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Abstract. This paper proposes a technique to generate test sequences
to check the conformance of an implementation of a feature-rich com-
munication system to its specification, as well as to detect the interac-
tions between the features of the system. A concept called color span is
introduced to measure the extent of the interactions between different
features. A modified Chinese postman tour algorithm is proposed to
produce an approximate minimum-cost and minimum color span tour
of the transition graph of a finite-state machine. Test generation using
the proposed algorithm for the SIP-based Internet telephony end system
and for the Link Management Protocol are reported.

1 Introduction

With the convergence of 3G wireless and mobile Internet, more and more feature-
rich communication systems are designed and deployed. An example is the popu-
lar MSN messenger client which provides voice call, instant messaging and video
communication services. A feature-rich communication system is a system that
can offer many value-added services to its users, in which different services may
interfere with each other, and result in a problem known as feature interaction
[1]. For example, Internet telephony end systems can offer basic call functions,
as well as some value-added services including automatic call answering, call for-
warding, call waiting, call redirection, etc. When a user wants to apply a feature
to automatically accept an incoming call in addition to an existing call forward-
ing feature, the interaction between automatic call answering and call forwarding
occurs. Feature interactions also occur in very low level communication protocol
systems. In [2], we have identified some feature interactions in the protocols for
core optical networks. Interactions between features of a communication system
are usually caused by different reasons such as resource sharing or requirement
violation, and can be identified through various ways including protocol verifi-
cation, simulation, or testing. In this paper, we focus our discussion on how to
identify feature interactions in a real system by means of testing.

As stated in [3], a communication protocol system can be specified as a
deterministic finite-state machine (FSM), conformance test can be to present a
method to test whether there is a discrepancy between the specification and the
implementation of an FSM. Typically, the implementation of a system is tested



for conformance by applying a sequence of inputs from an external tester, and
then verifying that the corresponding sequence of outputs is what is expected|[3].
Lots of work has been done on generating test sequences for FSM’s [4][5][6][7],
and all these work focus on finding a tour of the transition graph of the FSM
that meets certain coverage criteria, such as a transition tour [7], or a postman
tour [3].

With the richness of features in modern communication systems, it is impor-
tant to make sure that a feature that works correctly in a stand alone mode also
works as expected in an integrated multi-feature system. Thus to guarantee the
reliability and usability of whole system, identifying the interactions between
features becomes more important. Generating conformance test cases that at
the same time can detect feature interactions in a feature-rich communication
system can be an efficient way to achieve this goal. Unfortunately we have not
seen any previous work on this aspect.

This paper describes a technique for generating optimal test sequences for
an implementation of a feature-rich communication system with an emphasis on
detecting the system’s malfunctions resulted by interactions between different
features. The mechanism proposed in this paper tries to interleave the opera-
tions of different features as much as possible such that interactions between
different features can be tested. A concept called color span is introduced in
this paper to specify the interleaving extent of multiple features, then an opti-
mization technique is used to find test sequences with minimum color span such
that transitions from different features interleave with each other as much as
possible in order to test interactions between different features.

In section II, some preliminary knowledge on graph theory and finite au-
tomata theory is introduced. Section III describes the algorithm to generate test
sequence minimal in time and with the minimum color span, section IV ex-
tends the algorithm to generate test sequence with minimum color span only. In
Section V, the algorithm is applied to generate test sequence for the SIP-based
Internet telephony end systems. In Section VI, we report the conformance test
sequence generated for the Link Management Protocol [15]. The paper concludes
in section VII.

2 Preliminaries

2.1 Graphs

Let G = (V, E) be a labelled directed graph with vertex set V', edge set E, where
V ={vy,---,v,} and m = |E|. G may contain loops and parallel edges, which
are distinguished from one another by different labels. An edge e from vertex v;
to v; is represented by a triple (v;, Le,v;), where L, is a label such that each
edge in E has an unique representation.
A walk in G is a finite, non-null sequence of consecutive edges:

W = (viy, L1,v4y) (0ig, L2, vi) -+ - (Vi,_,, Lr—1,v;,). Note that in a walk, a partic-
ular edge may appear more than once. Vertex v;, is called the origin of W, and



v;, the tail of W. A tour is a walk that starts and ends at the same vertex[8].
An Eulerian tour of G is a tour which contains every edge of E exactly once.

Graph G is strongly connected if for any pair of distinct vertices v; and vj,
there exists a walk W in G with v; as the origin and v; as the tail[9].

The in-degree and out-degree of a vertex v; in G are denoted by d;(v;) and
df(v;), respectively. The index G is omitted if G is obvious in the context. A
directed graph is balanced if for every vertex v;, d¥(v;) = d~(v;). For each
v; € V,set o; =d (v;) —dt(v;). Let S = {v; € Vl]g; > 0}, T = {v; € V|o; < 0},
o= Y. o

v;ES

A postman tour of G is a tour which contains every edge of E at least
once. The Chinese postman problem is to find an optimal (minimum-cost)
postman tour of a directed, strongly connected graph G; such a tour is called a
Chinese postman tour.

2.2 Finite-State Machines

A given finite-state machine (FSM) M can be taken as a directed graph G =
(V,E), where V = {v1,-- -, v, } represents the specified states of the FSM and a
directed edge represents a transition from one state to another in the FSM [3].
In this paper, it is assumed that G is strongly connected.

The following symbols are introduced in [3] and we include them here for the
convenience of the reader. There is an edge in E from v; to v; with label ay /o
if and only if the FSM M, in state s; upon receiving input a; produces output
o, and moves into state s;. When there are multiple transitions from state s;
to s;, there are multiple parallel edges from vertex v; to v; in the corresponding
graph G. Therefore, an edge in G is fully specified by a triple (v;, L,v;), where
L = ay /o, L = qy, and L(®) = ¢;. It is assumed here that M is a deterministic
FSM, that is, for a vertex v; € V' which has two outgoing edges (v;, L1,v;) € E,
and (v;, La,v;) € E, Lgi) # Lgi), although it is permissible that Lg") = Léo). In
this case, a walk W in G which corresponds to a sequence of state transitions is
specified by its origin(the initial state) and a sequence of input operations.

For a state machine that describes the behaviors of a feature-rich commu-
nication system, different features will often trigger different transitions of the
state machine. For the ease of better presentation, we assign each system feature
with a distinguished color, then G can be transformed into a colored graph, in
which the color associated with each edge is the same as the color of the feature
that realizes the corresponding transition in M.

Let G = (V, E, C) be a colored graph with vertex set V, edge set E and color
set C, where V. = {v1,---,v,} and n = |V|;m = |E|, C = {c1,---,c,}. Each
edge e € E is assigned a color ¢, € C.



3 Problem Statement

3.1 Mathematical Model

In an implementation, features of a complex communication system are often
implemented in different processes or invoked according to different rules, thus
concurrent operation of these features are inevitable. Interleaving the operations
of different features and invoking features in different orders may result in some
intricate interaction problems. Previous research efforts have been mostly fo-
cused on the general conformance testing problem, whose purpose is to establish
the confidence that a given implementation is in compliance with every func-
tion/feature description of a specification. It emphasizes on checking the com-
pliance of individual feature of a system. However, many field observations have
shown that even if an implementation passes the tests for all individual features,
it still might fail to perform a function when there are other features running in
the system concurrently. There is little work on systematically generating test
sequences to test the interactions between the features.

In this work, we study the test sequence generation problem with a stress on
testing the interactions between different features. We propose an algorithm to
generate test sequences with requests from different features interleaving with
each other as much as possible. A parameter to measure the interleaving extent of
features in a test sequence is defined at first, then the test sequence generation
problem is stated as an optimization problem which strives to maximize the
interleaving extent of features, and finally an algorithm is proposed to solve the
problem.

For a given walk W of a colored graph G, the associated color sequence of
W is denoted as CS(W) = ¢;,,Cip, "+, Ci,_,, Where ¢;; is the color assigned to
edge €; = (Uij,Lj,U,'j+1) in G.

For an edge e; in W, its color span in W, sw(e;), is defined as the length
of the longest same color sub-walk in W starting with e;. For example, if
W = (vq,l1,v2)(va,1la,v3)(vs,13,v4)(v4,ls,vs5) and the color sequence of W is
CS(W) = cl,cl,cl,¢2, according to this definition, the color span of edge
e1 = (v1,l1,v9) in W is 3 and the color span of edge e3 = (vs,l3,v4) in W
is 1. Based on the color span definition of edges in a walk, we can also give the
color span definition for a walk. The color span of a walk W is defined as the
maximum of all the edge colorspans in the walk, s(W) = maz{sw/(e;),e; € W}.
If all edges in a walk are of the same color, the colorspan of the walk is the length
of the walk. The longest same color sub-walks in a walk W are also called the
critical sections of W.

For example, given a walk W = ey, e, €3, €4, €5, €5, €7, and its color sequence
CS(W) = c1,c1,¢1,¢1,C2,Ca,c3, the color span of W is 4 and the critical section
of W is e1,ea,e3,eq. If all edges in W are of the same color, e.g., CS(W) =
€1,¢1,C1,C1,€1,C1,C1, then s(W) = 7.

As we have described earlier, for a state machine M, transitions resulted
from different features are assigned with different colors. Given a test sequence
consisting of the edges in M, the color span of the test sequence reflects the



interleaving extent of features. The larger the color span, the less the interleav-
ing. Thus different from the traditional test sequence generation problem, which
tries to find a Chinese postman tour, we need to find a postman tour which
has the minimum color span. In summary, the problems we need to solve are as
follows:

Problem 1: Given a colored digraph G = (V, E,C), find a postman tour T
such that |T'| and s(T") are both minimized, where |T'| is the number of edges in
T and s(T) is the color span of T'.

Problem 2: Given a colored digraph G = (V, E,C), find a postman tour T
such that s(7") is minimized.

The first problem is to find a Chinese postman tour such that s(T') is min-
imized, while the second problem only has one optimization object that is to
minimize s(T). For the optimal solution T' to problem 1 and the optimal solu-
tion T" to problem 2, it is easy to prove that s(T") < s(T), |T'| < |T"|.

3.2 Algorithm for Problem 1

If a colored digraph G is an Eulerian graph, Problem 1 is reduced to find an
Euler tour T in G such that its color span s(T) is minimized. If G is not an
Eulerian graph, from [11] we know that G must have un-balanced vertex, and
the number of such un-balanced vertex is even. For any postman tour of G, some
edges are traversed more than once. Suppose that a postman tour T passes edge
eij = (vi,v;) for k;; times, we add k;; — 1 new edges between v; and v; and
associate each new edge with the same color as e;j, these new edges are called
the augmented edges of e;;. The resulted augmented graph is denoted as G,
then G is an Eulerian Graph, and T is an Euler tour of G, apparently, s(T) is
determined by the color of the newly added edges and the way to form the tour.

To solve Problem 1, we need augment graph G to guarantee the existence of
an Fuler tour and then from the augmented graph find such a tour with the
minimum color span. The solution can be summarized as the following steps:
Step 1. Get Ey C E in G with the condition that when G is augmented with
only edges in Ej, the new graph G has an Euler tour.

Step 2. On the condition that step 1 is satisfied, choose Ej that has the minimum
number of edges.

Step 3. For G, augmented from G using only edges in E!, find an Euler tour
T, such that s(T') is minimized.

When an edge set satisfies condition in step 1, it is referred to as a feasible
augment edge set of G. When an edge set satisfies condition in both step 1 and
step 2, it is referred to as the optimal augment edge set of G. If a tour satisfies
condition in step 3, it is called the optimal tour.

In [11], the author gives an algorithm to find the optimal augment edge set for
G in polynomial time, so we only need to find an optimal tour on the augmented



Eulerian graph G. In the following we will show that to find such an optimal
tour on G is a NP-Complete problem.

Theorem 1. For a given balanced graph G = (V,E,C), and an integer k <
|E|, deciding if there is a tour T in G that traverses each edge once and has a
color span s(T) < k is a NP-Complete problem.

Proof. For a given colored digraph G = (V, E,C), a dual graph G = (U, A, C)
can be constructed according to the following steps:

Step 1: U = E, that is, each edge in G corresponds to a node in G.Letu; € U
corresponds to e¢; € E.

Step 2: For e; = (vr,vs),€; = (vp,vg) € E, if vs = vp, that is, e; and e; are
adjacent via node v, in G, then (u;,u;) € A4, in G.

Step 3: C has an initial value of NULL. For any (u;,u;) € A, if c(e;) = c(ej) in
G, that is, e; and e; have the same color in G, then é&(u;,uj) =1, C = CU{1};
otherwise, C(u;,u;) =n,n € Nt andn ¢ C, C = C U {n}.

By above construction, if two adjacent edges in G' have different colors, their
corresponding nodes are connected in G by an edge with a color different from
all the other colors assigned to edges in A.

Fig. 1 (1) (2) give a graph G and its dual graph G. The label on edges of
Fig.1(1) is (I,c), where [ is the the edge index and the c¢ is the color assigned
to the edge. The label edges of Fig.1(2) is the color assigned to the edge. Each
edge index in Fig.1(1) corresponds to a vertex in Fig.1(2).

(1,1

(1) (2)

Fig. 1. A Prime Graph G (1) and its Dual Graph G(2)



Finding a tour T in G that traverses each edge exactly once and has s(T') < k
is equivalent to finding a simple path p in G that passes each node in G exactly
once and has s(p) < k — 1. As a special case of this problem, if all edges in G
have the same color, the problem is equivalent to finding a travelling salesman
path in G, which is known to be a NP-C problem. So the original problem is
also NP-Complete.

In the following we give a heuristic algorithm to find an Euler tour in G
with an approximately minimum color span in time complexity O(m), where m
is the number of edges of G.

Algorithm 1: Find an FEuler tour with an approximately minimal color span
on a balanced digraph.

Input: G = (V, E,C) /* a balanced colored digraph */

Output: An Euler tour with an approximately minimal color span.

begin

1. :=0.

2. Get an arbitrary vertex v; € V, call subroutine getCircuit(vy,G) to get
a circuit T; with v; as the beginning and ending vertex.

3. G:=G-T1T;,if G=NULL, stop and return 7T; as the optimal tour.

4. Otherwise, arbitrarily select a vertex v in T; such that dg(v) >1

5. Call subroutine getCircuit(v,G) to find a circuit C starting from

and ending at v; Replace v in T; with C' to get Tj4q;
6. i:=1i+1; Go to step 3.
end

Procedure getCircuit(v,G)
Output: A circuit in G that begins with and ends at v with an approximately
minimal color span.

begin

Let E :={e1,e2, --,ex} be the set of all edges in G.

Arbitrarily select an edge e = (v,v') € E, T := ¢;

E := E\e, v1 :=v,vy :=';

If vo = v, return T}

If 3¢’ = (vq,v") € E such that the color of €' is different from (vy,vs)
T:=T-¢'; /* append edge e to T */

otherwise arbitrarily select an edge e’ = (vq,v") from E
T:=T-¢;

e :=¢', Goto step 3;

CRNU ™ WN =

end

Combining the algorithm to find an optimal augment edge set for G given in
[11] and algorithm 1, we give a heuristic solution to Problem 1 in Algorithm 2.



Algorithm 2: A Heuristic Solution to Problem 1
Input: G = (V,E,C) /* astrongly connected colored digraph */
Output: A shortest Postman Tour with an approximately minimal color span.

begin
1. For each v; € V, set o; :=d ™ (v;) — d* (v;).
2. Ifo; =0,i=1...n, then set G:= G goto step 7; Otherwise,
3. Let S={v; € V]o; >0}, T = {v; € Vl|o; < 0}. For Yv; € S,Vv; € T,
find the shortest path from v; to vj;
4. Construct a complete bi-partite graph H = (X,Y, Eg, W),
with X = {z;,|lvi € S,p=1,2,---,0;},
Y= {yj,q|vj € Taq =12,---, |Uj|}7 En = {mi,Pyj,q|$i,P € X7yj,q € Y}
Associates each edge z;py;,q in H,p=1,2,---,04,¢=1,2,---,|0j|,
a weight w(v;,v;) € W, where w(v;, v;) is the length of the shortest
path between v; and v; in G.
5. Find the perfect match M = {e;,e2,---,er} in H, such that
w(M) = > w(e) is minimized.
eceM
6. For each edge z;,y;,4 € M, suppose the shortest path between v; and v;

in G is P; j, add every edge in P; ; to G. Set the newly augmented
balanced graph as G.

7. Call Algorithm 1 to find the Euler tour T in G such that s(T') is minimized .

8. Return T.

end

3.3 A Heuristic Solution to Problem 2

The color span, s(T), of an Euler tour T depends largely on the color of the
feasible edges added to graph G and also the algorithm to find the Euler tour.
Intuitively, a tour with less s(T') can be found when the colors of the feasible
edges become more. Based on such an intuition, we modify the process to find
the feasible edges for G in a way such that the path formed by the feasible edges
has a minimum color span.

Definition 1. Given a graph G = (V, E, C), the minimum color span path C;;
for node pair (v;,v;) is the one with the minimum color span value among all
the paths from node v; to v;.

Following we present an algorithm to find the minimum color span path from
a given node s to every other node in a graph. The complexity of the algorithm
is O(n%m), where m,n is the number of edges and vertices of G.

Algorithm 3: Find the Minimum color span Paths.

Input: G = (V,E,C),v /* a strongly connected colored digraph and a source
node*/

Output: Minimum color span path from node v to every other node in G.



Notations: I(v;) - the current minimum color span value for all the paths from
v 10 vy

p(v;) - the current minimum color span path from v to v;;

a(v;) - the immediate ancestor for v; on the current minimum color span path
from v to v;;

F' - visited node set; M - unvisited node set.

begin

1. l(w):=0,pw) :=v, F:={v}, M :=V\{v};

2. For any v; € V and v; # v /* initialization */
p(vj) := NULL;
if (v,v;) € E,l(v;) :=1,a(vj) := v;
otherwise /(v;) := o0, a(v;) := NULL;

3. Select a node v; in M such that I(v;) = vmeian(vj).

J

If I(v;) = o0, stop, no path between v; and all the nodes in M;
Otherwise, p(v;) := p(a(v;)) - vi;
4. Set F:=FU{v;}, M := M\{v;}. If M =0, stop, the minimum color span
paths from v to all the other nodes have been found; otherwise,
5. For all v; € M, if (v;,v;) € E and I(vj) > s(p(v;) - (vi,v;))
/* s() is defined in Section 3.1. */
set 1(vj) == s(p(vi) - (vi, v5)), a(v;) = vs;
6. Go to step 3.
end

In algorithm 2, when we augment the graph to find the shortest postman tour,
we only search for a perfect matching in which the sum of weights of these aug-
mented edges is minimized, and have not considered the color span of each
augmented path. However, in problem 2, we only care about the color span of
the final generated tour and the length of the tour is no longer an issue. An
intuitive heuristic approach to problem 2 is to use path with smaller color span
when augmenting. This is very similar to what is called the minimax matching
problem [16].

Definition 2. Given a bi-partite graph H = (X,Y, Eg, W), M is a matching of
H, let w(M) = max{ws, y,|(%i,y;) € M}. If H has a mazimum matching M*,
such that for all maximum matchings of H, w(M*) = min{w(M)}, then M* is
called the minimax matching of H.

The algorithm proposed in [10] can be modified to get the minimaz matching
of a bi-partite graph in time complexity O(m?), as shown in Algorithm 4.

Algorithm 4: Find the Minimaz Matching.

Input: H = (X,Y, Eg, W) /* Directed bi-partite graph H with assigned weight
on each edge */

Output: Matching M of H such that gaﬁ}c{w(e)} is minimized.
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begin

1. For any edge in H, assign a new weight w'(e) = W — w(e),
where W is a real number larger than any w(e),e € Eg;

2. Call mazimin matching algorithm [10] to get the mazimin matching M
of H based on the new weight;

3. M is the minimax matching of the original graph H.

end

If we use the value of color span for each edge as the weight for each edge
in the bi-partite graph H, then Algorithm 4 can be used to find a matching
whose edge’s maximum color span is the minimal among all the matchings. By
combining algorithm 1, 3 and 4, we now give a heuristic algorithm for problem
2 with complexity O(m? +n?m), where m is the number of vertices and n is the
number of edges of G.

Algorithm 5: A Heuristic Solution to Problem 2
Input: G = (V,E,C) /* astrongly connected colored digraph */
Output: A Postman Tour with an approximately minimal color span.

begin
1. For each v; € V, set o; :=d ™ (v;) — d* (v;).
2. Ifo; =0,i=1...n, then set G := G goto step 7; Otherwise,
3. Let S={v; €V]o; >0}, T ={v; € V|o; <0}. Vv; € S,Vv; € T,
find the minimum color span path from v; to v; using Algorithm 3;
4. Construct a complete bi-partite graph H = (X,Y, Eg, W),with
X = {xi,pwi €S,p=12,-- ';Ui}; Y = {yj,q|vj €T,q=1,2,---, |aj|}7
En =A{zipyjqlrip € X,yj4 €Y}
Associates each edge z;py;,q in H,p=1,2,---,04,¢=1,2,---,|0j|,
a weight w(v;,v;), where w(v;,v;) is the color span of the
minimum color span path from v; to v; in G.
5. Find the minimaz match M = {e1,ea,- -, e} in H using Algorithm 4.
6. For each edge z;,y;,4 € M, suppose the minimum color span path between
v; and v; in G is Cj,;, add every edge in C;; to G.
Set the newly augmented balanced graph as G.
7. Call Algorithm 1 to find the Euler tour T in G such that s(T') is minimized .
8. Return T.
end

4 Test Generation For Internet Telephony End System

SIP-based Internet telephony systems have become popular with the introduc-
tion of 3GPP. Service creation, as well as feature interactions, has been well
studied for the Internet telephony systems [1][12][13][14]. However we haven’t
seen any test generation work that considers the interaction detection problem
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Di sconnect™
Di sconnect

Redi rect

Di sconnet

Features: Basic Call Feature; Hold; Mute; Forward; Redirect; Reject.

Fig. 2. Internet Telephony End System FSM

for SIP-based Internet telephony systems. In the following, we use an FSM to
model an Internet telephony end system and apply the algorithms we discussed
above to generate test sequences for the Internet telephony end system.

4.1 Model of the Internet Telephony End System

An Internet telephony end system can support many services and as a case
study, we suppose the end system only supports the services discussed in [1],
which include basic call functions such as call, accept, and disconnect, and also
other features such as call reject, call redirect, call transfer, call hold, and mute.

Fig. 2 gives the FSM of an Internet telephony end system. Since the end
system is the only entity where signaling and media flows are guaranteed to
converge, the state of the end system should include both control signalling
state and media state. In the FSM, each state of the end system is denoted as
(Control State; Audio State), the combination of the signaling state and the
audio media state. Basic call functions include the following actions: call, ring,
accept and disconnect. The actions of the call hold feature include: hold and
unhold; the actions of mute feature include: mute and unmute.

Fig. 3 gives the augmented graph of Fig. 2 after applying algorithm 2. There
is a label ¢ : a on each transition, c is the color assigned to the transition,
and a is the action that results in this transition. For this example FSM, since
every shortest path used by algorithm 2 in finding the per fect match is also the
minimum color span path, the same augmented graph can be generated when
applying algorithm 5.

Using algorithm 1, we generate the following FEuler tour T for Fig. 3:

Call — Accept — Hold — Disconnect — Call — Accept — Hold — Call —
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1: Accept

1: Di sconnect

Color Assignment: 1: Basic Call Feature; 2: Hold; 3: Mute; 4: Forward; 5: Redirect; 6:Reject

Fig. 3. Augmented Graph for Internet Telephony End System FSM

Disconnect — Call — Accept — Hold — Ring — Reject — Call — Accept

— Hold — Unhold - Mute — Disconnect — Ring — Redirect — Ring —

Accept - Mute — Unmute — Forward — Ring — Accept — Disconnect
The corresponding color sequence for this test sequence is:

CS(T) =112111211112161122311511334111, and its color span is s(T') = 4.

5 Test Generation For LMP

5.1 Introduction to LMP

Generalized Multiprotocol Label Switching (GMPLS) is being standardized by
Internet Engineering Task Force (IETF) to serve as an integral protocol for the
next generation of data networks. Link Management Protocol (LMP)[15] is one
of the control plane components of GMPLS, and it provides the fundamental
functions to support GMPLS routing and signaling protocols.

The features of LMP include: control channel management, link property
correlation, link connectivity verification, and fault management. Control Chan-
nel Management allows two nodes in optical network to establish and maintain
control channels between adjacent nodes. Link Property Correlation allows two
nodes in optical network to automatically exchange their TE link properties, ver-
ify the TE link configuration. Link Connectivity Verification provides functions
such that two nodes in optical network can discover their data plane neighbor,
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exchange their interface ID, and verify their physical connectivity. Fault Man-
agement makes nodes in optical network suppress downstream alarms, localize
faults for protection and restoration.

LMP features are specified using the Control Channel FSM, the Data Link
FSM and the TE Link FSM in the LMP draft [15]. In most cases, Control Chan-
nel Management controls the state transition of a control channel, Link Property
Correlation controls the state of a TE link, while behaviors of Link Connectivity
Verification and Fault Management can change the state transition of a data link.
On the other hand, these features are not independent, they interact with each
other via the operation on the shared state machine. For example, Link Property
Correlation can change a data link’s state when it finds the data link property
is not correlated in both sides, Control Channel Management can change a TE
link’s state when there is no active control channels for the TE link.

Some feature interaction problems of LMP have been identified in [2]. In the
following, we study the feature interaction testing problem of LMP.We use the
active data link FSM of LMP as an example, applying algorithm 2 to generate
a test sequence to guarantee that each transition is traversed at least once and
the operations of different features are interleaved with each other as much as
possible such that their interactions can be checked.

5.2 Data Link Model of LMP

Fig. 4 shows the active LMP data link FSM. The label on each transition is
¢ : i/o, where ¢ is the color assigned to the transition, i is the input event for
the transition and o is the output event of the transition. Explanation of the
transitions are given in the following table, in which ! represents the event of
sending out a message and ? represents the event of receiving a message.
Inputs:
1: evCCUp: Control channel has gone up.
evCCDown: LMP neighbor connectivity is lost.
7msgBeginVerifyAck: Receive BeginVerify Ack message.
?msgBeginVerifyOK: Receive correct BeginVerify message.
?msgTstSuccess: Receive TestStatusSuccess message.
?msgTestOK: Receive compatible Test message.
?msgTstStatusFailure: Receive TestStatusFailure message.
evPsvTestFail: VerifyDeadInterval has expired.
evLnkAlloc: Allocate the data link.
10: evLnkDealloc: Deallocate the data link.

©

11: evTestRet: A retransmission timer expires.
12: ?msgLinkSumErr: Receive error LinkSummary.
13: evLocalizeFail: FM localizes a Failure.

14: evDIDown: The data link is down.

15: inBandConfigOK: Link is ready for path establishment.
16 : evTstFail: Verification fails.

17: ?msgEndVerify: Receive EndVerify message.

18: ?msgLinkSumNack: Receive LinkSummaryNack message.
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Color Assignment: 1: CCM; 2: LCV; 3: LPC; 4: FM; 5: LDP.

Fig. 4. Active LMP Data Link FSM

Output:

: ImsgBeginVerify: Send out BeginVerify message.
ImsgBeginVerify Ack: Send out BeginVerify Ack message.
ImsgTest: Send out Test message.

ImsgTestSuccess: Send out TestSuccess message.
ImsgTestFailure: Send out TestFailure message.
ImsgTstStatusAck: Send out TstStatusAck message.
ImsgEndVerify: Send out EndVerify message.
ImsgEndVerifyAck: Send out EndVerify Ack message.
ImsgBeginVerifyNack: Send out EndVerifyNack message.
0: ImsgLinkSumNack: Send out LinkSumNack message.

= © 00 1O Ul W

5.3 Optimal Test Sequence for LMP

Fig. 5 shows the balanced augmentation of the active LMP data link FSM. Since
the shortest paths adopted to augment Fig. 4 is also the minimum color span
paths, the same augmented graph will be generated no matter which of algorithm
2 and algorithm 5 is used. In Fig. 5 the dashed links are the links augmented to
Fig. 4. There is a label (I,¢) on each link, [ is a label assigned to the link and ¢
is the color of the link.

Using algorithm 1, we get an Fuler tour T; for Fig. 5:
T, =1,3,2,4,12,9,11,13,10,8,17,14,18,15, 20,16, 7, 5,6, 19. Its corresponding
color sequence is C'S(T1) = 21221541553131412221, and its color span is s(T1) =
3. The following gives the test sequence corresponding to tour 77.
?msgBegin VerifyAck/!msgTest - evCCDown /. — ?msgBegin Verify Ack/!msgTest
— ?msgTstStatusFailure/ ImsgTstStatusAck — inBandConfigOK/_ — evLnkAlloc/_



15

[l
[ (10.1)
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Color Assignment: 1: CCM; 2: LCV; 3: LPC; 4: FM; 5: LDP.

Fig. 5. Symmetric Augmentation of the Active LMP Data Link FSM

— evLocalizeFail/_ — inBandConfigOK/_ — evLnkAlloc/_ — evLnkDealloc/_

— ?msgLinkSumErr/ ImsgLinkSumNack — inBandConfigOK /_ — ?msgLinkSum-
Nack/_ — inBandConfigOK /- — evDIDown/_ — inBandConfigOK /. — ?msgBe-
ginVerify Ack/!msgTest — evTestRet/!msgTest — ?msgTstSuccess/!msgTstStatusAck
— evCCDown/_

6 Conclusion

In this paper, a technique is proposed to generate optimal conformance test se-
quences for the purpose of feature interaction detection for a complex feature-rich
communication system. A feature-rich communication system may offer many
features and these features can be implemented in multiple processes and as a
result their operations can interleave with each other. Whether or not the imple-
mented system can work correctly when such an interleaving occurs needs to be
verified. We define a parameter color span to measure the extent of the interac-
tions between different features, propose an algorithm to find test sequences with
minimum length and minimum color span such that all the transitions of the
FSM are traversed at least once and the features of the system are interleaved
with each other as much as possible.

With the protocol being modelled as a finite-state machine, the same ap-
proach can be used for many other purposes such as inter-operability testing
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and fault detection. Some state verification techniques such as UIO sequences
can also be combined to make the algorithm more powerful and practical.
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