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Abstract. Robustness testing is a part of the validation process which
consists in testing the behavior of a system implementation under ex-
ceptional execution conditions in order to check if it still fulfills some
robustness requirements. We propose a theoretical framework for model-
based robustness testing together with an implementation within the Ir
validation environment. Robustness test cases are generated from both
a (partial) operational specification and an abstract fault model. This
generation technique is inspired from the ones used in (classical) confor-
mance testing - already implemented in several tools. This framework is
illustrated on a small example.

1 Introduction

Among the numerous techniques available to validate a software system, the pur-
pose of testing is essentially to find defects on a system implementation. When
theoretically founded, testing provides an efficient and rigorous way for error de-
tection. For example, formal methods for conformance testing have been largely
investigated in the telecomunication area, and the so-called “model based” ap-
proach was implemented in several tools (e.g., [4,15,9,7,1]) and taken into ac-
count by the standardization bodies (e.g., ISO standard 9646).

Robustness testing. Informally, robustness can be defined as the ability of a soft-
ware to keep an “acceptable” behavior, expressed in terms of robustness require-
ments, in spite of exceptional or unforeseen execution conditions (such as the
unavailability of system resources, communication failures, invalid or stressful
inputs, etc.). Such a feature is particularly important for software critical ap-
plications those execution environment cannot be fully foreseen at development
time. Robustness requirements can then range from very general considerations
(“there is no run-time error”, “there is no system deadlock”), to more specific
properties (“after entering a degraded mode, the system always goes back to a
nominal one”, “some system resources remains always available”, etc.).

Even if this kind of testing has been less studied than in the hardware com-
munity, several approaches have been proposed to automate software robustness
testing. Most of them are based on fault-injection, i.e., they consist in feeding
the system under test with (sequences of) invalid inputs, chosen within a fault-
model, and supposed to exhibit robustness failures. However, they differ in the



way these inputs are chosen and we review below some of them we consider as
the most representatives:

e A first approach consists in generating random inputs obtained by consid-
ering only the input domain definition. This technique is particularly adequate
to test very large softwares (such an operating system), for which neither a
specification nor even the source code is available. Several tools implement this
technique. In Fuzz [14], inputs are randomly generated and a failure is detected
if the system hangs or dumps a core file. In BALLISTA [2], test cases consist
of combinations of both valid and invalid inputs focusing on particular parts
of the system (e.g., the most frequently used systems calls of an operating sys-
tem). The verdict distinguishes between several failure criteria (crash, restart,
abort, silent, etc.). More recently, the RIDDLE tool [8] uses an input grammar
to generate combinations of correct, incorrect and boundary inputs with a bet-
ter coverage of the system functionalities. It also delivers more precise failure
criteria than its predecessors.

e When the source code of the system is available, the generation of relevant
inputs to test its robustness can be improved. For instance it becomes possible
to use some kinds of static analysis techniques to choose the better inputs able
to cover all parameter combinations (w.r.t. an equivalence relation) of public
method calls. This idea is exploited for instance in the JCrasher testing tool [6],
those purpose is to detect undeclared runtime exceptions in Java programs. How-
ever this tool only targets a particular kind of faults (unforeseen combinations
of parameters in method calls), and issue a rather coarse verdict.

e Finally, some techniques may also rely on some abstract specification of
the system behavior to select the test inputs. It is the case for instance in the
so-called FOTG approach [11] (Fault Oriented Test Generation): starting from a
fault introduced in a protocol specification (like a message loss, or a node crash),
it consists in looking (forward) for an error state (a state in which a protocol
fails to meet its requirement), and then to search (backward) for a test sequence
leading from the initial state to this error state. Even if this approach seems
well adapted to fault-tolerant protocols it only deals with single faults (one at a
time), and uses a rather simple specification formalism (Finite State Machines).
A similar technique has been also proposed in the PROTOS project [3]: it consists
in mutating a high-level and abstract description (expressed by a context-free
grammar) of the system behavior (the set of correct interactions) to introduce
abnormal inputs. Test cases are then generated by performing simulations on
this abstract description.

A model-based approach for robustness testing. The objective of this paper is to
extend the model-based approach used in conformance testing to the robustness
testing framework. However, this extension is not straightforward and it raises
the following problems:

e First, robustness is defined with respect to a fault model that may vary
from an application to another. This element usually depends on the application
architecture (e.g., unreliability of some communication links, lack of confidence
in some external components, input channel feed by an untrusted user, etc.) and



needs to be expressed at a rather abstract level. Note that some of these faults
may be controllable by an external tester, whereas some others may not.

e Moreover, specifying the system behavior for any exceptional and /or invalid
execution conditions expressed by a fault model is (by definition) hard to achieve.
Therefore the specification should no longer be considered as “exhaustive” in this
context (it may not always reflect the expected behavior of the implementation).
In addition, in a real size system, the specification of some components may also
be over-approximated (for instance when this specification is partially known,
or too complex).

e As a consequence, test verdicts should no longer be based on a conformance
relation between the implementation and this (approximated) specification, but
directly with respect to the initial robustness requirements.

The solution we propose is based on the following elements: The initial system
specification is expressed in a formalism those operational semantics can be
defined in terms of Input-Outputs labelled transition systems and which explicits
the system architecture (communication links attributes, component interface
and internal structure). The fault model is expressed by syntactic mutations
performed on this specification. The robustness requirements are expressed by
a linear temporal logic formula describing the expected behavior of the system
implementation in terms of tester interactions. Of course, checking whether a
given implementation satisfies or not such a formula should remain decidable
during a test (i.e., within a finite amount of time).

Paper outline The paper is organized as follows: first (in section 2) we introduce
the models we used, and then (in section 3) we define formally our model-based
approach for robustness testing. Section 4 presents an implementation of this
technique within the IF environment, and section 5 illustrates its use on an
example. We terminate by perspectives and future extensions.

2 Models

In this section, we introduce the models and notations used throughout the pa-
per. The basic models we consider are Input-Output Labelled Transition Systems
(IOLTS), namely Labelled Transition Systems in which input and output actions
are distinguished (due to of the asymmetrical nature of the testing activity).

2.1 Input-Outputs Labelled Transition Systems

We consider a finite alphabet of actions A, partitioned into two sets: input actions
Ar and output actions Ap. A (finite) IOLTS is a quadruplet M=(Q™, AM,T™, ¢M:,)
where Q" is the finite set of states, g5, is the initial state, A C A is a finite
alphabet of actions, and T™ C Q™ x AM U {7} x Q™ is the transition relation.
Internal actions are denoted by the special label 7 ¢ A. We denote by N the
set of non negative integers. For each set X, card(X) is the number of element
of X. For each set X, X* (resp. X“ = [X—N]) denotes the set of finite (resp.



infinite) sequences on X. Let ¢ € X* ; 0; or o(i) denotes the i*" element of o.
We adopt the following notations and conventions: Let o € A*, a« € AU {7},
p,q € QM. We write p 5, q iff (p,a,q) € T™ and p S ¢ iff I pg, -+, pn € QN
such that pg = p, p; U(i—tUM pi+1 for i <n, p, = q. In this case, o is called a
trace or execution sequence, and pg---pp, a Tun over o. An infinite run of M
over an infinite execution sequence ¢ is an infinite sequence p of @™ such that
1. p(0) = ¢y and 2. p(4) (&)M p(i+1)). inf(p) denotes the set of symbols from
QM occurring infinitely often in p: inf(p)={q | Vn. Ji. i > n A p(i) = q}. Let V
a subset of the alphabet A. We define a projection operator |y: A*—V* in the
following manner: € [y =¢, (a.0) |y=0 |y if a ¢V, and (a.0) [yv=a.(c [v) if
a € V. This operator can be extended to a language L (and we note L | V') by
applying it to each sequence of L. The language recognized by M is L(M) = {o |
Jp such that p is a run of M over o}. The IOLTS M is complete with respect to
a set of actions X C A if and only if for each state ¢™ of Q™ and for each action
x of X, there is at least one outgoing transition of 7™ from ¢ labelled by = €
X: VpM € Q¥ -Vx € X - Jg™ € Q™ such that pM 5, ¢™. The IOLTS M is said
deterministic if and only:

VpM € QM -Va € AM - pM Sy M AP Sy M = M = ¢ A state p
is said quiescent [16] in M either if it has no outgoing transition (deadlock),
or if it belongs to a cycle of internal transitions (live-lock). Quiescence can be
expressed at the IOLTS level by introducing an extra transition to each quiescent
state labelled by a special output symbol §. Formally, we associate to LTS M
its so-called “suspension automaton” § (M) = (QM, AM U {5}, T°) ¢)) where
T = TM J{(p,5,p) | p € QM A pis quiescent}.

2.2 Specification

We consider specifications, expressed in the IF language !, consisting of compo-
nents (called processes), running in parallel and interacting either through shared
variables or asynchronous signals. Processes describe sequential behaviors includ-
ing data transformations, communications and process creations/destructions.
Furthermore, the behavior of a process may be subject to timing constraints.
The behavior of a process is described as a (timed) automaton, extended with
data. A process has a local memory consisting of variables, control states and
a FIFO queue of pending messages (received and not yet consumed). A process
can move from one control state to another by executing some transition. No-
tice that several transitions may be enabled at the same time, in which case
the choice is made non-deterministically. Transitions can be either triggered by
signals in the input queue or be spontaneous. Transitions can also be guarded by
predicates on variables. A transition is enabled in a state if its trigger signal is
present and its guard evaluates to true.

Transition bodies are sequential programs consisting of elementary actions
(variable assignments, message sending, process creation/destruction, etc) and

! http://www-verimag.imag.fr/ async/IF /index.shtml.en



structured using elementary control-flow statements (like if-then-else, while-do,
etc). In addition, transition bodies can use external functions/procedures, writ-
ten in an external programming language (C/C++). Signals are typed and can
have data parameters. Signals can be addressed directly to a process (using its
pid) and/or to a signal route which will deliver it to one or more processes.
The destination process stores received signals in a FIFO buffer. Signal routes
represent specialized communication media transporting signals between pro-
cesses. The behavior of a signal route is defined by its connection policy (peer to
peer, unicast or multi cast), and finally its reliability (“reliable” or “lossy”). We
use below a simplified abstract syntax and we give its corresponding (informal)
semantics in terms of IOLTS.

Definition 1 (specification syntax).

A specification SP is a tuple (S,C, P) where S is the set of signals, C =
Cnt U Ce*t s the set of queues (internal and external ones) and P is the set of
processes. The external queues describe the interface between the specified system
and its environment. A process p € P is a tuple (Xp,Qp,Tp,qg) where X, is a
set of local typed variables, Q, is a set of states, X, is a set of guarded commands
which can be performed by p, and T, C Q, X X}, X Qp 15 a set of transitions.
A guarded command has the form [ b Ja where a can be either an assignment
x := e, an input c?s(x), or an output cls(e). Above, b and e are expressions,
x € X, is a variable, c € C is a queue and s € S is a signal. The set of types 7;
1s partially ordered by the sub-typing relation <.

We give the semantics of specifications in terms of labeled transition systems.
For each type 7;, we consider its domain D; and we denote by D the disjoint
union of all these domains. We define variable contexts as being total mappings
p: Upep Xp — D which associate to each variable = a value v from its domain.
We extend these mappings to expressions in the usual way. We define internal
queue contexts as being also total mappings § : C*** — (Sx D)* which associates
to each internal queue ¢ a sequence (s1,v1), ..., (Sk, vg) of messages, that is pairs
(s,v) noted also by s(v), where s is a signal and v is the carried parameter value.

Definition 2 (specification semantics).

The semantics of a specification SP is given by a labeled transition system
S=(Q%, A%, T%, q; .,). States of this system are configurations of the form (p,d, ),
where p is a variable context, § is a queue context and ™ = {(q1, ...qn) € XpepQp is
a global control state. Transitions are either internal (and labeled with T ), when
derived from assignments or internal communication, or visible when derived
from external communication. There is a transition from a configuration (p, d, )

to (p',0",7") iff there is a transition qp&w;J in the specification such that the
guard b is evaluated to true in the environment p. The set of actions is partitioned
into A7 and Af, where

$={c?s(v) € A%,c € C°' v € D} and A, = {cls(v) € A%,c € C°' v € D}



2.3 Mutation

The abstract fault model we consider consists in a mutation function defined
on the specification syntax. Formally, let (S, C, P) be a specification. A fault
model is a function that transforms (S, C, P) into (S’,C’, P"). We give hereafter
a (non exhaustive) set of possible transformations. Note that each transformation
corresponds to a fault that can be produced by an external tester.

— Domain extension for a variable. For a process ¢, if an input signal has a
parameter of type t;, then we can extend ¢; in t; where ¢; < t..

— Unreliable channel In a process i, each transition corresponding to an out-
[b] cls(e) A . b . s
— 'g;) is “duplicated” into an internal transition

put on a channel ¢ (p;
(pi—¢;). At the IF level, this transformation simply consists in replacing a
reliable channel by a lossy one.

— Input failure In a process i, if a state has only input entries, then we add a

new transition from this state, labelled by 7 and leading to a sink state.

3 Robustness Testing Framework

In this section we propose a formal framework to test the “robustness” of a
software implementation with respect to a set of robustness requirements.

3.1 Robustness requirements and satisfiability relation

A robustness requirement aims at ensuring that the software will preserve an
“acceptable behavior” under non nominal execution conditions. This notion of
“acceptable behavior” may not only correspond to safety properties (telling that
something bad never happens), but also to liveness properties (telling that some-
thing good will eventually happen). Liveness properties are characterized by in-
finite execution sequences. From the test point of view, only the existence of
a finite execution sequence can be checked on a given IUT (since the test exe-
cution time has to remain bounded). This restricts in practice the test activity
to the validation of safety properties. Nevertheless, an interesting sub-class of
safety properties are the so-called parameterized liveness. Such properties allow
for instance to a express that the IUT will exhibit a particular behavior within a
given amount of time, or before a given number of iterations has been reached.
From a practical point of view, it is very useful to express such properties as
liveness (i.e., in terms of infinite execution sequences), and then to bound their
execution only at test time, depending on the concrete test conditions.

Robustness requirements. In the approach we propose, a robustness requirement
 is directly modelled by an observer automaton O-, recognizing all (infinite) ex-
ecutions sequences satisfying —¢. Several acceptance conditions (Biichi, Muller,
Streett, Rabin, etc) have been proposed to extend finite-state IOLTS to recognize
infinite sequences. For algorithmic considerations, it is more efficient to consider



a deterministic observer. Since any w-regular languages can be recognized by a
deterministic Rabin automaton 2, we choose this kind of acceptance condition
to model our robustness requirements. First we recall the definition of a Rabin
automaton.

Definition 3. A Rabin automaton is a pair (B,T ) where B= (Q", A,T*,q} ;)
is an IOLTS and T = {(L1,U1), -+ ,(Ln,Un)} is a set of couple of subsets of
Q". The language accepted by (B, T) is L(B,T) = {o € A¥ | Ji.

3 an infinite run p of B over o such that inf(p) N L; # 0 and Inf(p) NU; = 0}.

Clearly, deciding if an execution sequence o belongs or not to £(B,7) cannot
be performed during a finite test execution. Therefore, this definition needs to
be refined in order to approximate £(B,7) as a set of finite execution sequences.
The solution we propose is to associate parameters (c;, ¢,,) to each pair (L, U) of
7T in order to “bound” the acceptance condition. This notion of “parameterized”
Rabin automaton is formalized in the following definition.

Definition 4. Let (B,7 ) be a Rabin automaton, C = {(c1y,¢Cuy )y -+, (1,5 Cu,)}

a set of integer pairs. We define inf,(p,n) = {q | card({i | p(i) =q}) > n}.
The language accepted by the parameterized Rabin automaton (B,T,C) is

then: L(B,7T,C) ={oc € A* | 3i.

3 a run p of B over o such that inf,(p,c;,) N L; # 0 and Inf,(p,c,,) NU; = 0}.

Implementation. The Implementation Under Test (IUT) is assumed to be a
“black box” those behavior is known by the environment only through a re-
stricted interface (a set of inputs and outputs). From a theoretical point of
view, this behavior can be considered as an IOLTS IUT=(Q"", A™", T™" ¢/71),
where A" = AT U AF™ is the IUT interface. We assume in addition that this
IUT is complete with respect to A; (it never refuses an unexpected input).

Satisfiability relation. We are now able to formalize the notion of robustness of
an implementation with respect to a robustness requirement .

Definition 5. Let Z be an IOLTS, ¢ a formula interpreted over execution se-
quences of T. An observer O-, = (0,7 °,C°) for ¢ is a parameterized Rabin au-
tomaton such that IOLTS O is deterministic, complete and L(O-) is the set of
execution sequences verifying —p. We say that T satisfies ¢ iff L(Z) N L(O-,) = 0.

3.2 Test architecture and test cases

Test Architecture. At the abstract level we consider, a test architecture is simply
a pair (A, A,) of actions sets, each of them being a subset of A : the set of
controllable actions A, initiated by the tester, and the set of observable actions
A, observed by the tester. A test architecture will be said compliant with an
observer O those action set is A2 = A9 U A9 iff it satisfies the following con-
straints : A? C A. and Ag C A,. In other words the tester is able to control
(resp. observe) all inputs (resp. outputs) appearing in the observer.

2 which is not the case for deterministic Biichi automata



Test Cases. Intuitively, a test case 7C for a robustness requirement ¢ is a set of
execution sequences, controllable, compatible with a given test architecture and
accepted by an observer O-,. This notion can be formalized as parameterized
Rabin automaton.

Definition 6. For a given observer O those action set is A®, a test archi-
tecture (A., Ay) compliant with O, a test case TC is a parameterized Rabin
automaton (TC,T"¢,C"°) with TC=(Q", AT, T, qX,) satisfying the following
requirements:

1. A" = A7°U AL with A5 C A and A7° C A,.

2. TC is deterministic wrt A™, controllable (for each state of Q™ there is at
most one outgoing transition labelled by an action of A.), and input-complete
(for each state of Q"¢ for each element a of A,, there exists exactly one
outgoing transition labelled by a).

3. L(TC) | A° C L£(0)

3.3 Test cases execution and verdicts

A test case 7C for a robustness requirement ¢ is supposed to be executed against
an IUT by a tester. This IUT is then declared non robust (for ¢) if such a test
execution exhibits an execution sequence of the IUT that belongs to £(7C) (in
other words if L(TC) N L(IUT) # 0). In this case the tester should issue a Fail
verdict, and it should issue a Pass verdict otherwise.

Test execution. More formally, Let IUT=(Q"", A™", T™"", ¢/U}) an implemen-
tation, (TC,77°,C"°) a test case with TC=(Q"°, AT, T"°, ¢S,), and (A, Ay)
a test architecture. The test execution of TC on IUT can be expressed as a par-
allel composition between IUT and TC with synchronizations on action sets A.
and A,,. This test execution can be described by an IOLTS £=(Q¢, A%, T¢, ¢f.;¢ )
where A° = ATC, and sets Q¢ and T7° are defined as follows:

e ()¢ is a set of configurations. A configuration is a triplet (p*<, p'T, X) where
pTte e QT p"T € QT and A is a partial function from Q"¢ to N, which counts
the number of times an execution sequence visits a state.

e T¢ is the set of transitions (p™,p'"", \) L. (¢7°, ¢"", \) such that

- pTC i’TC cha PIUT i>IUT qIUT and
Ag™©)  ifge¢ ) (LFCuUr)
— M(g™°) = i€{l, -k}
(@)=Y agm) 11 it € U @reuor)
i€{l, -k}

The initial configuration g5, is (gins: @imit » Ainit ), Where for all g, Ainit(¢) = 0.

T*¢ describes the interactions between the IUT and the test case. Each counter
associated with a state of LT° UU;"® is incremented when an execution sequence
visits this state.



Verdicts. Test execution is supposed to deliver some verdicts to indicate whether
the IUT was found robust or not. These verdicts can be formalized as a function
Verdict on execution sequences of £ to the set {Pass, Fail}. More precisely:

— Verdict(o) = Fail if there exists a run p of £ over o, € {1,2,...,k} and

[ € N such that:
1. p(D) = (p7 % 0", N), pf'© € LT and N(p]©) > ¢, and
2. Vm e [0---1].p(m) = (g8, @™, Am) A gl € U = A (gpC) < ey,

— Verdict(o) = Pass otherwise.

In practice the test case execution can be performed as follows:

e At each step of the execution the controllability condition may give a choice
between a controllable and an observable action. In this situation the tester can
first wait for the observable action to occur (using a local timer), and then choose
to execute the controllable one.

e Formal parameters C™© are instantiated according to the actual test envi-
ronment. A Fail verdict is issued as soon as an incorrect execution sequence
is reached (according to definition above), and a Pass verdict is issued ei-
ther if the current execution sequence visits “too many often” a state of U
(Am(gne) > cu;), or if a global timer, started at the beginning of test execution,
expires. This last case occurs when an execution sequence enters a loop without
any state belonging to L} or U;"°.

3.4 Test graph

Intuitively, the purpose of a test graph TG is to gather a set of execution se-
quences, computed from a (mutated) specification S and an observer O, defined
over a test architecture TA, and belonging to £(O). The test graph is defined
below by computing an asymmetric product ® between S and O.

Definition 7. Let TA = (A., A,) a test architecture, Sy a specification and
S=(Q%, A%, T%,q5 1) its deterministic suspension automaton with A* C AU A,,.
Let (0,T9,C°) be an observer with O=(Q°, A°,T°,q¢S,,) and

TO = (LY, UP), (LS, UY), ..., (LY, UP)) such that TA is compliant with O.
We define the Parameterized Rabin automaton (TG, TT¢ CT%) where

TG=(Q™, A™ T qr%,), such that Q™ C Q° x Q°, A™ C A%, ¢f¢ = (¢5,45),
and Q™, T™ are obtained as follows:

(ps,Po) ——=re (4s,q0) iff ps ——1s qs and po ——ro go

The pair table TTC is equal to (LT, UL¢), (L3¢, UL9), ..., (L, ULC)) where
L7 and L° are defined as follows:

L ={(ps,po) €Q" | qo € L?} U/ ={(ps.po) € Q™| g0 € U}



3.5 Test cases selection

The purpose of the test case selection is to generate a particular test case TC
from the test graph T'G. Roughly speaking, it consists in “extracting” a sub-
graph of TG controllable with respect to the test architecture, and containing a
least a sequence of L(T'G) (and hence of L(O)).

Clearly, to belong to L(TG), an execution sequence of TG has to reach a
cycle containing a state belonging to some distinguished set LT¢ (for some i) of
the pair table associated to T'G. Conversely, any sequence of T'G not leading to
a strongly connected component of T'G' containing a state of L7 cannot belong
to L(T'G). Therefore, we first define on TG the predicate L2L (for “leads to L”),
to denote the set of states leading to such a strongly connected component:

L2L (¢) = 3(q1, g2, w1, we,w3). (q 2 e @1 =21 @ = pre g and Fi. go € L7%)

We can now define a sub-graph of T'G, controllable, and containing at least
a sequence of £(Q). This subset contains all non controllable transitions of 77¢
(labelled by an element of A, ), and at most one (randomly chosen) controllable
transition of T7¢ leading to a state of L2L when several such transitions exist
from a given state of TG. More formally, we introduce a selection function:

select (T7) = {(p,a,q) € TTC |

a€ A, ora= oneof ({a; € Ac | p “5rra ¢; and L2L (¢;)})}

Finally, this subset of 77¢ remains to be extended with all non controllable
actions of A, not explicitly appearing in 77, to ensure the input completness
of the test case. The definition of a test case TC is then the following:

Definition 8. let (TG, TTY,CTY) with TG=(Q", A™, T qI%,) a test graph
and TA = (A., A,) a test architecture. A test case (TC,TT¢ CTC) is a Param-
eterized Rabin automaton with TC=(Q", A T q7%,) such that ¢} ¢ = ¢Z'“,
ATC = ATG U A, QTC is the subset of QTY reachable by TTC from ¢I'“ and
TTC is defined as follows:

1T = select(TT9) U{(p,a,p) | a € Ay and Aq. (p,a,q) € T"}

4 Implementation

We present in this section a complete tool chain which automates the generation
and execution of robustness test cases for Java programs. This tool chain is
built upon the IF validation environment [5], and it integrates some components
developed within the AGEDIS project. First we give the overall architecture of
this tool chain, and we briefly explain how the main operations described in the
previous sections have been implemented. Then we illustrate its use on a running
example.

4.1 Platform Architecture

The overall architecture of the tool chain is depicted in figure 1. It is built upon
several existing tools: model exploration is performed using the IF simulator



integrated into the IF environment, test generation uses some of the algorith-
mic techniques borrowed from the TGV tool [12], and test execution relies on
the SPIDER [10] test engine developed in the AGEDIS project. This platform is
dedicated to particular specification and target languages (IF and JAvaA), but
a similar architecture could be used with other specification formalisms or pro-
gramming languages. The platform inputs are detailed below.

Fault Model

Test Architecture

degraded
specification

suspension
IOLTS

simulation
determinisation

complete test
graph

Test Enging

Fig. 1. Platform for the robustness testing

Implementation Under Test. the IUT is a (distributed) multi-threaded Java
program, only accessed through a set of public methods (black box IUTs). The
corresponding formal model is an IOLTS where input (resp. output) actions
correspond to method calls (resp. return values).

Test architecture. Formally, the test architecture is a pair (A, A,,) of actions sets
(section 3.2). In this particular platform the controllable actions (A.) are the set
of methods that can be called by an external tester and the observable actions
A, are the values returned to the tester when these method calls terminate.

Specification. In our context, the specification (partially) describes the expected
behavior of the IUT under some nominal execution conditions. It is written using
the IF formalism (see section 2.2 for a short description). In practice this IF spec-
ification can be automatically produced from high-level specification languages
(like SDL or UML).

Fault model. The fault model lists the potential failures and/or incorrect in-
puts supposed to occur within the actual execution environment. It is directly
expressed by a set of syntactic mutations to be performed on the specification.



Observer. The observer is a parameterized Rabin automaton.

4.2 Implementation issues

We now briefly sketch the main operators used in this platform to implement
the test generation and test execution technique proposed in this paper. These
operators are depicted by square boxes on figure 1.

Mutation. The mutation operation is a purely syntactic operation performed on
the abstract syntax tree of the IF specification.

Simulation and Determinisation. This operator produces a deterministic sus-
pension IOLTS from the mutated IF specification. It consists in three steps that
are combined on-the-fly: 1. generation of an IOLTS from the mutated IF spec-
ification, 2. computation of the suspension IOLTS ; this step introduces the ¢
actions, and 3. determinisation and minimization with respect to the bisimula-
tion equivalence.

Product. This operator computes the test graph from the deterministic sus-
pension IOLTS associated to the mutated specification (Sgq) and the observer
(Sobs), as defined in section 3.4. It is implemented as a joint traversal of these
two IOLTSs.

Test Selection. The test selection operation consists in extracting a test case
TC from the complete test graph TG. T'C is a parameterized Rabin automa-
ton, controllable, and such that £(TC) C L(TG). Practically this operation is
performed in two successive steps (section 3.5):

Computation of state predicate L2L: This computation is based on an algorithm
due to R.E. Tarjan to compute in linear time the strongly connected components
(SCCs) of TG. When necessary, an SCC can be refined into sub-SCCs to obtain
the elementary cycles containing a distinguished state of the test graph.

Computation of function select: Once the state predicate L2L has been computed
on TG, it remains to extract a sub-graph of T'G' containing only controllable
execution sequences leading to a state satisfying L2L.

Test case Translator and Test Execution Engine Test execution is performed
using the SPIDER test engine [10] developed in the AGEDIS project. This tool
allows the automatic execution of test cases on multi-threaded (distributed)
JAVA programs. Test cases are described in an XML-based format defined within
Agedis. Extra test execution directives (supplied by the user) can also be used
to map this abstract test case onto the actual implementation interface.

5 Example

We illustrate our approach on a small example describing a simple ticket ma-
chine. The system architecture is presented on figure 2. It consists of two com-
ponents: a coin tray, able to store coins received from a user, and a machine
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Fig. 2. Ticket machine architecture

controller, managing the interactions with this user. These components commu-
nicate each other by message exchanges via two channels C and A. The external
user communicates with both components via the channel U.

Under nominal conditions, the expected behavior of the system is the following:
the user puts some coins in the coin tray (v?coiN(c)), where possible coins values
¢ belong to the set {1,2,10}. The controller receives these coins from the coin
tray, ones by ones, (c?COIN(c)), and increases the user credit. The user can then
ask for a ticket (u?PRINT). If his credit is sufficient, a ticket is delivered by the
controller (U'TICKET), otherwise the machine simply waits for more coins. When
a ticket is delivered the machine also needs to return some change to the user.
This change is computed according to the coins available in the coin tray. To
do that, the controller asks the coin tray about its current contain (A!Ask). The
coin tray then returns its answer (AIANSWER(nl0, n2, nl)), where n10, n2 and
nl denote the number of coins available in each category. From this information
the controller can then compute the change (function CompChange()) and ask the
coin tray to return it to the user (C'RETURN.COIN(...)). Finally, instead of asking
for a ticket the user may also choose to cancel the transaction (U?CANCEL) and
the machine should then returns to him all the coins he put (C'RETURN_COIN(...)).
This specification is formalized on Figure 3 (left, without considering the dashed
transitions).
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credit =0 2 U!TICKET 3 OTHER
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{n10,n2,n1}=CompChange((credit — expense)) N A?ANSWER(n10,n2,n

Fig. 3. Controller specification and robustness property.



5.1 Robustness test cases generation

We focus here on the controller component and we consider a test architecture
where inputs received on channels U and C are controllable, outputs sent on
channel C are observable, and communications on channel A are internal. The
robustness property we want to ensure is the following: “If the controller receives
at least one coin (C?COIN(c)), then it rust output a CIRETURN_COIN action”.
Figure 3 (right) gives a parameterized Rabin automaton expressing the negation
of this property. In this particular example, we assume that in the real execution
environment two “faults” may happen: the user may silently stop at any time
all interaction with the machine, and communication failures may happen on
channel A. Here the mutation operation introduces two new controllable actions
(Figure 3, dashed lines): abort, starting from state 1 and leading to a sink state,
and disconnect starting from state 3 and leading to state 4. The test generation
technique described in the previous section produces the two (parameterized)
test cases depicted in figure 4 to invalidate the robustness property. The first
one involves a user abortion and the second one a communication failure.
[credit < price]

credit = credir + ¢
CICOIN(c)  [credit >= price] OTHER

CICOIN() _ abo F
I(: ) (c():> " OTHER IO Wc UPPRINT o disconnect |
Y oicong Y gﬁ

credit = credir + ¢
C!RETURN_COIN(n10,n2,n1)

Fig. 4. Possible test cases.

5.2 Implementation and test execution

Two Java implementations of the controller have been written. The first one
simply reproduces its expected behavior under nominal conditions. Running the
above test cases on such an implementation (after instantiation of parameters ¢
and ¢, ) leads to a Fail verdict: for both tests there exists a controllable execution
sequence for which the limit value of the ¢; parameter is reached. The second one
(Figure 5) uses a timer T to detect user quiescence and communication failures.
In such situations it calls a special function (CompDefChange()) to compute defaults
coin values to return back to the user. This implementation is now considered
as robust: the verdict obtained is Pass.

6 Conclusion

The current work extends a model based approach used in conformance testing
to the validation of robustness properties. Starting from a (possibly incomplete)
system specification it consists in producing a “mutated” specification by ap-
plying syntactic transformations described by an abstract fault model. This new
specification is model-checked against the robustness requirements to produce
diagnostic sequences. These diagnostic sequences are then turned into abstract
test cases to be executed on the implementation. Robustness requirements are
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Fig.5. A “robust” implementation of the controller.

bounded liveness properties expressed by parameterized automata on infinite
words. The corresponding test sequences are instantiated at test time to keep
the test execution finite. This technique has been implemented inside a com-
plete tool chain (integrating the test generation and test execution phases) and
experimented on small Java programs.

Compared to existing robustness testing techniques (based on fault injection),
the main advantage of this approach is to much better target the test cases with
respect to expected robustness requirements. In particular “faults” are injected
by the tester only when necessary, and the verdicts produced are sound (a Fail
verdict always indicate a violation of a robustness requirement). However, this
approach is effective only if there exists some (basic) formal specification of the
software under test, describing at least some expected execution scenarios under
nominal conditions (like UML use cases, or sequence diagrams).

A first perspective is to improve our implementation to validate this approach
on larger case studies. A particular point that would require more investigations
is the (static) refinement of the fault model according to a given specification
and robustness property. This would allow to consider more accurate mutations
and would contribute to limit the state explosion inherent to this kind of ap-
proach. Another perspective is to extend this framework to deal with timed
models [13]. Thus, it would be possible to consider other kinds of faults (stress
testing) or properties (response time). The IF specification language already in-
cludes a timed model which makes this extension relevant.
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