, test oriented and provider indepen-
dent. Tool providers implement their solutions according to the standards, but
independently. It is widely accepted that multi-provider scenarios lead to more
complete and general languages and tools than single provider ones.

Our primary motivation was to experiment with the ability of TTCN-3 for
our testing purposes with real and concrete IPv6 protocol. On the other hand,
we wanted to show to the IPv6 community that TTCN-3 can be used for this
purpose. One way to prove that is to have executable test suites built with
TTCN-3 language and tools, which can be used during interoperability sessions.

2.1 A short overview of RIPng

RIPng[9] is the logical step of the well known IPv4 family of RIP protocols into
IPv6 world. RIPng stands for Routing Information Protocol - Next Generation.
RIP belongs to the class of algorithms known as ”distance vector algorithms”.
Distance-vector algorithms are based on the exchange of only a small amount of
information. Each network node that participates in the routing protocol must
be a router as IPv6 protocol provides other mechanisms for router discovery,
and it is assumed to keep information about all destinations within the system.

Limitations of RIP include network diameter restrictions, counting to infinity
to resolve loop situations and the lack of metrics based on dynamic. Some of the
limitations are not per se limitations, but they are a consequence of the design of
the protocol. RIP is not intended to be used as Internet’s single routing protocol,
but as an Autonomous System (AS) internal protocol. RIPng is an UDP-based
protocol and listens on the port 521. It is a message oriented protocol (1-request;
2-response), based on distributed intelligence, without any distinguished node.
The figure 1 shows a typical RIPng deployment scenario, where 6 interconnected
routers exchange routing information as request-response messages.

IPv6 protocol defines and implements four different types of communication
destinations, which are: anycast, unicast, multicast and broadcast. This enhance-
ments at network/transport layers provides better support for protocols using
their services. RIPng uses both unicast and multicast mechanisms for inter router
communication, according to the kind of message exchanged. The multicast ad-
dress ff02::9 is reserved as the all-rip-routers group, which is used except in some
non-multicast channels, where explicit network addresses have to be used.

Authentication mechanisms have better grounds on IPv6 protocol stack and
thus, are removed from RIPng protocol itself.

Fig. 1. Autonomous System RIPng messaging

2.2 A short description of TTCN3 main components

TTCN-3 is a pretty new language (current TTCN-3 Core Language[10] was
published on 02-2003) with only a first generation of compliers and tools sup-
porting it. TTCN-3 was designed to be able to incorporate testing capabilities
not present on other programming languages, and was also cleared from OSI
peculiarities (that previous versions suffered). TTCN-3 is now flexible enough to
be applied to any kind of reactive system tests.

The structure of a TTCN-3 test system general structure is shown in the
figure 2. As usual, this test system is supposed to be executed against a system
under test (SUT). Each block in the figure represents an entity implementing
a particular aspect required by a test system. The test system user interacts
with the Test Management (TM) and uses the general test execution manage-
ment functionality. The TM entity is responsible for the global test management.
The TTCN-3 Executable (TE) implements the functionality defined as TTCN-3
modules, which can be structured into sub-modules and import definitions from
other modules. Modules have a definition part (defines test components, com-
munication ports, data types, constants, test data templates, etc.) and a control
part (which is responsible for calling test cases and controlling their execution).
Other test layout dependent parameters are defined at the SUT Adapter (SA)
and the Platform Adapter (PA). A TTCN-3 test system has two main internal
interfaces, the TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime In-
terface (TRI). TCI interface specifies the interface between Test Management
(TM) and TTCN-3 Executable (TE) entities. TRI interface specifies the inter-
faces between TE, SUT Adapter (SA) and Platform Adapter (PA) entities.

Figure 3 shows the modules and main methodological tasks that have to
be developed to produce test suites. The blocks named RIPng Test Cases and
RIPng Templates corresponds to the tasks required to define the TTCN-3 Exe-

Fig. 2. TTCN-3 Test System Architecture

Fig. 3. TTCN-3 based initial approach of test specification

cutable block on figure 2. The blocks named SUT Parameters and PCO Definition

corresponds to parameters required by the SA to interface with the SUT.

3 TTCN3 based test generation for RIPng

We have a broad experience on the IPv6 field, while this is our first practical
approach to TTCN-3. Nevertheless, both our experience and the methodology
used in the IPv6 community matches the principles suggested in [11]. The hands-
on experience with TTCN-3 presented in this paper tries to answer whether the
language and methodology are ready for addressing to the strong needs of the
IPv6 test community. It is worth mentioning that the Internet community is
a very pragmatic environment, who do not care about the way the tools are
designed, but focus on the way they can quickly answer to their needs. Our goal
was to develop tests for RIPng in a short time with existing new tools. This
work documents field experience with TTCN-3, but does not intend to promote
a methodology.

It is known that a black-box approach to conformance testing will only allow
us to exchange signals with the System Under Test (SUT): in this case, signals
are RIPng messages. Changes in the routing tables of the SUT could be observed
only through the way routing is performed by the SUT and RIPng messages sent.
Most routers implement the Simple Network Management Protocol (SNMP) [12],
which allows inspection of network entities (like interfaces, routing tables, etc ...)
specified by the network administrator. It might have been possible to consider
SNMP inspection of the routing tables of the SUT(gray-testing), but as SNMP
is not required for IPv6 compliance, the idea was dropped. Designed test cases
consisted of exchanging routing information with the SUT and later sending IP
probes to selected destinations so as to determine the way routing information
is not only learned and shared by the SUT, but also, applied on its own routing
decisions.

To be able to specify TTCN-3 test cases we had to obtain a tool and de-
fine the needed modules according to our test purposes. It was also required to
provide the SA with proper definitions so that the mapping between TTCN-3
components communication ports and test system interface ports is done. After
this, the ETS is generated.

3.1 Approach for TTCN-3 test specification

Routing Table Entries (RTE) are the key elements exchanged within RIPng
messages. Each router is supposed to have some sort of routing table with at
least the following information: the IPv6 prefix of the destination, a metric,
the IPv6 address of the next router along the path to that destination, a flag
and various timers associated with the route. This suggests that basic routing
operations to test shall be related to RTE maintenance like: RTE creation, RTE
update, RTE deletion, RTE request.

Fig. 4. RIPng testing topology

Maybe the simplest test topology would consist of two routers and the SUT,
each connected to a different physical interface of the SUT. From the test pur-
poses settled we were able to build a more complex network layout, shown on
figure 4. The small box in the center represents the role that the SUT plays in
the topology, while the rest of it, marked as Tester represents what has to be
developed to perform the tests. For specific test purposes we selected -projected-
the relevant routers that allow inspection of the desired property and specified
the particular ATS only considering it. This methodology simplifies test design
because we have a single well known network, and it allows us to concentrate
on details of each test purpose by projection of relevant smaller parts of the
network.

It was required right from the first test definitions to be able to emulate
more than one router to explore even simple protocol behavior and properties.
This fact makes us define and handle several Points of Control and Observation
PCO. The distribution of PCO over single or multiple test execution threads or
processes promotes the discussion between parallel vs. single party testing, or in
other words, a Master Test Component (MTC) with Parallel Test Components
(PTC) vs. single MTC. Protocol complexity was not an issue at this point, as the
protocol itself is simple: both solutions are adequate for test requirements. From
our previous experiences and the lack of time for enough testing of the TTCN-3
parallel possibilities and API, we decided for a solution with a single MTC that

handles all required PCO. The decision of using a single node to emulate the
whole network topology allows us to avoid all parallel synchronization problems.
We believe that naive deployment of PTC corresponding to each emulated router
would have produced test suites with different characteristics. Complexity of
test setup would have increased considerably as separate process on different
machines had to be configured, etc.

Another important decision was the tool selection, which was done consider-
ing all the existing tools known to us (testing tech, Telelogic, Danet, OpenTTCN,
etc.). At the time of the selection all available tools were equally eligible as they
all implemented TTCN-3 required components. Also, none of them provided al-
ready built IPv6 libraries that might have helped with the building blocks for
RIPng tests. The decision was based on our experience testing with C++ tools
and licensing conditions that allowed us not only to use the tool for academic
purposes, but also to have access to the source code when needed. Other as-
pects considered were Integrated Development Environments (IDE) and tools
provided that help with simple and repetitive tasks. From all those testing tools
available the choice was made for Danet’s testing tool (http://www.danet.de).

3.2 PCOs management

Points of Control and Observation (PCO) play a very important role on what
can be observed out of a system. Proper selection of PCO placement would allow
better and detailed protocol inspection. As RIPng is a UDP based protocol the
first test design tried to place PCO at UDP level, as shown in the figure 5.

Fig. 5. RIPng testing architecture, UDP level PCO

It was not possible to code a single tester using TTCN-3 that was able to
emulate several routers. The tester is implemented using underlying operating
system protocol stack services, thus it is not possible to simulate traffic to and
from different routers: it would be necessary to define different IPv6 addresses
and Ethernet MAC addresses. TTCN-3 does not allow dynamic definition of
MAC/IPv6 addresses associated to ports. Another observation is that we do not
only need UDP services: ICMP echos are sent through the SUT so as to check
the routing decisions at a certain moment.

The figure 6 shows all the parts -grayed- of the protocol stack that had to be
addressed with the test. The main difficulty was that when more than one router

Fig. 6. RIPng testing architecture, link layer/IP level PCO

had to be emulated using a single MTC, IPv6 native stack on the host had to
be disabled and all the steps of the communication had to be emulated from
TTCN-3 modules. It would have been also the same situation with several PTC
running on the same machine. Several issues arose during the development phase.
Both the TTCN-3 tool and language were not designed to handle this situation
of multiple host emulation using a single Network Interface Card (NIC). Due to
time constraints we worked out the problems by changing some aspects of the
tool implementation by recoding parts of TTCN-3 primitives. We changed TRI
basic primitives so as to handle link layer PCO, which were not implemented
in Danet’s tool. With the modifications introduced we were able to emulate as
many hosts -form data link layer up- as required from a single real host.

This kind of handling increased the complexity of the ATS as not only RIPng
protocol communications had to be implemented. Required UDP assembly and
disassembly of packets also was needed, including checksum and packet length
calculation. IPv6 layer assembly and disassembly of packets was also mandatory.
In the end also data link layer parameter handling had to be introduced to
transmit packets with the corresponding MAC address of the router emulated.
Moreover, reception of the packets and their corresponding processing had to be
handled.

Other link maintenance aspects of IPv6 Neighbor Discovery[13] (ND) algo-
rithm had to be addressed. IPv6 relies several host autoconfiguration tasks to
the ND. Thus, for correct node emulation, ND signaling is necessary.

TTCN-3 template definition was not versatile enough to allow efficient match-
ing of incoming data. The solution found was to create as many PCO as couples
of communicating addresses required. Due to the way IPv6 handles addresses,
each emulated node was associated to several addresses (unicast, broadcast and
multicast). To fulfill this multiple addressing scenario, several PCO were in-
troduced. The complexity generated by this fact was significant, both at ATS
coding and at tool modification level. ATS legibility was also an important issue
as classification of messages received becomes complicated.

3.3 Coding/decoding, libraries, etc.

As stated before, the communication between RIPng nodes is message-oriented.
Message definition has a low level of abstraction and coding/decoding is done de-

pendent on the position of bits within the frame. Figure 7 presents RIPng packet
as defined in the RFC 2080[9] with its corresponding IPv6 header prepended,
without any IPv6 options.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

~ Source Address ~

| |

+-+

| |

~ Destination Address ~

| |

+-+

| Source Port | Destination Port |

+-+

| Length | Checksum |

+-+

| command | version | must be zero |

+-+

| |

~ Route Table Entry 1 ~

| |

+-+

| |

~ Route Table Entry 2 ~

| |

+-+

Fig. 7. RIPng packet format

Several codification issues needed to be resolved in order to define a TTCN-3
module that abstracts the RIPng packet. First of all, some fields are hard-coded
always, like the protocol version, which is 0b0110 for all IPv6 tests. Other fields
are parameters of templates, like prefixes and prefix length values. Some fields
are parameters of the component, like source and destination addresses (different
from one tested router to other). Finally, others need to be calculated each time
a packet is about to be transmitted, like payload length and checksum values.

We found that there is no easy mechanism, like the ones defined on the RFC
2373[14], for IPv6 address text representation. When defining parameters for a
component, its IPv6 address 2001:2::1 had to be coded. In our environment,
XML files are used (see figure 8).

<RUT_LINK2_GLOBAL_ADDRESS1 moduleId="IPv6RouterInterface\">

<OctetStringValue valueKind="4\">

200100020000000000000000000000001

</OctetStringValue>

</RUT_LINK2_GLOBAL_ADDRESS1>

Fig. 8. Markup defining an IPv6 address

To ease TTCN-3 based IPv6 test generation, a test environment shall provide
standardized methods for network address handling and representation.

TTCN-3 data type definitions were coded to provide abstract description of
IPv6 packets. Templates are built based on data type definitions. Figure 9 shows
an example of a template defined.

template IPv6PacketType RIPngRequestTable_tp

(IPv6AddressType source, IPv6AddressType est,

IPv6AddressType P1, UInt8 PF1, IPv6AddressType P2, UInt8 PF2) :=

{

Ipv6Header := { Version := int2bit (6, 4),

TrafficClass := 0,

FlowLabel := int2bit (0, 20),

PayloadLength := 0, // CALCULATED BEFORE SENDING

NextHeader := NextHeaderUDP,

HopLimit := 255,

SourceAddress := source, // TEMPLATE PARAMETER

DestinationAddress := dest // TEMPLATE PARAMETER

}

Data := { UDPHeader := {

SourcePort := 777, // NEVERMIND

DestinationPort := 521, // SERVICE PORT

Length := 0, // CALCULATED BEFORE SENDING

Checksum := 0, // CALCULATED BEFORE SENDING

Payload := { Command := 1, // RIPng Request

Version := 1,

MustBeZero := 0,

RTE := { // First RTE

IPv6Prefix := P1,

RouteTag := 0,

PrefixLen := PF1,

Metric := 0

},{ // Second RTE

IPv6Prefix := P2,

RouteTag := 0,

PrefixLen := PF2,

Metric := 0

}

}

}

}

}

Fig. 9. TTCN-3 template for a RIPng packet

It can be noted that assigning values to non byte-oriented fields could not
be done in a standard way as it could be done in C++ or Java. Fields like
Protocol Version could be properly type-defined as Bit4, but it was not possible
to assign a ”6” value, like it was possible to do with many others like Traffic
Class or Destination Port. The solution found was to invoke an encoding function
that encoded the ”6” in binary using four digits (Version := int2bit (6,

4)). Even though this is not particularly a problem, the solution does not seem
natural.

Another relevant limitation found was that we were not able to specify a tem-
plate with ”any number of RTE”. The template shown in the figure 9 is defined
for a RIPng packet with exactly two RTE. Pattern matching rules embedded in
TTCN-3 might allow definition of repetitive parts of structures that might help
decreasing the number of data types and templates defined.

Upon message reception, the message classification presented several difficul-
ties, both for handling interleaved reception of RIPng packets and ND ones. This
fact conspired against legibility of the test. It is desirable to have some aggre-

gation of ”similar” packets. In this way, logical separation of message reception
and handling would lead to more structured ATS.

Also some kind of inspection of unknown packets shall be provided. Recep-
tion message queues are processed sequentially. Upon arrival of a non-matching
packet, the reception queue stalls. A ”wildcard” default packet matching rule
was introduced, but TTCN-3 does not provide methods for inspecting the un-
known packet. Reception of unmatched packets was logged and the analysis had
to be done with external tools like ethereal (http://www.ethereal.com/),
something that was important during test debugging and log analysis.

3.4 Test execution

From the methodological point of view we intended to perform stepwise refine-
ments of our ATS until we produce the definitive one. Spiral patterns or incre-
mental iterations could not be performed the way that they should. The amount
of modules and things to be generated delayed the first ETS test production.
The delay introduced until we had the first executable version of the test made
that several different pieces of testing code had to be debugged at once and also,
feedback for refining the test suites was delayed.

The lack or building blocks stopped us from concentrating only on RIPng
templates and test cases. Representation of network topology, like routing tables,
were needed. The lack of IPv6 extensions or libraries also forced us to model
from simple things, like IPv6 packets, to complex behavior like ND algorithms.
We are aware that this was our first TTCN-3 implementation, but all the facts
suggests that the test development cycle was too big and only few iterations
could be performed. The figure 10 shows the effective RIPng test development
cycle and the main tasks needed for closing it. It is worth comparing our initial
test development plan (see figure 3) with the actual work done. Our experience
suggests that network layer support from the tool is needed to reduce the gap
and, consequently, development overhead.

The tests performed in our laboratory were done against both a GNU/Linux

system running Zebra/RIPngd and FreeBSD system running routed6. From the
test development point of view, Danet’s tool gave the required support for ana-
lyzing and debugging purposes. From the test execution point of view we found
that log information was hard to analyze. One possible reason is that our changes
at PCO were not propagated by the tool to the log files, thus, Link Layer infor-
mation was stripped from the packets and did not reach log files.

Five test cases were developed in time. Generated tests were successfully run
during PlugTests, October 2004 with interesting results. But still, we found it
not easy to use TTCN-3 tools compared to what we can do with v6eval.

4 Main issues

The objective of the present work was to gain experience using TTCN-3 language
and tools while addressing an IPv6 test conformance problem. As stated before,

Fig. 10. Test development cycle

one important reason behind the experience was to find provider-independent
tools and languages for defining test suites.

We found that there are no standard extensions to handle IPv6 level data.
Moreover, there is no easy mechanism for standard IPv6 address representa-
tion. For modeling network layer protocols, tester network stack has to be dis-
abled. At that moment all IPv6 implementation details, including packet assem-
bly/disassembly, ND becomes part of our test and had to be emulated. It is
desirable that an IPv6 oriented test tool provide as many tools as possible to
the expert to help him concentrate on the test purpose. Even though we par-
tially succeeded, our test suites rely on PCO behavior not defined in TTCN-3
standard language, thus running them over an of-the-shelf TTCN tool might be
impossible. All our results indicate that it is not possible to provide standard
TTCN-3 test suites for IPv6 protocols based on our test architecture built on
multiple host emulation from a single test node. Experimental results suggest
that the minor changes performed to the tools would benefit TTCN-3 usage
(maybe an IPv6 specialized version of the tools). Field experience supports that
the ability of emulating a complex network from a single host is beneficial from
the point of view of test execution and is worth considering it as a requirement
for the TTCN-3 language.

Ongoing work complementing the RIPng test suite requires usage of other
IPv6 features not implemented in the tool. RIPng relies on the IP Authentication
Header and IP Encapsulated Security Payload to ensure integrity, authentication
and confidentiality of routing exchanges. IPv6 stacks must include IPSec support,
used by RIPng, and we have to manually code IPSec from scratch in TTCN-3
for testing SUT security capabilities.

It seems that TTCN-3 template definition was not versatile enough to allow
efficient matching of incoming data. It might be interesting to have hierarchical
incoming data matching or at least being able to group similar matching rules.
This has a direct impact on ATS legibility as the number of entries in matching
statements grow considerably. We foresee that the problems of expressiveness
would remain also if we use several PTC instead of a single MTC, but the impact
on ATS legibility is so far unpredictable. The experience of such implementation
would help understanding other TTCN-3 aspects, while contrasting single tester
vs parallel testers on the same matter.

We found no way to define recursive or iterative data templates. Repetitive
structures (like routing tables) are sets of individual RTE. The definition of
individual templates for packets with one, two, three, etc. RTE again made the
code difficult to maintain, unnecessarily large and hard to read.

As a consequence of previous limitations, we were unable to find a pleasant
methodology for test creation. It is difficult to abstract parts of the components
and protocols for re-using in future implementations. It takes more time than
expected to produce runnable ETS. This fact makes that feedback from real
execution returns late in test development cycle and the risk of delay due to
redesign need is high.

5 Conclusion

The work presented in this paper shows that it was possible to develop abstract
test suites for RIPng protocol using TTCN-3 language. Indeed, we were able
to fulfill all steps from abstract test suite definition to executable test suite
derivation and execution.

We have presented the most important lessons we found when applying the
young TTCN-3 language to produce test suites for RIPng protocol. We were
able to meet the schedule and the resulting test suite was successfully presented
at 50th ETSI PlugTests event. This fact shows that it was possible to develop
test suites using TTCN-3, but under special circumstances like having access to
the tool source code and changing its implementation.

The use of TTCN-3 is still in its early phases. Success of the language is
tightly related to the availability of tools and their capacity to cope in time
with the requirements of different fields of application. A careful analysis of
enhancement requests has to be combined with pushing industrial requirements.

There are also pending issues regarding language constructs and style that
would lead to readable ATS. It seems that a strong community working and
proposing solutions to those problems is the most feasible way to find the answer.

The time constraint imposed affected somehow the way things were done.
Several important decisions were taken without enough study and experimenta-
tion. Ongoing work addresses more detailed study of identified problems. In this
new stage we are putting special emphasis on all TTCN-3 modular capabilities.
Our goal is to achieve a modular specification architecture that allows easier test
specification.

Among further aspects of the protocol testing have to be addressed are se-
curity and fragmentation aspects.

Acknowledgements. The authors would like to thank Wolfgang Sachse and
Danet technical team for their support during the work.

References

1. Jens Grabowski and Dieter Hogrefe. Towards the third edition of ttcn. In Gyula
Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of
Communicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages
19–30. Kluwer Academic Publishers, 1999.

2. Jens Grabowski, Anthony Wiles, Colin Willcock, and Dieter Hogrefe. On the design
of the new testing language ttcn-3. In Hasan Ural, Robert L. Probert, and Gregor
v. Bochmann, editors, (TestCom 2000) Testing of Communicating Systems, Tools
and Techniques, ISBN 0-7923-7921-7, pages 161–176. Kluwer Academic Publishers,
2000.

3. Andreas Ulrich, Hartmut Köoning, and Thomas Walter. Architectures for testing
distributed systems. In Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors,
(TestCom 1999) Testing of Communicating Systems, Methods and Applications,
ISBN 0-7923-8581-0, pages 93–108. Kluwer Academic Publishers, 1999.

4. Ina Schieferdecker and Theofanis Vassiliou-Gioles. Realizing distributed TTCN-3
test systems with TCI. In Dieter Hogrefe and Anthony Wiles, editors, (TestCom
2003) Testing of Communicating Systems In 15th IFIP Testing of Communicating
Systems, Tools and Techniques, ISBN 3-540-40123-7, pages 95–109. Springer, 2003.

5. Stephan Schulz and Theofanis Vassiliou-Gioles. Implementation of ttcn-3 test sys-
tems using the tri. In Ina Schieferdecker, Hartmut Köning, and Adam Wolisz, edi-
tors, (TestCom 2002) Testing of Communicating Systems, Application to Internet
Technologies and Services, ISBN 0-7923-7695-1, pages 425–442. Kluwer Academic
Publishers, 2002.

6. Theofanis Vassiliou-Gioles, Ina Schieferdecker, Marc Born, Mario Winkler, and
Mang Li. Configuration and execution support for distributed tests. In Gyula
Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of
Communicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages
61–67. Kluwer Academic Publishers, 1999.

7. Roland Gecse and Sarolta Dibuz. An intuitive ttcn-3 data presentation format.
In Dieter Hogrefe and Anthony Wiles, editors, (TestCom 2003) Testing of Com-
municating Systems In 15th IFIP Testing of Communicating Systems, Tools and
Techniques, ISBN 3-540-40123-7, pages 63–78. Springer, 2003.

8. Törö. Decision on tester configuration for multiparty testing. In Gyula Csopaki,
Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of Commu-
nicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages 109–128.
Kluwer Academic Publishers, 1999.

9. G. Malkin and R. Minnear. RFC 2080: RIPng for IPv6. http://www.rfc-
editor.org/rfc/rfc2080.txt, 1997.

10. ETSI. Es 201 873-1 ttcn-3 core language, version: 2.2.1.
http://www.etsi.org/ptcc/TTCN-3%20Downloads/es 20187301v020201p.zip,
2003.

11. Jianping Wu, Whongjie Li, and Xia Yin. Towards Modeling and Testing of IP
Routing Protocols. In Dieter Hogrefe and Anthony Wiles, editors, Testing of
Communicating Systems In 15th IFIP Testing of Communicating Systems, ISBN
3-540-40123-7, pages 49–62. Springer, 2003.

12. D. Harrington, R. Presuhn, and B. Wijnen. RFC 3411: An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management Frameworks.
http://www.rfc-editor.org/rfc/rfc3411.txt, 2002.

13. T. Narten, E. Nordmark, and W. Simpson. RFC 2461: Neighbor Discovery for IP
Version 6 (IPv6). http://www.rfc-editor.org/rfc/rfc2461.txt, 1998.

14. R. Hinden and S. Deering. RFC 2373: IP Version 6 Addressing Architecture.
http://www.rfc-editor.org/rfc/rfc2373.txt, 1998.

